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Stochastic Admissibility and Stabilization of Singular Markovian Jump
Systems with Multiple Time-varying Delays
Baoping Jiang, Cunchen Gao, and Yonggui Kao*

Abstract: This paper is concerned with stochastic admissibility and state feedback stabilization for a class of
singular Markovian jump systems with multiple time-varying delays. The singular matrix E with both mode-
dependent and mode-independent is considered in the system. Firstly, based on Lyapunov functional method and
free-weighting matrix method, sufficient condition is presented in the form of linear matrix inequalities (LMIs) to
guarantee the considered system to be stochastically admissible. Secondly, by state feedback controller, sufficient
condition is derived in terms of strict LMIs to ensure the closed-loop system to be stochastically stabilizable. Finally,
numerical examples are provided to illustrate the effectiveness of the proposed approaches.
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1. INTRODUCTION

Singular systems, which are also referred to as gener-
alized systems, descriptor systems, differential algebraic
systems or semi-state systems, give better description of a
large class of physical systems than state-space systems,
such as economic systems, power systems and circuits
systems [1, 2]. A number of important and interesting re-
sults have been established for singular systems [3–7]. It
is well known that the stability analysis of singular sys-
tems is much more complicated than that of regular ones
due to not only the asymptotic stability is needed to be
checked, but also regularity and absence of impulses (for
continuous singular systems) [4] or causality (for discrete
singular systems) [5] are needed to be considered.

On the other hand, Markovian jump systems, as a spe-
cial class of stochastic hybrid systems, have attracted con-
siderable attention in the past few decades since they are
very appropriate to model various physical systems with
abrupt structural changes. For example, fault-tolerant con-
trol systems, repairs of machines in manufacturing sys-
tems and states of transition in maneuvered target track-
ing. Systems of this family, in which the mode-process
is a continuous-time discrete-state Markov process taking
values in a finite set, have been studied for years and many
fundamental results have been established, such as stabil-
ity analysis and (finite-time) H∞ analysis given in [8–12],
stabilization problems discussed in [13–16].
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Very recently, singular Markovian jump systems with
time-delay also have received extensive attention. As we
know, time-delay is frequently encountered in physical
process, chemical process, and it is considered as the ma-
jor cause of instability and poor performance of dynamic
systems, see, e.g., [14, 17–19]. In [18], the solution to
the problem of stability and stabilization of continuous-
time singular hybrids systems is presented. In [19], the
author considered the stability and stabilizability of sin-
gular stochastic systems with delays. Also, in [14], ro-
bust stabilization of Markovian delay systems with delay-
dependent exponential estimates is investigated. However,
the singular matrix E in the considered systems is mode-
independent, noting that the singular Markovian jump sys-
tems with mode-dependent singular matrices E(rt) also
have wide application in the practical systems, such as
the DC motor in position control servomechanisms [20]
and in other practical systems [21]. So the further study
of general singular Markovian jump systems with mode-
dependent singular matrices E(rt) is of both theoretical
and practical importance. Recently, in [22], H∞ filtering
for a class of singular Markoivan jump systems with time-
varying delay is studied and the considered singular ma-
trix is mode-dependent. To date and to our knowledge,
the control problems of singular Markovian jump systems
with multiply time-varying delay have not been fully in-
vestigated, especially with mode-dependent singular ma-
trix E(rt). Based on the above analysis, this motivates us
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to study the stochastic admissibility and stabilization of
singular Markovian jump systems with multiple time-
varying delays and the considered singular matrix is
mode-dependent.

This main contribution of this paper is that a new ap-
proach based on novel augmented Lyapunov functional is
proposed for singular Markovian jump systems with mul-
tiple time-varying delays. Moreover, in order to reduce the
possible conservativeness and computation burden, slack
matrices are introduced and strict LMI condition is de-
rived. The rest of this paper is organized as follows. In
Section 2, problem formulations with some definitions are
presented. In section 3, the stochastic admissibility of
the considered system with both mode-dependent singu-
lar matrix E(rt) and mode-independent singular matrix E
is studied first; Then, by state feedback controller, suffi-
cient condition is established to guarantee the closed-loop
system to be stochastically admissible. Numerical exam-
ples are offered to show the effectiveness of the proposed
approaches in Section 4. Conclusions are provided in Sec-
tion 5.

Notions: Throughout this paper, matrices, if not explic-
itly stated, are assumed to have compatible dimensions.
The notion X > 0 means that X is symmetric positive defi-
nite matrix. I and 0 are used to represent an identity matrix
and zero matrix of appropriate dimensions, respectively.
∥ ·∥ refers to the Euclidean vector norm or spectral matrix
norm. Let λmax(·) be the maximum eigenvalue of a matrix.
(Ω,F,P) is a probability space, Ω is the sample space, F
is the σ -algebra of Ω and P be the probability measure on
F. E(·) denotes the expectation operator with respect to
some probability measure P. The symmetric elements of
the symmetric matrix are denoted by ∗.

2. PRELIMINARIES

Let {rt , t ≥ 0} be a continuous-time Markov process
with right continuous trajectories and takes values in a fi-
nite set L = {1,2, · · · ,N} with transition probability ma-
trix Π ≜ {πi j},(i, j ∈ L) given by

Pr{rt+△ = j|rt = i}

=

{
πi j △+o(△), i f i ̸= j,
1+πii △+o(△), i f i = j,

where △> 0 and lim△→0 o(△)/△= 0, πi j > 0(i ̸= j) is the
transition rate from mode i at time t to mode j at time
t+ △, and πii =− ∑

j ̸=i
πi j < 0 for each i ∈ L.

Consider the following singular Markovian jump sys-
tem on the probability space:

E(rt)ẋ(t) = A(rt)x(t)+
p

∑
k=1

Ak(rt)x(t −dk(t))

+B(rt)u(t),

x(t) = φ(t), t ∈ [−d,0],

(1)

where x(t) ∈ Rn is the system state vector, u(t) ∈ Rm is
the control input and φ(t) is a continuous-time vector val-
ued initial function. For each rt ∈ L, the singular matrix
E(rt) ∈ Rn×n is assumed rank(E(rt)) = r(rt) ≤ n, A(rt),
Ak(rt) and B(rt) are matrices of the random jump process
with appropriate dimensions, and dk(t) , k = 1, · · · , p, is
the time-varying delay satisfies

0 ≤ dk(t)≤ dk, ḋk(t)≤ uk < 1, (2)

with dk and uk are known scalars, d ≜ max{d1,d2 · · · ,dp}.

Definition 1 [23]: The singular Markovian jump time
delay system (1) with u(t) = 0 is said to be

1) regular and impulse-free, if the pair (E(rt),A(rt)) is
regular and impulse-free for every rt ∈ L.

2) stochastically stable, if there exists a scalar M(r0,φ(·))
such that

lim
T→∞

E
{∫ T

0
∥x(t)∥2dt|r0,x(s) = ϕ(s),s ∈ [d,0]

}
≤ M(r0,φ(·)).

(3)

3) stochastically admissible, if it is regular, impulse free
and stochastically stable.

Definition 2 [18]: The singular Markovian jump time
delay system (1) is said to be regular, impulse-free and
stochastically stabilizable via state feedback if there exists
a control

u(t) = K(rt)x(t) (4)

with K(i), when rt = i∈L, a constant matrix, such that the
closed-loop system is regular, impulse-free and stochasti-
cally stable.

For notational simplicity, in the sequel, for each possi-
ble rt = i, i ∈ L, matrix A(rt) will be denoted by Ai, and
Ak(rt) by Aki and so on.

3. MAIN RESULTS

In this section, we will first investigate the stochastic
admissibility of the unforced system (1), sufficient con-
ditions are established to check the regularity, absence of
impulse and stochastic stability of the considered system.
Then, we will consider the issue of designing a state feed-
back controller that makes the resulting closed-loop sys-
tem to be stochastically admissible.

Theorem 1: Given positive scalars dk and uk < 1 (k =
1, · · · , p). The system (1) with u(t) = 0 is stochastically
admissible if there exist matrices Zk > 0, Qki > 0, Qk > 0,
Rk > 0, Pi and Nki (k = 1, · · · , p) such that for all mode
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i ∈ L, the following inequalities hold,

Θi =


Θi11 Θi12 Θi13 AT

i Z Θi15 Θi16

∗ Θi22 0 Θi24 Θi25 0
∗ ∗ Θi33 0 0 0
∗ ∗ ∗ −Z 0 0
∗ ∗ ∗ ∗ Θi55 0
∗ ∗ ∗ ∗ ∗ Θi66

< 0,

(5)
N

∑
j=1

πi jQki ≤ Qk, (6)

with the following constraint

ET
i Pi = PT

i Ei ≥ 0, (7)

where

Θi11 = PT
i Ai +AT

i Pi +
p

∑
k=1

(Qki +dkQk +Rk +NT
kiEi

+ET
i Nki)+

N

∑
j=1

πi jET
j Pj,

Θi12 = [PT
i A1i PT

i A2i · · · PT
i Api],

Θi13 = [NT
1iEi NT

2iEi · · · NT
piEi],

Θi15 = [AT
1 H AT

2 H · · · AT
NH],

Θi16 = [d1NT
1i d2NT

2i · · · dpNT
pi,

Θi22 = diag{−(1−u1)R1,−(1−u2)R2, · · · ,
− (1−up)Rp},

Θi24 =


AT

1iZ
AT

2iZ
...
AT

piZ

 ,

Θi25 =


AT

11H AT
12H · · · AT

1NH
AT

21H AT
22H · · · AT

2NH
...

...
. . .

...
AT

p1H AT
p2H · · · AT

pNH

 ,
Θi33 = diag{−Q1i,−Q2i, · · · ,−Qpi},
Θi55 = diag{−H,−H, · · · ,−H},
Θi66 = [−d1Z1,−d2Z2, · · · ,−dpZp, ],

Z =
p

∑
k=1

dkZk,

H =
p

∑
k=1

πd2
k

2
Zk,

π = max{−π11,−π22, · · · ,−πNN}.

Proof: Firstly, we will show that the unforced system
(1) is regular and impulse-free. Since rank(Ei) = ri ≤ n,
there exist two nonsingular matrices Li and Gi such that

LiEiGi =

[
Iri 0
0 0

]
. (8)

Denote

LiAiGi =

[
Ai11 Ai12

Ai21 Ai22

]
,L−T

i PiGi =

[
Pi11 Pi12

Pi21 Pi22

]
,

LiNkiGi =

[
Nki11 Nki12

Nki21 Nki22

]
. (9)

According to (8) and (9), pre- and post-multiplying (7) by
GT

i and Gi, it can be obtained that

Pi11 = PT
i11 ≥ 0, Pi12 = 0. (10)

Also, it can be found from Θi11 < 0 that

Ψi = PT
i Ai +AT

i Pi +
p

∑
k=1

(NT
kiEi +ET

i Nki)+πi jET
i Pi < 0.

(11)

Then, pre- and post-multiplying (11) by GT
i and Gi, re-

spectively, we get

GT
i ΨiGi =

[
Ti11 Ti12

∗ Ti22

]
< 0, (12)

where Ti22 = PT
i22Ai22 +AT

i22Pi22. For Ti11 and Ti12 are not
used in the following discussion, so we omit the real ex-
pressions for them here. From (12), we know that

PT
i22Ai22 +AT

i22Pi22 < 0, (13)

which implies Ai22 is nonsingular and thus the pair (Ei,Ai)
is regular and impulse free. Hence, by definition (1), the
unforced system (1) is regular and impulse free.

Next, we prove that the unforced system (1) is stochas-
tically stable. To this end, we define the following Lya-
punov functional:

V (x(t), i, t) =V1(x(t), i, t)+
p

∑
k=1

3

∑
j=1

Vk j(x(t), i, t), (14)

where

V1(x(t), i, t) = xT (t)ET
i Pix(t),

Vk1(x(t), i, t) =
∫ t

t−dk(t)
xT (s)Rkx(s)ds

+
∫ t

t−dk

xT (s)Qkix(s)ds

+
∫ 0

−dk

∫ t

t+θ
xT (s)Qkx(s)dsdθ ,

Vk2(x(t), i, t) =
∫ 0

−dk

∫ t

t+θ
ẋT (s)ET

i ZkEiẋ(s)dsdθ ,

Vk3(x(t), i, t)

= π
N

∑
j=1

∫ 0

−dk

∫ 0

θ

∫ t

t+α
ẋT (s)ET

j ZkE j ẋ(s)dsdαdθ ,
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Let L be the weak infinitesimal generator of the random
process. Then, for each i ∈ L and t ≥ 0, we have

LV1(x(t), i, t) = 2xT (t)PT
i Eiẋ(t)+

N

∑
j=1

πi jxT (t)ET
i Pix(t)

= 2xT (t)PT
i [Aix(t)+

p

∑
k=1

Akix(t −dk(t))]

+
N

∑
j=1

πi jxT (t)ET
j Pjx(t), (15)

LVk1(x(t), i, t)≤ xT (t)(Rk +Qki +dkQk)x(t)

− (1−uk)xT (t −dk(t))Rkx(t −dk(t))

− xT (t −dk)Qkix(t −dk)

+
∫ t

t−dk

xT (s)
N

∑
j=1

πi jQk jx(s)ds

+
∫ t

t−dk

xT (s)Qkx(s)ds (16)

LVk2(x(t), i, t) = dkẋT (t)ET
i ZkEiẋ(t)

−
∫ t

t−dk

ẋT (s)ET
i ZkEiẋ(s)ds

+
∫ 0

−dk

∫ t

t+θ
ẋT (s)

N

∑
j=1

πi jET
j ZkE j ẋ(s)ds,

(17)

LVk3(x(t), i, t) =
πd2

k

2

N

∑
j=1

ẋT (t)ET
j ZkE j ẋ(s)

−π
∫ 0

−dk

∫ t

t+θ
ẋT (s)

N

∑
j=1

ET
j ZkE j ẋ(s)dsdθ ,

(18)

what’s more, from the Newton-Leibniz formula we know

p

∑
k=1

2xT (t)NT
ki [Eix(t)−Eix(t−dk(t))−

∫ t

t−dk

Eiẋ(s)ds] = 0.

(19)

Using (5), (6) and (15)-(19), we can get

LV (x(t), i, t)≤ LV (x(t), i, t)

−
p

∑
k=1

∫ 0

−dk

∫ t

t+θ
ẋT (s)

N

∑
j=1

πi jET
j ZkE j ẋ(s)ds

+
p

∑
k=1

π
∫ 0

−dk

∫ t

t+θ
ẋT (s)

N

∑
j=1

ET
j ZkE j ẋ(s)dsdθ

≤ ζ T (t)Θiζ (t)−
p

∑
k=1

∫ 0

−dk

[Nkix(t)+ZkEiẋ(s)]T

Z−1
k [Nkix(t)+ZkEiẋ(s)]ds

≤−τixT (t)x(t),

where

τi =−λmax(Θi),

ζ T (t) = [xT (t) ωT
1 (t) ωT

2 (t)],

ωT
1 (t) = [xT (t −d1(t)) xT (t −d2(t)) · · ·

xT (t −dp(t))],

ωT
2 (t) = [xT (t −d1) xT (t −d2) · · · xT (t −dp)].

Here

Θi =

 Θ̃i Θi12 Θi13

∗ Θi22 0
∗ ∗ Θi33



+


AT

i
AT

1i
...
AT

pi
0


(

p

∑
k=1

dkZk

)
AT

i
AT

1i
...
AT

pi
0


T

+
N

∑
j=1


AT

j
AT

1 j
...
AT

p j
0


(

p

∑
k=1

πd2
k

2
Zk

)
AT

j
AT

1 j
...
AT

p j
0



T

,

(20)

with

Θ̃i =PT
i Ai +AT

i Pi +
p

∑
k=1

(Qki +dkQk +Rk +NT
kiEi

+ET
i Nki +dkNT

kiZ
−1
k Nki)+

N

∑
j=1

πi jET
j Pj.

Noting (5), by using schur complement, (5) is equivalent
to Θi < 0.

Then by the Dynkin’s formula, we know for any t ≥ 0

E{V ((x(t), i, t))−V (x(0),r0,0)}

= E
{∫ t

0
LV (x(s), i, t)ds

}
≤−τE

{∫ t

0
∥x(s)∥2ds

}
,

(21)

where

τ = min{τ1,τ2, · · · ,τN}.

Thus, we have

lim
T→∞

E
{∫ T

0
∥x(s)∥2ds

}
≤ 1

τ
V (x(0),r0,0). (22)

Therefore, by Definition 1, the unforced system (1) is
stochastically stable. This completes the proof.
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Remark 1: The above result gives the solution to the
problem of stochastic admissibility of the unforced sys-
tem (1). As we can see, the singular matrix studied is
mode-dependent, so what if the singular matrix is mode-
independent (that is Ei = E). We also have a conclusion
for this case.

The special system considered as follows: Eẋ(t) = A(rt)x(t)+
p
∑

k=1
Ak(rt)x(t −dk(t))

x(t) = φ(t), t ∈ [−d,0].
(23)

The following theorem gives a new solution to the
stochastic admissibility of the system (23).

Theorem 2: Given positive scalars dk and uk < 1 (k =
1, · · · , p). The system (23) is stochastically admissible if
there exist matrices Zk > 0, Qki > 0, Qk > 0, Rk > 0, Pi

and Nki (k = 1, · · · , p) such that for all mode i ∈ L, the
following inequalities hold,

Θi =


Θ̃i11 Θi12 Θ̃i13 AT

i Z Θ̃i15

∗ Θi22 0 Θi24 0
∗ ∗ Θi33 0 0
∗ ∗ ∗ −Z 0
∗ ∗ ∗ ∗ Θ̃i55

< 0, (24)

N

∑
j=1

πi jQki ≤ Qk, (25)

with the following constraint

ET Pi = PT
i E ≥ 0, (26)

where

Θ̃i11 = PT
i Ai +AT

i Pi +
p

∑
k=1

(Qki +dkQk +Rk +NT
kiE

+ET Nki)+
N

∑
j=1

πi jET Pj,

Θ̃i13 = [NT
1iE NT

2iE · · · NT
piE], Θ̃i15 = Θi16,

Θ̃i55 = Θi66,

here, Θi12, Θi16, Θi22, Θi24, Θi33, Θi66 and Z are defined as
in Theorem 1.

Proof: Choose the following Lyapunov functional can-
didate for system (23):

V (x(t), i, t) =V1(x(t), i, t)+
p

∑
k=1

2

∑
j=1

Vk j(x(t), i, t), (27)

where

V1(x(t), i, t) = xT (t)ET
i Pix(t),

Vk1(x(t), i, t) =
∫ t

t−dk(t)
xT (s)Rkx(s)ds

+
∫ t

t−dk

xT (s)Qkix(s)ds

+
∫ 0

−dk

∫ t

t+θ
xT (s)Qkx(s)dsdθ ,

Vk2(x(t), i, t) =
∫ 0

−dk

∫ t

t+θ
ẋT (s)ET ZkEẋ(s)dsdθ .

Taking a similar method to the proof of Theorem 1, we
can obtain

LV (x(t), i, t)≤−τ
′

i x
T (t)x(t).

Then we have

lim
T→∞

E
{∫ T

0
∥x(s)∥2ds

}
≤ 1

τ ′ V (x(0),r0,0). (28)

This completes the proof.

Remark 2: The above results consider the stochastic
admissibility of the unforced system (1) and (23). Further-
more, similar to [8, 14, 22, 24], we could study the mean-
square exponential stability of the considered system that
there exist scalars α > 0 and β > 0 such that

E{∥x(t)∥2} ≤ αe−β t sup
−d≤s≤0

E{∥φ(t)∥2}.

Thus, the mean-square exponential admissibility problem
of the considered system is given. The detailed proof is
omitted here.

Next, we are ready to investigate the problem of state
feedback control for the system (1). For convenience, the
singular matrix considered is mode-independent and we
give the result based on Theorem 2. By the controller (4),
the resulting closed-loop system can be described as:

Eẋ(t) = (A(rt)+B(rt)K(rt))x(t)

+
p
∑

k=1
Ak(rt)x(t −dk(t))

x(t) = φ(t), t ∈ [−d,0].

(29)

Before giving the result, the following lemma is re-
called.

Lemma 1 [25]: Let Xi be symmetric such that
ET

L XiEL > 0 and Yi is nonsingular. Then, XiE +UYiW T is
nonsingular and its inverse is expressed as

(XiE +UYiW T )−1 = XiET +WYiU, (30)

where Xi is a symmetric matrix and Yi is a nonsingular
matrix with

ET
R XiER = (ET

L XiEL)
−1, Yi = (W TW )−1Y−1

i (UUT )−1,

U ∈ R(n−r)×n and W ∈ Rn×(n−r) are any matrices with full
rank satisfy UE = 0 and EW = 0; E is decomposed as
E = ELET

R , here EL ∈ Rn×r, ER ∈ Rn×r are of full column
rank.
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Theorem 3: Given positive scalars dk, uk < 1, ai and
bki (k = 1, · · · , p). The system (29) is stochastically ad-
missible if there exist nonsingular matrices Yi, matrices
Xi > 0, Qki > 0, Rk > 0, Zk > 0 (k = 1, · · · , p), Ki ∈Rm×n

and Wi ∈ Rm×(n−r) such that for all mode i ∈ L, the fol-
lowing inequalities hold,

Φi =


Φi11 Φi12 Φi13 Φi14 Φ̃i1

∗ Φi22 0 Φi24 0
∗ ∗ Φi33 0 0
∗ ∗ ∗ Φi44 0
∗ ∗ ∗ ∗ Φ̃i2

< 0, (31)

N

∑
j=1

πi ja j ≤ 1, (32)

where Pi = XiET +WYiU and

Φ̃i1 = [Φi15 Φi16 Φi17],

Φ̃i2 = diag{Φi55,Φi66,Φi77},
Φi11 = AiPi +Bi(KiE +WiU)+(KiE +WiU)T BT

i

+
p

∑
k=1

{(1+a−1
i dk)Qki +bki(EPi +PT

i ET )}

+PT
i AT

i +πii(EPi +ETPT
i −EXiET ),

Φi12 = [A1iPi A2iPi · · · ApiPi],

Φi13 = [b1iEPi b2iEPi · · ·bpiEPi],

Φi14 = [PT
i AT

i +(KiE +WiU)T BT
i ]

× [d1I d2I · · · dpI],

Φi15 = [b1id1Pi b2id2Pi · · · bpidpPi],

Φi16 =

1×p︷ ︸︸ ︷
[Pi · · · Pi],

Φi17 = [πi1PT
i ER πi2PT

i ER · · · πi(i−1)PT
i ER

πi(i+1)PT
i ER · · · πiNPT

i ER],

Φi22 = diag{−(1−u1)(Pi +PT
i −R1),)

− (1−u2(Pi +PT
i −R2), · · · ,

− (1−up)(Pi +PT
i −Rp)},

Φi24 =


d1PT

i AT
1i d2PT

i AT
1i · · · dpPT

i AT
1i

d1PT
i AT

2i d2PT
i AT

2i · · · dpPT
i AT

2i
...

...
. . .

...
d1PT

i AT
pi d2PT

i AT
pi · · · dpPT

i AT
pi

 ,
Φi33 = diag{−Q1i,−Q2i, · · · ,−Qpi},
Φi44 = diag{−d1Z1,−d2Z2, · · · ,−dpZp},
Φi55 = diag{−d1(Pi +PT

i −Z1),−d2(Pi +PT
i

−Z2), · · · ,−dp(Pi +PT
i −Zp)},

Φi66 = diag{−R1,−R2, · · · ,−Rp,},
Φi77 = diag{−πi1ET

R X1ER, · · · ,−πi(i−1)ET
R X(i−1)ER,

−πi(i+1)ET
R X(i+1)ER, · · · ,−πiNET

R XNER,}.

Moreover, the parameter Ki is given by

Ki = (KiET +WiU)(XiET +WYiU)−1. (33)

Proof: Let Pi ≜ XiE +UYiW T , according to Lemma
1, Pi is nonsingular, so we defined Pi ≜ P−1

i = XiET +
WYiU . In the proof of Theorem 2, we know LMI (24) has
an equivalent form as follows:

Θ̃i11 Θi12 Θ̃i13 Θ̃i14 Θ̃i15

∗ Θi22 0 Θ̃i24 0
∗ ∗ Θi33 0 0
∗ ∗ ∗ Θ̃i44 0
∗ ∗ ∗ ∗ Θ̃i55

< 0, (34)

where

Θ̃i14 = [d1AT
i Z1 d2AT

i Zp · · · dpAT
i Zp],

Θ̃i24 =


d1AT

1iZ1 d2AT
1iZ2 · · · dpAT

1iZp

d1AT
2iZ1 d2AT

2iZ2 · · · dpAT
2iZp

...
...

. . .
...

d1AT
piZ1 d2AT

piZ2 · · · dpAT
piZp

 ,
Θ̃i44 = [−d1Z1,−d2Z2, · · · ,−dpZp, ].

Now, denoting PT
i QkiPi =Qki, R−1

k =Rk, Z−1
k = Zk, and

in Theorem 2, letting Qki = aiQk, Nki = bkiPi, here, ai and
bki are tuning scalars, (k = 1,2, · · · , p).

Pre- and post-multiplying (34) by

diag{PT
i ,

p︷ ︸︸ ︷
PT

i · · · PT
i ,

p︷ ︸︸ ︷
PT

i · · · PT
i ,

ZT
1 , · · · ,ZT

p ,ZT
1 , · · · ,ZT

p }
and its transpose respectively, we have


Φ̃i11 Φi12 Φi13 Φ̃i14 Φi15

∗ Φ̃i22 0 Φi24 0
∗ ∗ Φi33 0 0
∗ ∗ ∗ Φi44 0
∗ ∗ ∗ ∗ Φ̃i55

< 0, (35)

where

Φ̃i11 = AiPi +PT
i A

T
i +

p

∑
k=1

{(1+a−1
i dk)Qki

+bki(EPi +PT
i ET )+PT

i RkPi}

+
N

∑
j=1

πi jPT
i ET X jEPi,

Φ̃i14 = [d1PT
i A

T
i d2PT

i A
T
i · · · dpPT

i A
T
i ],

Φ̃i22 = diag{−(1−u1)PT
i R1Pi,−(1−u2)PT

i R2Pi,

· · · ,−(1−up)PT
i RpPi,},

Φ̃i55 = diag{−d1PT
i Z1Pi,−d2PT

i Z2Pi, · · · ,
−dpPT

i ZpPi,}, Ai = Ai +BiKi.
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Letting Ki = KiXi, Wi = KiWYi and taking Lemma 1 into
consideration, we have

AiPi +PT
i AT

i +Bi(KiE +WiU)+(KiE +WiU)T BT
i

+
p

∑
k=1

{(1+a−1
i dk)Qki +bki(EPi +PT

i ET )

+PT
i RkPi}+πiiPT

i ER(ERXiER)
−1ET

R Pi

+
N

∑
j=1, j≠i

πi jPT
i ER(ERX jER)

−1ET
R Pi < 0.

On the other hand, notice that

PT
i ZkPi −PT

i −Pi +Zi

= (Pi −Zi)
TZk(Pi −Zi)

≥ 0,

which implies

−dkPT
i ZkPi ≤−dk(PT

i +Pi −Zi).

Also

−dkPT
i RkPi ≤−dk(PT

i +Pi −Ri),

and

πiiPT
i ER(ERXiER)

−1ET
R Pi

≤ πii(EPi +PT
i ET −EXiET ),

which means (31) is equivalent to (35) by Schur comple-
ment. This completes the proof.

4. ILLUSTRATIVE EXAMPLES

The following examples are presented to illustrate the
proposed results with two operating modes (that is N = 2).

Example 1: Consider the singular system (1) with the
following parameters:

E1 =

[
−1 2
−2 4

]
,A1 =

[
−2.3 0.8
−0.6 −2.5

]
,

A11 =

[
−0.7 −1.2
−0.6 −2.0

]
,A12 =

[
1 −0.8

1.3 −1

]
,

E2 =

[
1 0
0 0

]
,A2 =

[
−1 −0.8
0.6 −2.0

]
,

A21 =

[
−0.5 0.3
0.6 −1.5

]
,A22 =

[
−1 −0.5
1 0.8

]
,

and the following transition probability matrix is consid-
ered:

Π =

[
−a a
0.6 −0.6

]
.

Table 1. Maximum d2 for different a.

a 0.1 0.3 0.5 0.8 1.0
d2 1.3782 1.3184 1.2959 1.2806 1.2781

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

Time(sec)

Fig. 1. Jumping modes with 100 random samplings.

Simulation results show that the considered system is un-
stable for large time-delays. For given d1 = 0.5, u1 = u2 =
0.1, the maximum allowable d2 as a changes, the result
shows in Table 1.

Example 2: Consider system (29) with the following
parameters:

E =

[
1 2
2 4

]
, A1 =

[
−15.1 −3.5

1 1.5

]
,

A11 =

[
3.2 −1.2
1.2 2.0

]
, A12 =

[
1 −3.3

−2.5 −1

]
,

A2 =

[
5.2 0.8
1.3 −10

]
, A21 =

[
−0.7 −1.2
−0.6 −2.0

]
,

A22 =

[
−2.1 6.7
−2 3.2

]
, B1 =

[
1
2

]
, B2 =

[
2
−1

]
,

and transition probability matrix choose as:

Π =

[
−0.8 0.8
0.6 −0.6

]
.

In solving LMI (34), we set the tuning scalars ai = 0.5,
bki = 1, EL = [1 2]T , ER = [1 2]T . Fig. 1 and Fig. 2
show the simulation results when d1 = 0.5 + 0.5sin(2t)
and d2 = 1.0+0.1sin t, the initial condition is assumed to
be φ(t) = [−1.5 2]T for all t ∈ [−1.5,0]. On the other
hand, the parameters are given as:

K1 = [−3.0871 −1.6503],

K2 = [−6.1004 −1.2209].

5. CONCLUSIONS

This paper has discussed the problems of stochas-
tic admissibility and stabilization for a class of singu-
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0 1 2 3 4 5 6 7 8 9 10
−2

−1
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1

2

Time(sec)

x1
x2

Fig. 2. State response of the closed-loop system.

lar Markovian jump systems with multiple time-varying
delays, mode-dependent singular matrix E(rt) has been
considered in the system. Based on Lyapunov functional
method, sufficient conditions in terms of strict LMIs have
been presented to guarantee the closed-loop system to be
stochastically admissible and stochastically stabilizable.
Finally, numerical examples have been provided to show
the effectiveness of the proposed results.
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