
International Journal of Control, Automation and Systems 15(1) (2017) 404-415
http://dx.doi.org/10.1007/s12555-015-0181-1

ISSN:1598-6446 eISSN:2005-4092
http://www.springer.com/12555

Neural Network Based Adaptive Fuzzy PID-type Sliding Mode Attitude
Control for a Reentry Vehicle
Zhen Jin, Jiabin Chen*, Yongzhi Sheng, and Xiangdong Liu

Abstract: This work investigates the attitude control of reentry vehicle under modeling inaccuracies and external
disturbances. A robust adaptive fuzzy PID-type sliding mode control (AFPID-SMC) is designed with the utilization
of radial basis function (RBF) neural network. In order to improve the transient performance and ensure small
steady state tracking error, the gain parameters of PID-type sliding mode manifold are adjusted online by using
adaptive fuzzy logic system (FLS). Additionally, the designed new adaptive law can ensure that the closed-loop
system is asymptotically stable. Meanwhile, the problem of the actuator saturation, caused by integral term of
sliding mode manifold, is avoided even under large initial tracking error. Furthermore, to eliminate the need of a
priori knowledge of the disturbance upper bound, RBF neural network observer is used to estimate the disturbance
information. The stability of the closed-loop system is proved via Lyapunov direct approach. Finally, the numerical
simulations verify that the proposed controller is better than conventional PID-type SMC in terms of improving the
transient performance and robustness.

Keywords: Actuator saturation, adaptive fuzzy PID-type SMC, attitude control, radial basis function neural net-
work, reentry vehicle.

1. INTRODUCTION

Reentry vehicle is sensitive to changes in flight condit-
ions, aerodynamic characteristics, and physical parame-
ters because of its broad flight envelope spanning and
flight condition of high Mach numbers [1]. As a result, the
model of the reentry vehicle is highly nonlinear and time-
varying, with modeling inaccuracies and external distur-
bances [2]. These problems have strong adverse in- flu-
ences on the performance of reentry vehicle and add the
difficult in design of the control system. Therefore, many
robust control algorithms, such as H, sliding mode control
(SMC), and adaptive control have been used for reentry
vehicle [3–6, 11].

Over the past decade, the sliding mode control, as one
of the most significant robust control methods, provides
a systematic approach to the nonlinear system with mod-
eling inaccuracies and external disturbances under match-
ing conditions [7–9]. Hence, SMC has been widely used
for the reentry vehicle attitude control [10, 11]. In [10],
a quasi-continuous high-order sliding mode control law
with feedback linearization (FBL) was proposed for a flex-
ible air-breathing hypersonic vehicle (FAHV). In [11], a
robust adaptive SMC design method for the longitudinal
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model of FAHV with parameter uncertainties and external
disturbances was proposed, by which the system without
the prior knowledge of disturbances upper-bound is con-
sidered.

In the conventional SMC design, the chattering, which
may trigger unmodeled high-frequency dynamic [12],
must be addressed. The boundary layer technique [13],
as the main method to eliminate the chattering, has been
adopted in many papers. However, the robustness and ac-
curacy of the control system will not be guaranteed within
the boundary layer. Contraposing this problem, the con-
stant PID-type sliding mode control (CPID-SMC) was
presented in [14], adding an integral term to the conven-
tional PD sliding mode manifold, which has proved that
the less steady state error can be achieved. But it will
deteriorate the transient performance of the system [15].
In particular, it would lead to instable situation of system
with constraint of control input due to integral windup ef-
fect.

To deal with the problem of CPID-SMC, some studies
have been done in references [16, 17]. In [16], the authors
selected a small integral terms gain to avoid input satura-
tion and overshoot of the system, but it would sacrifice the
response rapidity of system. In [17], the authors incorpo-
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rated a conditional integrator, providing integral action
only inside the boundary layer. The essence of the method
is that the integral term would only work in some specific
areas, and it is effective to decrease system response over-
shoot. In this paper, we will consider this problem from a
difference aspect.

The prior knowledge of matched disturbances upper
bound is necessary for SMC. However, it cannot be ob-
tained in the actual system. To ensure the stability of the
system, one solution is to select a large switching gain,
which as a result may lead to more exquisite chatteting
phenomenon. To solve this problem, in [18], adaptive
control method is applied, in which the gain dynamics en-
sure that there is no over-estimation of the gain with re-
spect to the real a priori unknown value of disturbances,
and the controller chattering phenomenon is resolved. Be-
sides, observer technology, such as super-twisting algo-
rithm [19] and neural network [20,21] are also adopted to
estimate upper bound information of the unknown distur-
bances. But super-twisting algorithm still requires prior
knowledge of the disturbances. As the observer, neural
network is applied to the sliding mode control. In [22],
neural network is utilized to estimate the modeling inac-
curacies and external disturbances of linear system online,
by which the chattering phenomenon can be eliminated.
In [23], an adaptive sliding mode control with neural net-
work is proposed for a discrete nonlinear system, and the
neural network is used to approximate unknown functions.
Compared with [18], neural network observer can also en-
hance the system robustness except for estimating the un-
known disturbances.

In this paper, to overcome the aforementioned two
problems of CPID-SMC, an adaptive fuzzy PID-type slid-
ing mode control based on RBF neural network is pro-
posed.

The main contributions of this study are as follows:
1) In our paper, the adaptive fuzzy logic system is uti-

lized to tackle transient response problem. Different from
[24], in which fuzzy logic system without adaptive law
was used to tuning the PID control parameters for improv-
ing the system performances, in this paper, a new adaptive
law is designed for the fuzzy logic system to adjust the
gain parameters of sliding mode manifold. The principle
of the designing of adaptive fuzzy algorithm is that the
large errors correspond to small gains and the small errors
correspond to large gains. Then the problem of the actu-
ator saturation, caused by integral term of sliding mode
manifold, is also avoided.

2) The adaptive RBF neural network is designed as dis-
turbance observer to estimate the matched lumped distur-
bances . The RBF neural network observer is not only able
to estimate the disturbances information, but also avoids
the need for prior knowledge of disturbance upper bound.
Meanwhile, the superior properities, such as higher preci-
sion and robustness against disturbances, are achieved.

3) Although many states are considered in the system,
only three parameters are required to be adapted online in
fuzzy logic system and neural network. Thus the compu-
tation load of the proposed controller can be reduced, and
it can be applied in practice possiblly.

The paper is organized as follows. In Sections 2 and
3, the reentry vehicle mathematical model is described,
the FBL model of the vehicle and control objective are
presented. Then we review the CPID-SMC, and discuss
its characteristics and problems. The FLS and AFPID-
SMC are proposed for the attitude control of reentry ve-
hicle with modeling inaccuracies and external disturb- an-
ces, in addition, the stability of the closed-loop system is
also proved based on Lyapunov Theory in Section 4. Then
Section 4 also develops the adaptive RBF neural network
observer to approximate unknown disturbances. Numer-
ical simulations are presented in Section 5. Finally, the
conclusions are summarized in Section 6.

2. MATHEMATICAL MODEL AND PROBLEM
FORMULATION

In this section, the feedback linearization method is
used to linearize the dynamics of the reentry vehicle sys-
tem.

2.1. Mathematical model
The dynamic equations of related rotational model of

the reentry vehicle is described as cite25:

Ω̇ = T (Ω)ω +∆T, (1)

Iω̇ +ω×Iω = M+Md ,

where

Ω = [α,β ,µ]T ,

T (Ω) =

 −cosα tanβ 1 −sinα tanβ
sinα 0 −cosα

−cosα cosβ −sinβ −sinα cosβ

 ,
I =

 Ixx 0 −Ixz

0 Iyy 0
−Ixz 0 Izz

 ,
ω = [p,q,r]T ,

ω× =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 ,
M = [Mx,My,Mz]

T ,

Md = [Mdx,Mdy,Mdz]
T ,

∆T = [∆T1,∆T2,∆T3]
T ,

Ω = [α,β ,µ]T is the angular vector, α , β , µ stand for
attack angle, sideslip angle, and bank angle respectively.
ω = [p,q,r]T is the angular rate vector defined as roll,
pitch, and yaw rates. M = [Mx,My,Mz]

T denotes the vector
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of control moment with Mx, My, Mz being the roll, pitch
and yaw moments respectively. I is the inertia matrix.
Md = [Mdx,Mdy,Mdz]

T is the bounded unknown external
disturbance moment. ∆T = [∆T1,∆T2,∆T3]

T denotes the
bounded unknown modeling inaccuracies.

2.2. Feedback linearization (FBL) model
The dynamic equations of reentry vehicle described by

(1) can be rewritten as follows:

ẋ = f (x)+
3

∑
k=1

gk(x)uk +∆ f , (2)

yi = hi(x) i = 1,2,3,

where x = [α,β ,µ, p,q,r]T is the state vector, u =
[u1,u2,u3]

T = [Mx,My,Mz]
T and y = [y1,y2,y3] = h(x) =

[α,β ,µ]T denote the vectors of control input and output
respectively, and f (x), g(x) are smooth functions in Rn:

f (x) =
[

f1(x) f2(x) f3(x) f4(x) f5(x) f6(x)
]T

=



−pcosα tanβ +q− r sinα tanβ

psinα − r cosα

−pcosα cosβ −qsinβ − r sinα cosβ
(Ixx − Iyy + Izz)Ixz

I∗
pq+

(Iyy − Izz)Izz − I2
xz

I∗
qr

Ixz

Iyy
(r2 − p2)+

Izz − Ixx

Iyy
pr

(Ixx − Iyy)Ixx + I2
xz

I∗
pq+

(−Ixx + Iyy − Izz)Ixz

I∗
qr


,

g1(x) =
[

0,0,0,
Izz

I∗
,0,

Ixz

I∗

]T

,

g2(x) =
[

0,0,0,0,
1
Iyy

,0
]T

,

g3(x) =
[

0,0,0,
Ixz

I∗
,0,

Ixx

I∗

]T

,

where I∗ = IxxIzz − I2
xz. ∆ f denotes the unknown external

disturbances.
Applying the FBL technique [26] to the rotational

model (2) of the reentry vehicle, we can calculate the dif-
ferential of the each output until the control inputs appear
in the final equations. The final equations can be obtained
by differentiating twice to each output yi. The output dy-
namic for y is described as ÿ1

ÿ2

ÿ3

=

 L2
f (h1)

L2
f (h2)

L2
f (h3)


︸ ︷︷ ︸

F

+

 Lg1(L f h1) Lg2(L f h1) Lg3(L f h1)
Lg1(L f h2) Lg2(L f h2) Lg3(L f h2)
Lg1(L f h3) Lg2(L f h3) Lg3(L f h3)


︸ ︷︷ ︸

E

M+∆ν

=F +EM+∆nu, (3)

where ∆ν = [∆ν1,∆ν2,∆ν3] denotes the lumped distur-
bances resulted from the linearization procedure. From
equation (3), we can know that the relative degree of the
reentry vehicle, l = 2+2+2= 6= n, equals to the dimen-
sion of the system. Thus, the nonlinear system (2) can be
linearized completely.

Furthermore, by calculating, one gets

det(E) =
cosβ
I ∗ Iyy

− sinβ tanβ
I ∗ Iyy

≈ cosβ
I ∗ Iyy

̸= 0,

where sideslip angle β can be considered as 0 during the
reentry phase.

Due to the nonsingular input matrix , the feedback con-
trol law can be defined as

M = E−1(−F +ν), (4)

and

ÿ = ν +∆ν , (5)

where ν = [ν1,ν2,ν3]
T denotes the assistant control input.

Assumption 1: The aggregate disturbances ∆νi are as-
sumed to be bounded by known constants:

|∆ν | ≤ ld , ld = max{∆ν1,∆ν2,∆ν3};

where ld > 0 is a known constant.

2.3. Control object
In this paper, the target of the attitude control design is

to determine the control moment vector M to guarantee
that the output vector y = [α,β ,µ]T tracks the command
signals yc = [αc,βc,µc]

T asymptotically with external dis-
turbances and modeling inaccuracies, i.e.,

lim
t→∞

e = lim
t→∞

(y− yc) = 0, (6)

where e = [e1,e2,e3]
T = [y− yc]

T = [α −αc,β −βc,µ −
µc]

T is the tracking error vector.

3. CONSTANT PID-TYPE SLIDING MODE
CONTROL (CPID-SMC)

In this section, the conventional CPID-type sliding
mode control and its principle are reviewed.

Firstly, for the attitude system of reentry vehicle (5),
the CPID-type sliding mode manifold S = [s1,s2,s3]

T is
designed as [27]:

S = ė(t)+Kpe(t)+KI

∫ t

0
e(t)dt, (7)

where the parameters KP = diag(kp1,kp2,kp3) and KI =
diag(ki1,ki2,ki3) are the design parameters to ensure the
errors of the attitude angles can converge to zero on S = 0.
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Once the sliding mode manifold is established with a
proper controller, the dynamic of the CPID-type sliding
mode can be obtained by:

ë(t)+KPė(t)+KIe(t) = 0. (8)

With (8) and the design principle of sliding mode con-
trol, the CPID-type sliding mode control for reentry vehi-
cle system (5) can be acquired as follows:

ν = ÿc −KPė(t)−KIe(t)−ηsgn(S), (9)

where η = diag(η1,η2,η3) is the switching gain matrix
and its elements satisfy ηi ≥ ld + ℓ with being an arbitrary
positive constant. The sgn(·) denotes sign function, i.e.,
sgn(S) = [sgn(s1),sgn(s2),sgn(s3)]

T .
Because (8) is a typical second-order system, it can be

concluded that the attitude tracking error e is asymptot-
ically stable. Moreover, it has denoted that less steady
state error can be achieved due to the existing of inte-
gral term in sliding mode manifold. However, from (8),
we can know that the large gains can cause control sat-
uration and response overshoot of the system but ensure
small static errors and fast response. Meanwhile, small
gains can eliminate control saturation and response over-
shoot of the system but will lose the advantages of small
static errors and fast response. These contradictions are
caused by the characteristic of the sliding mode manifold
dynamic of CPID-SMC.

4. NEURAL NETWORK BASED ADAPTIVE
FUZZY PID-TYPE SLIDING MODE

CONTROL

In this section, AFPID-SMC-RBF is presented and the
adaptive laws are developed based on the Lyapunov The-
ory.

The block configuration of overall scheme of reentry
vehicle is presented in Fig. 1. In this figure, it can be
seen that the overall scheme consists of two parts: adap-
tive fuzzy sliding mode controller and neural network ob-
server. The fuzzy logic system is applied to improve the
transient performance and avoid control saturation. Then
the need for prior knowledge of disturbances upper bound
is avoided by neural network which meanwhile enhances
the the system robustness.

4.1. Adaptive Fuzzy Logic System (AFLS)
As shown in Fig. 2, which presents the basic block con-

figuration of the adaptive fuzzy logic system, an AFLS
is composed of five principal components: fuzzier, fuzzy
rule base, inference engine, defuzzifier and adaptive law.
The five parts of a fuzzy system decide a MIMO struc-
ture: U ∈ Rm → Rn, where U is a compact set. In this
paper, ∥e∥2 and ∥ė∥2, which characterize the degree of the
departure from the equilibrium point (e, ė)= (0,0), are the

input of the AFLS. The parameters and are the outputs of
the AFLS.

The fuzzifier maps the detected crisp input space U into
the fuzzy sets defined in U . And the defuzzifier performs
a reverse function to map fuzzy sets in R into a crisp point
in R [28]. The fuzzy rule base consists of a set of fuzzy
rules based upon “IF-THEN.” Correspondingly, the fuzzi-
fier maps an observed crisp point (e, ė) into the fuzzy sets
F j

1 , F j
2 in U . The fuzzy rule base and inference engine per-

form a mapping from fuzzy sets of input F j
1 , F j

2 to fuzzy
sets of output A j

1, A j
2. The defuzzifier maps the fuzzy sets

A j
1, A j

2 to a crisp point (KAP,KAI).
The fuzzy rule base consists of M rules as follows:

R j: IF ∥e∥2 is F j
1 and ∥ė∥2 is F j

2 , THEN KAP is
A j

1 and KAI is A j
2. j = 1,2, ...,M,

(10)

where F j
1 , f j

2 , A− 1 j, A j
2 are fuzzy sets corresponding to

∥e∥2, ∥ė∥2, KAP, KAI .
Each fuzzy rule IF-THEN of(10) defines two fuzzy ap-

plications F j
1 ×F j

2 → A j
1, F j

1 ×F j
2 → A j

2. And the mem-
bership functions of F j

1 , F j
2 , A j

1, A j
2 are expressed by µ j

F1
,

µ j
F2

, µ j
A1

and µ j
A2

.
In this paper, the FLS is designed by using singleton

fuzzifier, product inference, center average defuzzifier, so
KAP, KAI can be written as linear combinations of fuzzy
basis functions as follows [29]:

KAP = f1(∥e∥2,∥ė∥2) =
∑M

j=1 k̄ j
PµF j

1
(∥e∥2)µF j

2
(∥ė∥2)

∑M
j=1 µF j

1
(∥e∥2)µF j

2
(∥ė∥2)

=κ1G(∥e∥2,∥ė∥2), (11a)

KAI = f2(∥e∥2,∥ė∥2) =
∑M

j=1 k̄ j
I µF j

1
(∥e∥2)µF j

2
(∥ė∥2)

∑M
j=1 µF j

1
(∥e∥2)µF j

2
(∥ė∥2)

=κ2G(∥e∥2,∥ė∥2), (11b)

where k̄ j
p, k̄ j

i are the points at which µA j
1

and µA j
2

achieve
their maximum value, and

κ1 = (k̄1
P, k̄

2
P, ..., k̄

M
P ), (12)

κ2 = (k̄1
I , k̄

2
I , ..., k̄

M
I ),

are adjustable parameter vectors. G(∥e∥2,∥ẇ∥2) is the
fuzzy basis function vector, and its elements are given by:

G j(∥e∥2,∥ė∥2) =
µF j

1
(∥e∥2)µF j

2
(∥ė∥2)

∑M
j=1 µF j

1
(∥e∥2)µF j

2
(∥ė∥2)

. (13)

In this paper, the Gaussian membership function is ap-
plied to implement the adaptive fuzzy logic system. The
expressions of all membership functions can be defined
by:

µ j
χ(∇) = exp

−

(
∇− c j

χ

σ χ

)2
 , (14)
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Fig. 1. Block configuration of overall scheme of reentry vehicle.

Fig. 2. Basic block configuration of the adaptive fuzzy
logic system.

where ∇ denotes ∥e∥2 or ∥ė∥2, χ denotes F j
1 and F j

2 . c j
χ ,

σ χ are elements of vectors c, σ .

4.2. Adaptive fuzzy PID-type sliding mode control
law

The main idea of AFPID-SMC is that gains of the slid-
ing mode manifold are adjusted online by the adaptive
fuzzy block designed in Section 4.1. The principle of
adaptive fuzzy logic system is that the large errors cor-
respond to small gains and the small errors correspond to
large gains. To ensure the stability of the closed-loop sys-
tem, the adaptive update laws of κ1, κ2 are given by:

˙̄k j
P =−

r1gPj S
T S

k̄ j
P

µF j
1
(∥e∥2)µF j

2
(∥ė∥2)

∑M
j=1 µF j

1
(∥e∥2)µF j

2
(∥ė∥2)

=−
r1gPj S

T S

k̄ j
P

G, (15)

˙̄k j
I =−

r2gI j S
T S

k̄ j
I

µF j
1
(∥e∥2)µF j

2
(∥ė∥2)

∑M
j=1 µF j

1
(∥e∥2)µF j

2
(∥ė∥2)

=−
r2gI j S

T S

k̄ j
I

G,

where r1, r2, gPj and gI j are positive constants.
Using the adaptive fuzzy logic system, the AFPID-type

sliding mode manifold S− [s1,s2,s3]
T is designed as fol-

lows:

S = ė(t)+
∫ t

0
KAPė(t)dt +

∫ t

0
KAIe(t)dt, (16)

where the proportional gain parameter vector KAP =
diag(kAp1,kAp2,kAp3) and integral gain vector KAI =
diag(kAi1,kAi2,kAi3), are tuned by the AFLS online.

According to (16), the adaptive controller is designed
as follows:

ν = ÿc −KAPė(t)−KAIe(t)−ηsgn(S), (17)

where η is selected in the same way as that in (9).
The proportional gain KAP and integral gain KAI of the

controller (17) are adjusted by adaptive fuzzy logic sys-
tem. In order to achieve the expected transient perfor-
mance, the gains should be set as small values when the
tracking error is large, and the gains gradually increase
as tracking errors decrease. Finally, the transient perfor-
mances of the system is kept by this regulation strategy.

Theorem 1: Consider the reentry vehicle system (5)
with the sliding mode manifold defined by (16), and the
Assumption 1 is met. The adaptive fuzzy sliding mode
control (17) with the adaptive law (15) can ensure that the
attitude tracking error e is asymptotically stable.

Proof: Consider the following Lyapunov candidate
function:

V1 =
1
2

ST S+
1

2r1
κ1κT

1 +
1

2r2
κ2κT

2 . (18)

The time derivative of V1 is given by:

V̇1 =ST Ṡ+
1
r1

κ̇1κT
1 +

1
r2

κ̇2κT
2
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=ST (ë(t)+KAPė(t)+KAIe(t)

+
1
r1

κ̇1κT
1 +

1
r2

κ̇2κT
2 (19)

=ST (ν +∆ν − ÿc +KAPė(t)+KAIe(t))

+
1
r1

κ̇1κT
1 +

1
r2

κ̇2κT
2 .

Substituting the controller (17) and adaptive law (15) in
(19), one gets:

V̇1 =ST (ÿc −KAPė(t)−KAIe(t)−ηsgn(S)

+∆ν − ÿc +KAPė(t)+KAIe(t)

+
1
r1

M

∑
j=1

(k̄ j
P

˙̄k j
P)+

1
r2

M

∑
j=1

(k̄ j
I
˙̄k j

I )

=ST (−ηsgn(S)+∆ν)− 1
r1

M

∑
j=1

(
k̄ j

P
r1gP jST S

k̄ j
P

G

)
(20)

− 1
r2

M

∑
j=1

(
k̄ j

I
r2gI jST S

k̄ j
I

G

)

≤
3

∑
i=1

(−η |si|+ ld |si|)−
M

∑
j=1

(gP jGST S+gI jGST S).

Using the condition that ηi ≥ ld + ℓ, ℓ is an arbitrary
positive constant. The previous inequality can be simpli-
fied to:

V̇1 ≤−ℓ
3

∑
i=1

|si|−
M

∑
j=1

(gP jG+gI jG)ST S ≤ 0. (21)

From (18) and (21), it can be known that V1(t) is pos-
itive definite and V̇ (t) is non-negative definite. For any
S ∈ R3, V̇1 ≤ 0, then V1(t) is monotonic decreasing, then
lim
t→∞

V1(t)≤V1(0), i.e., V1(t) is bounded. Then, in view of
(21) and Barbalats Lemma [30] and Boundedness Theo-
rem [31] together with (15), the signals KAP, KAI and S are
bounded in the closed-loop system.

Next, we will proof the asymptotic convergence of the
attitude tracking error e.

Now, consider the following new Lyapunov candidate
function:

V2 =
1
2

ST S. (22)

Calculating the time derivative of V2 yields:

V̇2 =ST Ṡ

=ST (ë(t)+KAPė(t)+KAIe(T )) (23)

=ST (ν +∆ν − ÿC +KAPė(t)+KAIe(t)).

Substituting the controller (17) in (23), one gets:

V̇2 =ST ((ÿc −KAPė(t)−KAIe(t)−ηsgn(S))

+∆ν − ÿc +KAPė(t)+KAIe(t)

=ST (−ηsgn(S)+∆ν).

According to the Assumption 1 and the condition that
ηi ≥ ld + ℓ (ℓ > 0), we can know that:

V̇2 =ST (−ηsgn(S)+∆ν)

≤
3

∑
i=1

(−η |si|+ ld |si|) (24)

≤− ℓ
3

∑
i=1

|si|< 0 ∀S ̸= 0.

Thus, from (22) and inequality (23), it can be known
that V2(t) is positive definite and V̇2(t) is negative definite.
Therefore, the siding mode manifold S can converge to
zero asymptotically.

Once the siding mode manifold si = 0, it follows from
(16) that

ė(t)+
∫ t

0
KAPė(t)+

∫ t

0
KAIe(t) = 0.

Then the dynamic of the closed-loop system can be de-
termined by:

ë(t)+KAPė(t)+KAIe(t) = 0. (25)

Therefore, it can be concluded that the attitude tracki-
ng error converges to zero asymptotically. □

Remark 1: Unlike the PID-type sliding mode control
used in [32], the proposed AFPID-SMC adopts new form
that the gains of the sliding mode manifold are put into the
integral symbol to avoid existing derivative terms of fuzzy
parameters in the controller. It should be noticed that this
form directly simplifies the solving process and result of
the controller.

Remark 2: For the attitude system of reentry vehicle
(5), the CPID-type sliding mode manifold is designed as:

S = ė(t)+KPe(t)+KI

∫ t

0
e(t)dt.

However, in this paper, the AFPID-type sliding mode
manifold S = [s1,s2,s3]

T is designed as follows:

S = ė(t)+
∫ t

0
KAPė(t)dt +

∫ t

0
KAIe(t)dt.

We can see that the gains of the sliding mode mani-
fold are put into the integral symbol, so that the derivative
of fuzzy term will not appear in the control variable. It
should be noticed that this designed method simplifies the
solving process and result of the control variable. Besides,
the question of the well-posedness of the system equations
is avoided during the Lyapunov analyses.
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Remark 3: Due to the regulation strategy of the gain
parameters of PID-type sliding mode manifold, the prob-
lem of the actuator saturation is avoided by setting suit-
able initial gain values even existing large initial tracking
error. But this method cannot guarantee that the system
maintain stable when the actuator saturation has occurred.
Namely, the proposed controller is not saturation control
algorithm. Therefore, it is worthy of consideration for fur-
ther research.

Remark 4: In practical application, the switching term
given in (9) and (17) may result in the control chattering
due to imperfections in switching devices. To eliminat-
ing the chattering phenomenon, the boundary layer tech-
nique is applied in (9) and (17). The saturation function
sat(S) = [sat(s1),sat(s2),sat(s3)]

T is used to replace the
sign function, and is defined by:

sat(si) =


si

ω̄i
if |si|< ω̄i,

sgn(si) if |si|> ω̄i,
i = 1,2,3, (26)

where ω̄i > 0 represents the boundary layer thickness.
The attitude tracking errors will not converge to zero

but can be expected to converge to some vicinity of the
origin rest with the boundary layer thickness ω̄i.

4.3. Adaptive RBF neural network disturbance ob-
server

The upper bound information of matched disturbance ∆ν
is known in Assumption 1, but cannot be obtained in the
actual system. To ensure the stability of the controlled
system, the method is to select a large switching gain, but
it will lead to more exquisite chattering. Because of uni-
versal approximation property and robustness against en-
vironment noise, neural network (NN) is used for solving
this problem.

In this subsection, the adaptive RBF neural network dis-
turbance observer is designed to estimate the matched dis-
turbance ∆ν . Then, the prior knowledge of the matched
disturbance upper bound is obtained and the robustness is
enhanced.

Based on the universal approximate property, the dis-
turbance ∆ν can be expressed as:

∆ν =wT Θ(x) (27)

=ŵT Θ(x)+ ε,

where ŵ = [ŵ1, ŵ2, ..., ŵn] is the adaptive weighting ma-
trix, w = [w1,w2, ...,wn] is ideal weighting matrix. x is in-
put of the NN and ε is an arbitrary approximate constant.
The basis function Θ(x) is given by:

Θ(x) = [θ1(x),θ2(x), ...,θn(x)]T , (28)

where θi(x) is gauss basis function. And its expression
can be described as follows:

θi(x) = g
(
∥x−ρi∥2

γ2
i

)
, i = 1,2, ...,n,

where ρ , γi are parameters of gauss basis function.

Assumption 2: The parameter ε is an arbitrary ap-
proximate constant, and satisfies the condition:

∥ε∥ ≤ εd , (29)

where εd > 0 is a positive constant.

In this paper, the input parameters of the ARBF neural
network are (e, ė), and the adaptive law of weighting ma-
trix ŵ is derived by Lyapunov method. Thus, the unknown
lumped disturbances estimation can be rewritten as:

∆ν̂ = ŵT Θ(e, ė). (30)

Finally, the new controller and the adaptive algorithm
of optimal weighting matrix are designed as follows:

ν = ÿc −KAPė(t)−KAIe(t)

− η̄sgn(S)+ ŵT Θ(e, ė), (31)
˙̂w = λΘST , (32)

where the parameters η̄ > εd , λ > 0.

Theorem 2: Consider the reentry vehicle system (5)
with the sliding mode manifold defined by equation (17),
and the Assumption 2 is satisfied. The adaptive fuzzy slid-
ing mode controller (31) with the adaptive law (16) and
(32) can ensure that the attitude tracking error e asymptot-
ically converge to zero.

The proof for Theorem 2 is given in Appendix A.
Remark 5: In this paper, the RBF neural network ob-

server plays a key role. Firstly, the chattering can be re-
strained by selecting smaller switching gain because of
the compensation function of neural network for the ex-
ternal disturbances. Furthermore, the system robustne- ss
is enhanced due to the property of NN against external
environment noise. It effectively compensates the errors
caused by the saturation function in Remark 4.

5. ILLUSTRATIONS AND DISCUSSION

In this section, the simulations of the nonlinear reentry
vehicle system in conjunction with the control laws (9),
(17), (31) are carried out to validate the performances of
the proposed controller.

The aerodynamic model and parameters of 6-DOF
mathematic model of reentry vehicle is taken from [33].
The numerical simulation parameters of the reentry vehi-
cle are given by Table 1.

Case A: Comparison of the transient performance of
the reentry vehicle between CPID-SMC and AFPID-SMC
without matched disturbance ∆ν .

The controllers (9) and (17) are carried to verify the
transient performance of the proposed controller in this
simulation. The attitude tracking errors and aerodynamic
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Table 1. Numerical simulation parameters.

Parameter name Value
Initial velocity and

attitude V (0) = 2800 m/s, h(0) = 30 km

Desired attitude angle αc = 3◦, βc = 0◦, µc = 5◦

Parameters in the
AFLS

Fuzzy rule number: M = 25
Gauss function parameters:
c = 0.5, σ = 0.03

Parameters in the
neural nework

Order of NN: 3
Initial weight: ŵ0 = 0.001
Gauss function parameters:
ρi = [−1,−0.5,0,0.5,1], γi = 7

Maximum allowable
actuator output

|δ |= [δe|, |δa|, |δr|]T ≤
[30◦,30◦,30◦]T

Saturation function
parameters

ω̄ = [ω̄1, ω̄2, ω̄3]
T

= [0.002,0.002,0.002]T

Switch gains of SMCs

η = [η1,η2,η3]
T

= [0.2,0.05,0.5]T
η̄ = [η̄1, ¯eta2, ¯eta3]

T

= [0.1,0.02,0.2]T

Fig. 3. Simulation results of the attitude tracking of
AFPID-SMC and CPID-SMC.

surface deflections are shown in Figs. 3 and 4. From
Fig. 3, we can know that the transient performances of
the both controllers are dramaticly different. The response
speed of system governed by CPID-SMC is faster than
that of system governed by AFPID-SMC at the initial
phase of control procedure. But the response speed of sys-
tem governed by AFPID-SMC becomes faster than that of
system governed by CPID-SMC with the attitude track-
ing errors decrease. Additionally, the system governed
by CPID-SMC exists response overshoot while the system
governed by AFPID-SMC avoids this problem. Therefore,
the proposed controller solves the contradiction problem
that has been described in the previous section.

In Fig. 4, the aerodynamic surface deflections of the
AFPID-SMC are continuous and remain bounded with
|δ | < 30◦ while CPID-SMC fails fulfill to this constraint.

Fig. 4. Simulation results of actuators output of CPID-
SMC and AFPID-SMC.

Consequently, the simulation results prove that the prob-
lem of the actuator saturation can be avoided under the
AFPID-SMC.

The gains of the AFPID-SMC are tuned online by
adaptive fuzzy algorithm. From Fig. 5, it is shown that
the proportional gain KAP and integral gain KAI are small
with the large errors to avoid the saturation of actuator
and response overshoot of the system. As errors decrease,
the gains become larger and the system response speeds
up. Finally, the proportional and integral gains of sliding
mode manifold are tuned to ideal values.

Case B: Robustness illustration of AFPID-SMC
and comparison of CPID-SMC and AFPID-SMC with
matched disturbance ∆ν .

In order to illustrate the robustness of the AFPID-SMC,
and compare the performance of CPID-SMC and AFPID-
SMC, we simulate the nonlinear system with external dis-
turbances and modeling inaccuracies.

The aerodynamic characteristic and flight conditions,
which tend to change dramatically in the practical appli-
cation, are taken into consideration. About 10 percent of
bias condition for inertia and 20 percent of bias condition
for air density are introduced in the simulation scenario.

In addition, the external disturbance torque ∆M is given
by:

∆M =


1+ sin(πt)+ sin

(π
2

t
)

1+ sin(πt)+ sin
(π

2
t
)

1+ sin(πt)+ sin
(π

2
t
)
×105.

1) Robustness illustration of AFPID-SMC
From Section 4, it can be known that the AFPID-SMC

is designed for the system with external disturbances and
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(a) Time-varying proportional gain KAP of AFPID-SMC.

(b) Time-varying integral gain KAI of AFPID-SMC

Fig. 5. Simulation results of the parameters updating on-
line of proposed controller.

modeling inaccuracies. Thus, to illustrate the robustness
of the controller, the AFPID-SMC (17) is applied to the
actual system. (Atual system represents the model with
lumped disturbance ∆ν , ideal system represents the nom-
inal model.)

The simulation result of the attitude tracking error for
ideal and actual system is presented in Fig. 6. And there
is no evident difference in effect of attitude tracking errors
between actual and ideal system. The system outputs can

Fig. 6. Effect of the AFPID-SMC on attitude angles track-
ing of the system with disturbances.

Fig. 7. Comparative results of AFPID-SMC and CPID-
SMC.

converge to 1% of their desired values, which verifies the
AFPID-SMC robustness against modeling inaccuracies
and external disturbances.

2) Comparison of robust performance of the nonlinear
system with lumped disturbances ∆ν governed by CPID-
SMC and AFPID-SMC.

The control laws (9) and (17) are applied to the system
with the modeling inaccuracies and external disturbances.
The comparisons of the attitude tracking errors are shown
for this case in Fig. 7. The outputs of the system governed
by AFPID-SMC can converge to 1% of their desired value,
it is smaller than that of system governed by PID-SMC,
which converges to 2% of the desired value. Thus, it can
be seen that AFPID-SMC has better robustness against
modeling inaccuracies and external distubances.

Case C: Comparison of robustness of between AFPID-
SMC and AFPID-SMC with ARBF neural network distur-
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Fig. 8. Simulation results of AFPID-SMC-RBF and
AFPID-SMC comparing performance of the ro-
bustness of the system.

bance observer (AFPID-SMC-RBF) under lumped distur-
bance ∆ν .

To compare the robust performance of AFPID-SMC
and AFPID-SMC-RBF, about 30 percent of bias condi-
tion for inertia and 30 percent of bias condition for air
density are considered in the simulation scenario. And the
external disturbance torque ∆M becomes 1.2 times initial
disturbances.

Fig. 8 presents the results of the attitude tracking errors
of the system controlled by AFPID-SMC and AFPID-
SMC-RBF. The attitude tracking errors of the system
controlled by AFPID-SMC-RBF, that even converging
to 1h, are smaller than that of system contr- olled by
AFPID-SMC. So AFPID-SMC-RBF possesses better ro-
bustness against modeling inaccuracies and external dis-
turbances, namely, the robustness of AFPID-SMC-RBF is
improved due to the usage of RBF neural network.

Case D: Comparison of robustness of between PD (Pro-
portional Derivative)-SMC [12], CPID-SMC and AFPID-
SMC.

To shown the transient and robust performances of
AFPID-SMC-RBF, about 30 percent of bias condition for
inertia and 30 percent of bias condition for air density are
considered in the simulation scenario. And the external
disturbance torque ∆M becomes 1.2 times initial distur-
bances.

The PD-SMC is the conventional sliding mode control.
To shown the contribution of this paper, the comparison of
robustness of between PD-SMC, CPID-SMC and AFPID-
SMC is presented in Fig. 9.

Fig. 9 presents the simulation results of the attitude
tracking errors of the system. We can see that CPID-SMC
is better than PD-SMC in terms of improving the robust-
ness, but the transient performance of PD-SMC is better

Fig. 9. Simulation results of AFPID-SMC, CPID-SMC
and PD-SMC comparing performance of the ro-
bustness of the system.

than that of CPID-SMC. And AFPID-SMC is better than
CPID-SMC and PD-SMC in terms of improving the tran-
sient performance and robustness.

6. CONCLUSIONS

This study proposes a robust adaptive controller based
on adaptive fuzzy logic system and RBF neural network
algorithm for reentry vehicle with external disturbances
and modeling inaccuracies. The AFPID-SMC adopts
adaptive fuzzy algorithm for tuning the gains of sliding
mode control online. By designing suitable fuzzy logic
system and the adaptive law, the contradiction of the tran-
sient and steady state performance of the system is solved.
Besides, the problem of actuator saturation is avoided un-
der control input constraint. Furthermore, to enhance the
robustness of the reentry vehicle system, the RBF neu-
ral network is introduced, which is used to eatimate the
unknown lumped disturbances. Finally, the stability of
closed-loop system has been achieved by the Lyapunov
method with the adaptation mechanisms of the FSL and
neural network. The performance of the proposed con-
troller has been examined via numerical simulations.

APPENDIX A

A.1. PROOF OF THEOREM 2
The proof of the Throem 2 is given as follows:
Consider the following Lyapunov candidate function:

V3 =
1
2

ST S+
1

2r1
κ1κT

1 +
1

2r2
κ2κT

2 +
1

2λ
tr(w̃T w̃),

(A.1)

where w̃ = w− ŵ, tr(·) is the trace of matrix.
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Calculating the time derivative of V3, and substituting
(15) in (A.1), one can obtain:

V̇3 =ST Ṡ+
1
r1

κ̇1κT
1 +

1
r2

κ̇2κT
2 +

1
λ

tr(w̃T ˙̃w)

=ST (ë(t)+KAPė(t)+KAIe(t))

− 1
r1

M

∑
j=1

(
k̄ j

P
r1gP jST S

k̄ j
P

G

)

− 1
r2

M

∑
j=1

(
k̄ j

I
r2gI jST S

k̄ j
I

G

)
=ST (ν +∆ν − ÿc +KAPė(t)+KAIe(t))

−
M

∑
j=1

(gP jGST S+gI jGST S)− 1
λ

tr(w̃T ˙̂w). (A.2)

Substituting control expression for (31) in (A.2), one
can obtain:

V̇3 =ST (−η̄sgn(S)− ŵT Θ(e, ė)+∆ν

−
M

∑
j=1

(gP jGST S+gI jGST S)− 1
λ

tr(w̃T ˙̂w)

=ST (−η̄sgn(S)+ w̃T Θ(e, ė)

−
M

∑
j=1

(gP jGST S+gI jGST S)− 1
λ

tr(w̃T , ˙̂w) (A.3)

=ST (−η̄sgn(S))−
M

∑
j=1

(gP jGST S+gI jGST S)

+ST w̃T Θ− 1
λ

tr(w̃T ˙̂w),

where w̃ is the apprpximation error of optimal weighting
matrix, and ∆ν = wT Θ(e, ė) = (ŵ+ w̃)T Θ(e, ė).

Substituting the adaptive laws (32) in (A.3) and noting
that tr(w̃T ΘST ) = ST w̃T Θ, one can obtain:

V̇3 =−η
3

∑
i=1

|si|−
M

∑
j=1

(gP jGST S+gI jGST S)+ST w̃T Θ

− 1
λ

tr(w̃T λΘST )

=− η̄
3

∑
i=1

|si|−
M

∑
j=1

(gP jGST S+gI jGST S)+ST w̃T Θ

−ST w̃T Θ (A.4)

=− ¯eta
3

∑
i=1

|si|−
M

∑
j=1

(gP jG+gI jG)ST S.

From (A.4), it can be known that V3(t) is monotonic
decreasing, then lim

t→∞
V3(t) ≤ V3(0), i.e., V3(t) is bounded.

Therefore, the signals κ1, κ2 are bounded in the closed-
loop system.

The proof of asymptotic stability of the attitude trac-
king error and the sliding mode manifold is the same as
Theorem 1. □
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