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Design of Sliding Mode Guidance Law with Dynamic Delay and Impact
Angle Constraint
Hui-Bo Zhou*, Shen-Min Song, and Jun-Hong Song

Abstract: A sliding mode guidance law with dynamic delay and impact angle constraints is designed for the relative
motion between the missile and the target in the intercepting plane. First of all, the missile’s first order dynamic
delay is involved into the system model to design the guidance law based on sliding mode variable dynamic method.
Secondly, the target’s maneuvering is taken as the system disturbance, and a non-homogeneous disturbance observer
is applied to estimate such maneuvering in finite time rapidly, which, through dynamic compensation, realizes
the missiles precision attack to targets of different maneuvering at a desired line-of-sight (LOS) angle. Finally,
numerical simulations are performed to demonstrate the effectiveness of the designed guidance law.
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1. INTRODUCTION

With the constant development of precision-guided mu-
nition, the missile is required to hit a target at a specific
impact angle, for the maximum efficacy of the missile’s
warhead and the best damage effect. For example, anti-
ship missile is expected to hit a ship’s ammunition section
and power section at a specific angle; anti-tank missile to
hit a tank’s weak part on its top at a large impact angle;
and penetrating bomb to get into or through the target ver-
tically when it attacks a multi-story building or a under-
ground bunker. Therefore, it is necessary to make further
study on the guidance law with terminal impact angle con-
straints, for this special guidance task.

In 1973, Kim and Grider [1] proposed optimal guidance
laws with impact angle constraint for the motion of reen-
try vehicle in the vertical plane based on a linear model.
Since then, the design of guidance law with impact angle
constraint has attracted broad attention of the scholars, and
there have been certain achievements. In [2,3], a guidance
law to overcome the ship’s short range defense system
was designed, and applied it to salvo attack of multiple
missiles, while it was for still targets or those in uniform
motion. Shima [4] studied sliding mode variable structure
control to study the impact angle constraint in three sce-
narios of interception. During the realization of guidance
law, the saturation function is used to substitute the sign
function to reduce the chattering behavior of sliding mode
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manifold; however, the sliding mode manifold converges
to the boundary layer of the saturation function, but not
to zero. In [5, 6], a terminal sliding mode manifold that
includes LOS angle and LOS angle rate was proposed,
to design a finite-time convergent sliding mode guidance
law, but it does not include the issue of singularity of the
terminal sliding mode. Rao et al. [7] designed two guid-
ance laws corresponding to two linear sliding mode man-
ifolds for switching between two control laws, to realize
all-round attack to the target. All the literatures above are
based on bounded estimation of the target’s maneuvering,
and compensate the target’s unknown maneuvering in the
system by switching function. However, there tends to
be excessive constraints when the boundary of the target’s
maneuvering is too large, while, the system is unstable
when it is too small. Another method to deal with the tar-
get’s maneuvering in the system is to employ an observer
for tracking and observation. For example, integral slid-
ing mode manifold in combination with observer to design
guidance law was presented in [8, 9], which avoided esti-
mating the target’s maneuvering in the system.

During terminal guidance, in addition to the target’s es-
cape maneuvering, the dynamic delay of missile autopilot
is another main factor influencing the precision of guid-
ance. The time constant of the dynamic response process
of missile autopilot determines the response time of the
missile to the acceleration command given by the guid-
ance law. A too large time constant will cause an exces-
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Fig. 1. Relative motion geometry of missile and target.

sively long response time of the missiles acceleration
tracking guidance command, which will significantly af-
fect the guidance performance in the critical terminal
phase of guidance. Therefore, it is of great engineering
significance to consider the missile’s dynamic delay in de-
signing guidance law. At present, the main methods of this
study include dynamic surface control [10], backstepping
[11], and directly considering the influence of the missile’s
dynamic behavior in designing guidance law [8, 12].

Due to the preferable robustness of sliding mode vari-
able structure control to parameter perturbation and ex-
ternal disturbance, it has been widely applied in missile
guidance control. Shtessel et al. [13] proposed a sliding
mode variable dynamic method, which allows the system
state and its derivative to converge to zero in finite time.
Inspired by this method, we select a linear sliding mode
manifold that includes LOS angle and LOS angle rate, to
design a sliding mode guidance law with dynamic delay
and impact angle constraint. During the realization of this
guidance law, a non-homogeneous disturbance observer is
applied to perform finite-time tracking and estimation of
the target’s total disturbance in the system. The results of
numerical stimulation show that the missile can intercept a
target with high speed and great maneuvering at a desired
LOS angle by the designed guidance law.

2. PROBLEM DESCRIPTION

Consider the relative motion of the missile and the tar-
get in the intercepting plane, both of which are regarded
as point masses, represented by M and T respectively, and
their connecting line is the line-of-sight (LOS), as shown
in Fig. 1.

Based on Fig. 1, we can get the equation description
of the relative motion between the missile and the target
[14]:

ṙ =Vt cos(q−φt)−Vm cos(q−φm), (1)

rq̇ =−Vt sin(q−φt)+Vm sin(q−φm). (2)

Furthermore, we can get

q̈ =−2ṙ
r

q̇− 1
r

am +
1
r

at , (3)

where at =Vt cos(q−φt)φ̇t , am =Vm cos(q−φm)φ̇m, r and
ṙ are the relative distance and the relative velocity from the
missile to the target, which are regarded as known time-
varying parameters; q, q̇ represent the LOS angle and the
LOS angle rate respectively; φm, φt denote the missile’s
and the target’s speed direction angles respectively; and
am, at represent the component of the acceleration of the
missile and that of the target in the direction normal to the
LOS, which are regarded as the system’s control input and
unknown external disturbance input respectively.

According to the principle of quasi-parallel approach-
ing method, the key to guidance law design is to control
the LOS angle rate q̇ to approach zero, to ensure hitting
the target precisely. For the missile flight control system,
if the autopilot’s dynamics model is a linear first order in-
ertia equation, then

ȧm =−1
τ

am +
1
τ

u, (4)

where τ is the time constant of missiles autopilot, and u
denotes the guidance command acceleration given to mis-
sile autopilot.

As it is restrained by acceleration capability, the maxi-
mum lateral acceleration that can be actually provided by
the missile and the target is limited. During terminal guid-
ance, as it is restrained by the power of the angle tracking
system, receiver acceleration and other factors, the seeker
has a minimum operating range r0. When the relative dis-
tance between the missile and the target is no more than
r0, the guidance circuit will be open [15]. The start time of
terminal guidance is noted as 0, and without loss of gen-
erality, we can assume the conditions as follows for the
variables in the system.

Assumption 1: There exist constants Am > 0, At > 0,
A1 > 0 and A2 > 0, which make

|am| ≤ Am, |at | ≤ At , |ȧt | ≤ At , |ät | ≤ A2. (5)

Assumption 2: The time-varying parameter r(t) in sys-
tem (3) satisfies:

r(t)≥ r0. (6)

To further design the guidance law, relevant definitions
and lemmas are given as follows:

Definition 1 [16]: Let f (x) : Rn →Rn be a vector func-
tion. For any ε > 0, if there is (r1,r2, ...,rn)

T ∈ Rn that
makes f (x) satisfy

fi(ε r1 x1,ε r2 x2, · · · ,ε rn xn) = εk+ri fi(x), i = 1,2, · · · ,n,
(7)

where ri > 0, (i= 1, 2, ..., n), k ≥−max{ri, i= 1,2, ...,n},
then f (x) is said to be homogeneous of degree k for
(r1,r2, ...,rn). Thus, system ẋ = f (x) is a homogeneous
system.
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Lemma 1 [16]: Suppose that the system ẋ = f (x),
(x ∈Rn) is homogeneous of degree k < 0 for extension co-
efficients (r1,r2, ...,rn), and f (x) is continuous with x = 0
as its asymptotically stable equilibrium point, then the sys-
tem’s equilibrium point is globally finite time stable.

Lemma 2 [17] (Lassalle’s Invariant Principle): Sup-
pose a system ẋ = f (x), where f : D → Rn is a local Lip-
schitz mapping of the domain D ⊂ Rn onto Rn; suppose
that Ω ⊂ D is a positively invariant compact set of the
system equation, and V (x) : D →Rn a continuous and dif-
ferentiable function, which satisfies V̇ (x) ≤ 0 within Ω;
and suppose that M is the set of all the points that satis-
fies V̇ (x) = 0 in Ω, and M′ the maximum invariant set in
M, then, when t → ∞, any solution starting from Ω will
approach M′.

3. DESIGN AND REALIZATION OF GUIDANCE
LAW

Define x1 = q− qd , x2 = ẋ1 and x3 = ẋ2 − q̈, where qd

is the desired LOS angle during the guidance of missile,
then the guidance (3) can be rewritten as:

x3 = ẋ2 =−2ṙ
r

x2 −
1
r

am +
1
r

at , (8)

1
r

at =
1
r

am +
2ṙ
r

x2 + x3. (9)

Taking the derivative of (8), and substituting (4), we can
get:

ẋ3 =(−2r̈
r
+

2ṙ2

r2 )x2 −
2ṙ
r

x3 +(
ṙ
r2 +

1
rτ

)am

− 1
rτ

u− ṙ
r2 at +

1
r

ȧt . (10)

Substituting (9) into (10), we can rewrite it as

ẋ3 =−2r̈
r

x2 −
3ṙ
r

x3 +
1
rτ

am − 1
rτ

u+
1
r

ȧt . (11)

Let f0(x3,am) = − 3ṙ
r x3 +

1
rτ am, f1(x2, ȧt) = − 2r̈

r x2 +
1
r ȧt ,

b = − 1
rτ . According to (8) and (11), the system equation

can be rewritten as
ẋ1 = x2,
ẋ2 = x3,
ẋ3 = f0(x3,am)+ f1(x2, ȧt)+bu.

(12)

For system (12), we select the linear sliding mode man-
ifold

s = k1x1 + k2x2 + x3, (13)

where parameter k1, k2 satisfies the polynomial p2+k2 p+
k1 as Hurwitz determinant, in which p is the Laplace op-
erator.

Taking the derivative of (13), we can get:

ṡ =k1ẋ1 + k2ẋ2 + ẋ3

=k1x2 + k2x3 + f0(x2,am)+ f1(x1, ȧt)+bu. (14)

Inspired by literature [13], we select ṡ =−α1 |s|
p−1

p sgn(s)+w(t),

ẇ(t) =−α2 |s|
p−2

p sgn(s), p ≥ 2,
(15)

where sgn(·) is the sign function.
Combined with (14) and (15), we design the guidance

law as
u =−1

b
( f0(x3,am)+ f1(x2, ȧt)+ k1x2

+ k2x3 +α1 |s|
p−1

p sgn(s)−w(t)),

ẇ(t) =−α2 |s|
p−2

p sgn(s), p ≥ 2.

(16)

Theorem 1: For guidance system (12), a sliding mode
guidance law (16) with impact angle constraints is de-
signed, so that and converge to zero asymptotically in case
of an autopilot with first order delay.

Proof: For system (15), we select Lyapunov function

V (t) =
p

2(p−1)
α2 |s|

2(p−1)
p +

1
2

w(t)2. (17)

It is not difficult to verify that V (t) is positive definite and
continuously differentiable. Taking the derivative of (17),
and substituting the guidance law (16), we can get:

V̇ (t) =α2 |s|
p−2

p ṡsgn(s)+w(t)ẇ(t)

=α2 |s|
p−2

p sgn(s)(k1x2 + k2x3 + f0(x2,am)

+ f1(x1, ȧt)+bu)+w(t)ẇ(t) (18)

=α2 |s|
p−2

p sgn(s)(−α1 |s|
p−1

p sgn(s)+w(t))

+w(t)(−α2 |s|
p−2

p sgn(s))

=−α1α2 |s|
2p−3

p .

According to Lemma 2, V̇ (t) = 0 contains the unique so-
lution s = 0, therefore, system (18) gradually converges
to zero. Based on Definition 2, it is easy to verify that
the system (15) is homogeneous of degree−1. Accord-
ing to Lemma 1, s andṡ in system (15) converge to zero
in finite time. When s = k1x1 + k2x2 + x3 = 0, we can
getk1x1 + k2ẋ1 + ẍ2 = 0, and the corresponding equation
λ 2 + k2λ + k1 = 0. Since k1 and k2 satisfy the polyno-
mial p2 + k2 p + k1 as Hurwitz determinant, we can get
x1(t) = c1e−λ1t + c2e−λ2t , and k1 = λ1λ2, k2 = λ1 + λ2,
λ1 > 0, λ2 > 0 only when two different latent roots are
selected. Therefore, when t → ∞, x1(t)→ 0, which means
that the error of desired LOS angle asymptotically con-
verges to zero; and x2 = ẋ1 = −λ1c1e−λ1t − λ2c2e−λ2t ,
x3 = ẋ2 = λ 2

1 c1e−λ1t + λ 2
2 c2e−λ2t , which means that the
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LOS angle rate and the LOS angle acceleration exponen-
tially converge to zero .

Remark 1: In guidance law (16), the system’s to-
tal disturbance f1(x1,a) = − 2r̈

r x1 +
1
r ȧt is unknown. A

method in previous literatures is to use a switching func-
tion “ηsgn(s)” for disturbance attenuation, where η is
greater than the boundary of total disturbance. However,
there will be more variables to control when η is too great;
while it is possible to result in an unstable control system
when it is too small. Another method is to use observer to
track and estimate the disturbance in the system. This pa-
per uses non-homogeneous disturbance observer to track
and estimate the system’s total disturbance in finite time,
in order to realize the guidance law (16).

Considering the first order SISO non-linear system

ṡ = g(t)+u, s ∈ R. (19)

Equation (19) describes the dynamic characteristics of the
sliding mode along the trajectory of the system. s = 0 de-
fines the system’s motion on the sliding mode manifold,
u ∈ R is the continuous control input, and g(t) is a suffi-
ciently smooth indeterminate function. This control aims
at designing a continuous control u, to make s and ṡ con-
verges to zero in finite time.

If the sliding mode variable s and the control input u can
be obtained in real time, g(t) is m−1 order differentiable,
and gm−1(t) has a known Lipschitz constant L. Based on
Levant’s non-homogeneous differentiator [18], literature
[19] proposes non-homogeneous disturbance observer to
fasten the transient process, whose form is as follows:

ż0 = v0 +u,v0 = h0(z0 − s)+ z1,
ż1 = v1,v1 = h1(z1 − v0)+ z2,
...
żm−1 = vm−1,vm−1 = hm−1(zm−1 − vm−2)+ zm,
żm = hm(zm − vm−1),

(20)

where hi is a function with a form as follows:

hi(σ) =−λm−iL
1

m−i+1 |σ |
m−i

m−i+1 sgn(σ)−µm−iσ ,
(21)

where λi, µi > 0, i = 0, 1, ..., m.
Lemma 3 [19]: Suppose that s(t) and u(t) in the system

of (19) are measurable without measurement noise, and
the parameter λi, µi are sufficiently great in reverse order,
the equations below will be valid after a transient process
within finite time.

z0 = s(t),z1 = g(t), · · · ,zi = vi−1 = g(i−1), i = 1, · · · ,m.

During the terminal guidance, the change of ṙ is not
significant. Therefore, suppose ṙ ≈const, then r̈ = 0,

f1(x1, ȧt) = − 2r̈
r x1 +

1
r ȧt ≈ 1

r ȧt . And from Assumption 1
and Assumption 2 we can obtain:

∣∣ ḟ1(x1, ȧt)
∣∣= ∣∣∣∣ ätr− ȧt ṙ

r2

∣∣∣∣
=

∣∣∣∣ ät

r
− ȧt(Vt cos(q−ϕt)−Vm cos(q−ϕm))

r2

∣∣∣∣
≤A2

r0
+

A1V max
t

r2
0

+
A1V max

m

r2
0

=L, (22)

where V max
m and V max

t are the missile’s maximum speed
and the target’s maximum speed respectively.

For this purpose, we track and estimate the total distur-
bance of system (14) within finite time, and we select a
non-homogeneous disturbance observer as

ż0 = v0 + k1x2 + k2x3 + f0(x2,am)+bu,

v0 =−λ2L
1
3 |z0 − s|

2
3 sgn(z0 − s)−µ2(z0 − s)+ z1,

ż1 = v1,

v1 =−λ1L
1
2 |z1 − v0|

1
2 sgn(z1 − v0)−µ1(z1 − v0)+ z2,

ż2 =−λ0Lsgn(z2 − v1)−µ0(z2 − v1),

(23)

then, in finite time,

z0 = s,z1 = f̂1(x1, ȧt), (24)

f̂ (x1, ȧt) is the estimation of f1(x1, ȧt).
Therefore, based on Theorem 1, the realizable form of

the guidance of system (12) is (25).
u =− 1

b ( f0(x3,am)+ f̂1(x2, ȧt)+ k1x2 + k2x3

+α1 |s|
p−1

p sgn(s)−w(t)),

ẇ(t) =−α2 |s|
p−2

p sgn(s), p ≥ 2.
(25)

Remark 2: In (25), when is substituted into (14), we
can get:{

ṡ =−α1 |s|
1
2 sgn(s)+w(t),

ẇ(t) =−α2sgn(s).
(26)

This is the so-called super-twisting algorithm, while it is
non-smooth, and the sliding mode manifold approaches
zero with chattering around zero, which impacts the guid-
ance performance. The simulation below indicates that
when p> 2, the performance of the guidance law designed
in this paper is much better.

4. SIMULATIONS

Suppose that a missile flies at a specific height with a
Mach number of 3.5, the sound velocity is 295.07 m/s, the
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Table 1. Miss distances and interception time.

p = 2 p = 3 p = 4 p = 5
miss

distance
(m)

0.076 0.088 0.049 0.080

qd =−20◦
intersection

times
(s)

9.108 9.151 9.182 9.204

miss
distance

(m)
0.086 0.036 0.050 0.071

qd = 60◦
intersection

times
(s)

8.346 8.366 8.375 8.380

target’s flight velocity is 900 m/s, and both the target and
the missile are moving in a vertical plane. Suppose that at
the initial time of terminal guidance, the missile’s position
in inertial system is xm(0) = 0.5 km, ym(0) = 16 km, the
missile’s and the target’s initial trajectory deflection an-
gles are φm(0) = φt(0) = 10◦, the target’s initial position
is xt(0) = 1.5 km, yt(0) = 16.5 km, the guidance distance
of the seeker is r0 = 100 m, and the limit of the missile’s
normal acceleration is 50g, g= 9.8 m/s2. We consider two
different scenarios of the target’s maneuvering.

Scenario 1: the target performs cosine maneuvering
at = 4gcos(πt/4) in the normal direction. In guidance law
of (25), the parameters selected are α1 = 2, α2 = 3, k1 = 2,
k2 = 3 and τ = 0.5. The parameters selected for the ob-
server are λ0 = 1.1, λ1 = 1.5, λ2 = 2, µ1 = 6, µ2 = 8 and
L = 10. When p = 2, 3, 4, 5, and the desired LOS angle
are either qd =−20◦ or qd = 60◦, the corresponding LOS
angle rates, desired LOS angles, sliding mode manifolds,
the missile’s normal accelerations and the observer’s esti-
mate errors are shown in Figs. 2-7, and the corresponding
miss distances and interception times given in Table 1.

As shown in Table 1, for different values of p, there is
no significant difference of flight time or accuracy of miss
distance between the two different LOS angles, and the
designed guidance law (25) can make the missile hit the
target precisely.

Fig. 2 shows the change rule of LOS angle rate, and
in case of cosine maneuvering, the change curve of LOS
angle rate converges to zero rapidly, ensuring that the mis-
sile can hit the target precisely. However, according to the
two charts in Fig. 2, when p = 2, in spite of the fact that
the miss distance is very small and the desired LOS an-
gle meets the requirement of guidance, there is slight saw-
tooth shaped flutter in the corresponding curve of LOS an-
gle rate. As shown in Figs. 3 to 6, when p = 2, there is
slight flutter in the corresponding curves of desired LOS
angle, sliding mode manifold, the missile’s normal accel-
eration and the observer’s tracking error. Especially for
the curve of disturbance estimate error, the initial error
is quite great, resulting in the degradation of guidance
performance. Moreover, for different values of the pa-

Fig. 2. Curve of LOS angle rate.

rameters selected for the guidance law, it is possible to
result in greater chattering. Therefore, when p = 2, the
guidance law resulting from super-twisting algorithm is
inferior to that when p > 2. Meanwhile, for the other
three values of p > 2, the curve of sliding mode man-
ifold and that of disturbance estimate error converge to
zero in a stable, smooth and rapid manner, which indi-
cates the effectiveness of the selected non-homogeneous
disturbance observer. The curve of the missile’s normal
acceleration shows no saturation at the initial time of ter-
minal guidance, and rapidly become stable within a small
range around a fixed value. According to Fig. 3, for differ-
ent values of p, the curve of desired LOS angle can rapidly
converge to the corresponding desired value, with an error
of desired LOS angle less than 0.1◦. Meanwhile, under the
influence of the designed guidance law (25), the interval
of desired LOS angle can be determined to be [−20◦, 60◦]
for the simulation condition in this paper, and the missile
can hit the target precisely at any angle in this interval.
Fig. 7 shows the curve of the guidance law. It can see
that when p = 2, the guidance law resulting from super-
twisting algorithm is inferior to that when p > 2.

Scenario 2: When t = 3s, the target performs step ma-
neuvering at = 4g in the normal direction, only p = 3 is
selected in guidance law (25), and three angles qd =−20◦,
30◦, 60◦ are selected as the desired LOS angle, with the
simulation curves as below. The corresponding curves of
LOS angle rate, LOS angle, sliding mode manifold and
the missile’s normal acceleration are shown in Fig. 8 and
Fig. 9. The miss distances and interception times are given
in Table 2.

According to Table 2, for the three different desired
LOS angle when p = 2, the missile can hit the target pre-
cisely at the corresponding desired LOS angle. Under this
maneuvering, it is possible to perform simulation to con-
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Fig. 3. Curve of LOS angle.

Fig. 4. Curve of sliding mode surface.

Table 2. Miss distances and interception time.

qd =−20◦ qd = 30◦ qd = 60◦

miss
distances

(m)
0.057 0.139 0.074

p = 3
intersection

times
(s)

8.434 8.267 9,188

firm that the interval of the desired LOS angle for the mis-
sile is still [−20◦, 60◦].

According to Fig.8, the LOS angle rate (Fig. 8(a)) con-
verges to zero, and the LOS angle (Fig. 8(b)) converge to
corresponding desired value. As the target performs step
maneuvering at 3s, the curve of sliding mode manifold
shows a rapid step at 3s, but approaches zero rapidly, as

Fig. 5. Curve of missile normal acceleration.

Fig. 6. Curve of tracking error.

shown in Fig. 9(a). Accordingly, the curve of the mis-
sile’s normal acceleration shows a step reactivity, but with
no significant change, and approaches a stable value later
when it becomes smooth, as shown in Fig. 9(b). Accord-
ing to the curve of the observer’s error shown in Fig. 9(c),
it is obvious that there is a great step at 3s, however, the
observer realizes tracking the target’s maneuvering in a
short time, and the curve of the observer’s error converges
to zero rapidly. To sum up, the results of simulation indi-
cate that the designed guidance law and observer feature
rapid responding, high precision guidance and tracking,
and high adaption to the target’s different maneuvering.

Scenario 3: The simulation compared with other guid-
ance law

The guidance law (25) with is shorthand for LSMG. In
the literature [8], by choosing integral sliding mode sur-
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Fig. 7. Curve of the guidance law.

Fig. 8. Curve of LOS angle rate and LOS angle.

face

s =x3 − x3(t0)

+
∫ t

t0
(β1sigα1(x1)+β2sigα2(x2)+β3sigα3(x3))dt,

the integral sliding mode guidance law (ISMG) with dy-
namic delay and impact angle constraints is designed with
finite time convergence

u =−2τ r̈x2 + rτ(β1sigα1(x1)+β2sigα2(x2)+β3sigα3(x3))

−3τ ṙx3 +am + τηsgn(s)).

In ISMG, α1 = 2/11, α2 = 1/4, α3 = 2/5, β1 = 0.2,
β2 = 0.5, β3 = 0.5, η = 40. The target performs cosine
maneuvering at = 4gcos(πt/4) in the normal direction.
The desired LOS angle is qd = 30◦ and the limit of the

Fig. 9. Curve of sliding mode surface, missile normal ac-
celeration and observer error.

Fig. 10. Curve of LOS angle rate and LOS angle.

missile’s normal acceleration is 20g. Other guidance con-
ditions are the same as Scenario1 and Scenario 2. The cor-
responding simulation curves are shown in Figs. 10-12.

Fig.10 shows the curves of LOS angle rate and LOS an-
gle. It can see that LSMG has higher convergence preci-
sion than ISMG. Fig.11 shows the curves of sliding mode
surface and missile normal acceleration. It can see that
as ISMG uses the sign function, the chattering is larger
which directly influences on the performance of the mis-
sile guidance. Fig. 12 shows the curves of two guidance
laws. It can see that the curve of LSMG is smooth, while,
the curve of ISMG is intense chattering. The above com-
parison shows that the designed guidance law has more
stable performance, wider adaptability and convenient for
the application in the engineering than ISMG.
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Fig. 11. Curve of sliding mode surface and missile normal
acceleration.

Fig. 12. Curve of the guidance law under LSMG and
ISMG.

5. CONSLUSIONS

In order to meet the requirement of guidance for the
missile to intercept target with high speed and great ma-
neuvering at a certain impact angle, a sliding mode man-
ifold guidance law is designed based on annihilation of
LOS angle rate. The application of sliding mode variable
dynamic method allows the system to converge to the slid-
ing mode manifold in finite time, and the selected linear
sliding mode manifold that includes desired LOS angle
and LOS angle rate is simple and convenient for practi-
cal engineering application. During the realization of this
guidance law, a non-homogeneous disturbance observer is
applied to perform finite-time rapid tracking and estima-
tion of the target’s total disturbance in the system. This
guidance law overcomes the dynamic delay of the mis-
sile’s autopilot and the influence of the target’s maneuver-

ing on the precision of guidance. The results of numerical
simulation demonstrate the effectiveness of the guidance
law.
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