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Robust RST Control Design based on Multi-Objective Particle Swarm
Optimization Approach
Riadh Madiouni, Soufiene Bouallègue*, Joseph Haggège, and Patrick Siarry

Abstract: In this paper, a novel method for the digital two-Degrees-Of-Freedom (2DOF) controller design, called
canonical RST structure, is proposed and successfully implemented based on a Multi-Objective Particle Swarm
Optimization (MOPSO) approach. This is a polynomial control structure allowing independently the regulation
and the tracking of discrete-time systems. An application to the variable speed control of an electrical DC Drive
is investigated. The RST design and tuning problem is formulated as a multi-objective optimization problem.
The proposed MOPSO algorithm which is based on the Pareto dominance is used to identify the non-dominated
solutions. This approach used the leader selection strategy that is called a geographically-based system. In addition,
the adaptive grid method is used to produce well-distributed Pareto fronts in the multi-objective formalism. The
well known NSGA-II and the proposed MOPSO algorithms are evaluated and compared with each other in terms
of several performance metrics in order to show the superiority and the effectiveness of the proposed method.
Simulation results demonstrate the advantages of the MOPSO-tuned RST control structure in terms of performance
and robustness.

Keywords: DC drive, digital RST controller, external archive, multi-objective design, NSGA-II, particle swarm
optimization, Pareto front, robustness constraints.

1. INTRODUCTION

The synthesis of robust control is currently a devel-
oping research theme. Several methods of synthesis are
being developed for the design and analysis of robust
control. The two-Degrees-Of-Freedom (2DOF) digital de-
sign, called RST controller, is a polynomial control struc-
ture allowing independently the regulation and the track-
ing of discrete-time systems. This canonical structure of
digital controllers is based on the calculation of three poly-
nomials R, S and T which allow the poles placement of
the closed-loop. It is a robust and effective control strat-
egy that is widely used in industrial applications [1–5]. In
this formalism, the most useful method to synthesize the
digital RST controllers is based on the well-known closed-
loop poles placement [2]. In this design case, Sylvester’s
method can be used to determine the search parameters
of the RST controller by resolving a polynomial equation
which will ensure the desired closed-loop poles. The ma-
jor drawback of this synthesis technique is the choice of
the closed-loop poles that is usually difficult and becomes
more complicated with the complexity of the controlled
plant.
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Up to now, there has been no clear and systematic pro-
cedure in the literature to guide the closed-loop poles
placement choice in the RST control design. To overcome
this problem, several techniques have been proposed in
the literature. The two classical methods, based on pole
placement combined with the sensitivity functions shap-
ing, have been proposed by Landau and Karimi [3]. The
first approach combines the pole placement and the cali-
bration of the sensitivity functions, using the fixed parts
in the controller. It iteratively adjusts the sensitivity func-
tions in the frequency domain where it is necessary and
uses robustness templates to obtain the placement of the
poles. In the second method, the synthesis problem has
been transferred to H∞ optimal control via a new interpre-
tation of the weighting filters, as the reverse of the desired
sensitivity function. In this approach, the weighting filter
selection is carried out automatically by an optimization
program. These iterative and trial error-based methods are
not suitable for the complex systems. In [4], Rotella et
al. proposed a new approach for digital RST controller
synthesis based on the flatness property of dynamical sys-
tems. Such a flatness-based method is also applied for a
DC drive real-time control in [1]. In [6], another design
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approach, using convex optimization was proposed by
Galdos et al. The performance specifications given as
the infinity norm of the weighted sensitivity functions are
represented as convex constraints in the Nyquist diagram.
Unfortunately, this method is time-consuming, difficult to
implement and becomes ineffiective for non-convex prob-
lems.

In view of these difficulties, proposing a systematic and
easy procedure for the RST synthesis problem is an im-
portant and interesting task in this area. To deal with these
synthesis problems of RST controller we proposed in a
promising solution which gave good results. The recourse
to the optimization theory, such as the Particle Swarm Op-
timization (PSO) technique [7, 8], was proposed and vali-
dated. The synthesis problem of RST controller is formu-
lated as a constrained optimization problem.

The developments presented in this paper are an exten-
sion of our previous work in [5] that deals with the RST
synthesis problem within a mono-objective framework.
The aim contribution of this paper is to formulate and
solving the 2DOF RST problem using a developed Multi-
Objective Particle Swarm Optimization (MOPSO) algo-
rithm with a constraints handling mechanism. Different
optimization criteria, such as the IAE (Integral of the Ab-
solute Error) and MO (Maximum Overshoot) index, are
considered under various control constraints. Controller’s
robustness specifications on disturbance rejection and sta-
bility margins guarantee, classically analyzed after design
stage, become inequality type constraints for the formu-
lated RST problem optimization and can be held into ac-
count since the synthesis phase. The proposed MO-PSO
algorithm is based on rules of dominance and a controller
external archive. All the best obtained solutions are stored
and will be represented by an adaptive grid to form the
Pareto front. The robustness of the RST-tuned MOPSO
algorithm is verified by numerical simulations when vary-
ing their main control parameters. This implemented al-
gorithm was firstly verified on a set of literature test func-
tions and then applied to resolve the formulated RST opt-
imization-based control problem. The MOPSO algorithm
is also compared with another similar one (NSGA-II) that
is widely used in multi-objective optimization formalism.
Several statistical analysis and popular performance as-
sessment metrics were carried out for its validation and
effectiveness.

The remainder of this paper is organized as follows.
In Section 2, the formulation of the optimization-based
control problem is presented. In Section 3, the devel-
oped MOPSO is described and validated on the known
test functions from the literature. In Section 4, we apply
the proposed control approach to an electrical DC drive
benchmark control. All MOPSO-based simulation results
are compared and discussed with those obtained by the
NSGA-II-based approach in order to show the effective-
ness and superiority of the proposed strategy.

2. RST DESIGN AND TUNING PROBLEM
FORMULATION

2.1. Digital RST controller structure
In this study, the discrete-time model of the plant to be

controlled is described in the time-domain by the follow-
ing transfer function:

H
(
q−1)= yk

uk
=

q−zB
(
q−1

)
A(q−1)

, (1)

where q−1 is the backward shift operator, z is the integer
number of sampling period contained in the time-delay
of the plant, k is the normalized discrete time and corre-
sponds to the discrete time divided by the sampling period
Ts, uk and yk are the discrete plant input and output, re-
spectively.

The terms A
(
q−1

)
and B

(
q−1

)
, assumed to be co-prime

polynomials, are respectively the denominator and the nu-
merator of the transfer function, defined as:

A
(
q−1)= 1+a1q−1 + . . .+anA q−nA , (2)

B
(
q−1)= b1q−1 +b2q−2 + . . .+bnB q−nB . (3)

The canonical structure of the digital RST controller
is shown in Fig. 1. This structure has two-degrees-of-
freedom. The digital polynomials R and S are designed in
order to achieve the desired regulation performance. The
polynomial T is designed afterwards in order to achieve
the desired tracking one [2, 3]. This structure allows the
achievement of different levels of performance in tracking
and regulation.

The classical RST control law, is given as follows:

S
(
q−1)uk = T

(
q−1)y∗k+z+1 −R

(
q−1)yk. (4)

The polynomials R
(
q−1

)
, S

(
q−1

)
and T

(
q−1

)
have the

following forms:

R
(
q−1)= r0 + r1q−1 + . . .+ rnR q−nR , (5)

S
(
q−1)= s0 + s1q−1 + . . .+ snS q−nS , (6)

T
(
q−1)= t0 + t1q−1 + . . .+ tnT q−nT . (7)

The desired tracking trajectory y∗k+z+1 may be generated
by the following tracking reference model:

y∗k+z+1 =
Bm

(
q−1

)
Am (q−1)

rk, (8)

+_

+
+

+
+

R q

T q

-

-

( )

( )

1

1
1

1
/ S q-( )m

-z
y

u
k

k

d

n

k

k
r

y*
+z 1+

k

k

A q-( )1
B q-( )1q

mA  q-( )1
B  q-( )1

Fig. 1. Canonical RST structure of the controller.
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where rk is the reference trajectory.
Hence, the closed-loop poles have been defined by the

following polynomial equation :

P(q−1) = A(q−1)S(q−1)+q−zB(q−1)R(q−1). (9)

2.2. Robustness and performance constraints
For reasons of robustness and performance specifica-

tions such as disturbance rejection and noise attenuation,
the polynomials R

(
q−1

)
and S

(
q−1

)
contain some fixed

parts which are specified before solving (9). In [3], it is
shown that the pre-specified polynomial HR

(
q−1

)
is used

to eliminate the high frequency noises on the input signal.
The polynomial HS

(
q−1

)
performs polynomial to allow

the rejection of static disturbances on the output signal.
These polynomials are described as follows:

HS
(
q−1)= 1−q−1; HR

(
q−1)= 1+q−1. (10)

While taking into account these pre-specified parts, the
new polynomials of the MOPSO-tuned RST controller be-
come:

Ŝ
(
q−1)= HS

(
q−1)S

(
q−1) , (11)

R̂
(
q−1)= HR

(
q−1)R

(
q−1) . (12)

In order to ensure a delay margin ∆τ = Ts, the mod-
ulus of the output sensitivity function Syd

(
q−1

)
must lie

between the upper and lower templates as follows :∣∣W−1
∣∣
inf = 1−

∣∣1−q−1
∣∣−1

<
∣∣Syd(q−1)

∣∣ ,∣∣W−1
∣∣
sup = 1+

∣∣1−q−1
∣∣−1

>
∣∣Syd(q−1)

∣∣ . (13)

In (13), the variables
∣∣W−1

∣∣
sup and

∣∣W−1
∣∣
inf represent

the upper and lower robustness bounds respectively in the
frequency domain for the modulus of the output sensi-
tivity function

∣∣Syd
(
q−1

)∣∣. These two analytical expres-
sions represent later the inequality type constraints gm(xxx)
of the formulated optimization problem (14). Since the
sensitivity function

∣∣Syd
(
q−1

)∣∣ is a robustness index of
the designed RST controller in terms of disturbance re-
jection and modulus and delay margins guarantee, the fre-
quency shape of this closed-loop transfer function must
remain inside of the envelope formed by these upper and
lower bounds. Graphically, these discreet-time filters be-
have like frequency robustness templates.

2.3. Multi-objective problem formulation
A multi-objective optimization problem involves the si-

multaneous satisfaction of two or more objective func-
tions [9–14]. In this section, the RST design is formu-
lated as a constrained multi-objective optimization prob-
lem which is solved using the proposed MOPSO-based
technique. Such a constrained optimization problem can
be mathematically described as:

minimize
xxx∈D⊆Rn

fp(xxx), p = 1, 2, ...,P

subject to : (14)

hl(xxx) = 0, l = 1, 2, ...,L

gm(xxx)≤ 0, m = 1,2, ...,M,

where fp(xxx), hl(xxx) and gm(xxx) are functions of the design
vector xxx ∈ Rn.

The multi-objective optimization-based RST synthesis
problem consists in finding the optimum decision vari-
ables xxx∗ = [x∗1,x

∗
2, ...,x

∗
n]

T , which represent the RST con-
troller parameters grouped in the design vector given as
follows:

xxx =
[

s0, s1, ..., snS , r0, r1, ..., rnR

]T
. (15)

These decision variables minimize the two considered
cost functions, such as the MO and IAE criteria, given
respectively as follows:

fMO (xxx, t) =
ymax (xxx, t)− y(xxx, t →+∞)

y(xxx, t →+∞)
, (16)

fIAE (xxx, t) =
∫ +∞

0
|ε (xxx, t)|dt, (17)

where ε denotes the continuous-time error tracking of the
closed-loop and ymax the maximum value of the plant out-
put.

In this design case, we denote that only the regulation
performance is considered, i.e., R

(
q−1

)
and S

(
q−1

)
poly-

nomials are optimized. Hence, the digital filter T
(
q−1

)
can be designed afterwards as follows [2, 3]:

T
(
q−1)= t0 =

P(1)
B(1)

. (18)

Indeed, the difficult stage in the 2DOF RST controller de-
sign is the calculation of R and S polynomials that define
the regulation dynamics of this control approach. This cal-
culation is based on poles placement of the closed-loop
system, usually difficult and delicate. However, the track-
ing problem resolution in RST design is systematic since
we have the mathematical formulas to calculate this dy-
namics. The polynomial T (q−1) of tracking behavior is
expressed as a function of open loop model poles (poly-
nomial B(q−1)) and closed-loop ones (P(q−1)). For this
purpose, we chose to reduce the size of the formulated op-
timization problem for only regulation stage, and nothing
prevents to also treat the tracking problem. In this case,
the optimization problem becomes larger and other deci-
sion variables (coefficients ti of the tracking polynomial
T (q−1) will be added in the vector xxx of Equation (15).

3. PROPOSED MULTI-OBJECTIVE PSO
APPROACH

3.1. MOPSO algorithm implementation
The original PSO algorithm was introduced back in

1995 by Eberhart and Kennedy [7, 8]. The basic concept
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of PSO is to have a set of solutions called particles find-
ing in a search space. Each particle moves in the search
space with an adaptable velocity, while retaining in the
memory the best position it has ever visited [15, 16]. This
advanced meta-heuristic technique have been applied in
variours control approaches such as the fuzzy and struc-
tured H∞ designs [17, 18].

In a search space D, the particle i of the swarm is mod-
eled by its position xi = (xi1,xi2, ...,xiD) and by its ve-
locity vi = (vi1,vi2, ...,viD). This particle remembers the
best position through which it has already passed, denoted
pi = (pi1, pi2, ..., piD). The best position reached by any
particle swarm is denoted as gi = (gi1,gi2, ...,giD). At time
t and dimension j the velocity is calculated from (19):

vi j (t) =wvi j (t −1)+ c1χ1,t (pi j (t −1)− xi j (t −1))

+ c2χ2,t (g j (t −1)− xi j (t −1)) , (19)

where w is the inertia factor, c1 and c2 are the cognitive
and the social scaling factors respectively, χ1,t and χ2,t are
random numbers uniformly distributed in [[0,1]].

The position at the time t of the particle i is defined by
equation (20):

xi j(t) = xi j(t −1)+ vi j(t). (20)

Solving a multi-objective problem is about selecting the
non-dominated positions found by the algorithm during its
execution. At the end of execution, the chosen solutions
need to be non-dominated compared to all the positions
reached by the particles in successive iterations. From a
mathematical point of view, the sense of Pareto optimality
can be expressed in terms of dominance [19–21].

The principle of the particle swarm optimization for
multi-objective problems is based on dominance and
neighborhood manipulation in space criteria [22–26]. The
comparison strategy for the solutions through dominance
and neighborhood manipulation is essential to the con-
struction of the archive. Therefore, we used an archive
controller to select the solutions to be added to the archive.
The main objective of the external storage space is to
keep a history of non-dominated vectors founded along
the search process. The decision process is as follows: the
non-dominated vectors founded in each iteration of the
main population of the algorithm are compared. As re-
gards the contents of the external archive, it will be empty
at the beginning and it accepts the first solution found.
If the new solution is non-dominated then the solution
in the archive will be rejected and inversely. The meta-
heuristics-based multi-objective optimization concepts are
extensively used in the control design theory [27–30].

The basic idea is to use an external archive to store all
the non-dominated solutions, hence we propose the use of
an adaptive grid to plot the Pareto front which is a set of
the final solutions. The grid is composed of hypercubes
which contains a number of particles. If a particle exceeds

Fig. 2. Velocity and position update.

the maximum limit, the grid is recalculated again [22].
In the proposed MOPSO, a particle moves toward one of
known Pareto solutions and searches around the solution
exploitatively. Hence, the principle of a particle displace-
ment in the swarm is graphically shown in Fig. 2.

The variable Reph is selected from the archive so the
equation (21) becomes:

vi j (t) =wvi j (t −1)+ c1χ1,t (pi j (t −1)− xi j (t −1))

+ c2χ2,t (Reph (t −1)− xi j (t −1)) . (21)

The method of selecting a guide to the evolution of
particles is strongly related to the archive [23]. The se-
lected guides determine the velocity of convergence of the
swarm to a set of satisfactory solutions. The approach
adopted a strategy for the choice of leader Reph. The
roulettewheel selection is applied to select the hypercubes.
Each hypercubes contains n particles, hence we took ran-
domly a particle. The main algorithm proposed to the
MOPSO approach is described as follows:

1) Randomly initialize the position and velocity of parti-
cles in D-dimensional space.

2) Evaluate each particle.

3) Store the non-dominated solutions or the ones founded
in the archive.

4) Produce the hypercubes of the search space.

5) Memorize and store the best positions of particles in
the archive Pbest to calculate the next positions.

6) Calculate the speed and the position of each particle.

7) Evaluate each particle. Along their research more par-
ticles beyond the boundaries. They are returned into
the search space, then they will be generated.

8) Update the coordinates of the particles in all the hyper-
cubes and updated the archive that will be full at the
tth iteration, then the particles in the less dense areas
are prioritized. The capacity of the archive (Arch.) is
already defined in advance.

9) Update the Pbest solution based on the Pareto domi-
nance.
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3.2. MOPSO algorithm improvements
The MOPSO algorithm, proposed in this paper for syn-

thesis and tuning of polynomial RST controllers, is im-
proved compared to the conventional PSO one, initially
developed by R. Eberhart and J. Kennedy for the single-
objective optimization. Our improvements are especially
related to the following items:

• Constraints handling mechanism;

• Leader roulette-wheel selection strategy;

• Adaptive grid method for the external archive;

• Inertia factor decreasing linearly with iterations.

The original PSO algorithm is formulated as an uncon-
strained optimizer. Several techniques have been proposed
to deal with constraints. One useful approach is by aug-
menting the cost function of problem (14) with penalties
proportional to the degree of constraint infeasibility. In
this paper, the following external static penalty technique
is used to improve the proposed MOPSO algorithm:

Fp (xxx) = fp (xxx)+
M

∑
m=1

λm
2

max {0,gm (xxx)} , (22)

where λm is a prescribed scaling penalty parameters and
M the number of the problem inequality constraints as de-
picted in (14).

In a typical optimization procedure, the scaling parame-
ters of (22) will be linearly increased at each iteration step
so constraints are gradually enforced. The quality of the
solutions will directly depend on the value of these scal-
ing parameters. For simplicity purposes and to save the
computational time algorithm, great and constant scaling
penalty parameters λm, equal to 104, are used in this paper.

The proposed MOPSO algorithm is implemented with
the concept of leader selection strategy. Since the solution
of a multi-objective problem consists of a set of equally
good solutions, it is evident that the concept of leader, tra-
ditionally adopted in PSO, has to be changed. The se-
lection of a leader is a key component in multi-objective
PSO paradigm. This MOPSO algorithm is based on the
idea of having an external archive in which every particle
will deposit its flight experiences after each flight cycle.
The updates of the external archive are performed con-
sidering a geographically-based system defined in terms
of the objective function values of each particle. The ex-
plored search space is divided on hyper-cubes. Each one
of these hyper-cubes receives a fitness value based on the
number of particles it contains. Thus, in order to select
a leader for each particle of the swarm, a roulette-wheel
selection using these fitness values is first applied to se-
lect the hyper-cube from which the leader will be taken.
Once a hyper-cube has been selected, the leader is ran-
domly chosen.

To produce well-distributed Pareto fronts, our approach
uses a variation of the adaptive grid concept. The ba-
sic idea is to use an external archive to store all non-
dominated solutions that are with respect to the contents
of the archive. In the archive, objective function space
is divided into several regions. Note that if the individ-
ual inserted into the external population lies outside the
current bounds of the grid, then the grid has to be recal-
culated and each individual within it has to be relocated.
The adaptive grid is a space formed by hyper-cubes. Such
hyper-cubes have as many components as objective func-
tions. Each hyper-cube can be interpreted as a geographi-
cal region that contains a number of individuals.

On the other hand, and in order to improve the pro-
posed MOPSO algorithm in terms of increasing its explo-
ration/exploitation capacity, we used the following adap-
tive inertia factor variation [14, 15]:

w(t) = wmax − (wmax −wmin)
t

tmax
, (23)

where wmax = 0.9, wmin = 0.4 and tmax is the maximum
iteration number.

3.3. Validation of the proposed MOPSO algorithm
The algorithms have been coded in MATLAB 7.8 and

executed on a PC computer with Core 2 Duo-2.20 GHz
CPU and 2.00 GB RAM. In order to study the developed
MOPSO approach and to compare it with an other algo-
rithm, we use the three popular performance assessment
metrics given by (24), (25) and (26).

GD =
1

nD

√
nD

∑
i=1

d2
i , (24)

SP =

√
1

nD −1

nD

∑
i=1

(
d̄ −di

)2
, (25)

ER =
1

nV

n

∑
i=1

ei, (26)

where di = min
j

P
∑

p=1

∣∣∣ f i
p − f j

p

∣∣∣, j = 1,2, . . . ,n represent the

Euclidian distance between each of the solutions found
and the closest one in the Pareto front. In this expres-
sion, the variables f i

p and f j
p represent the values of the pth

objective functions of the considered multi-objective op-
timization problem (14) needed to calculate this distance.
P is the total number of the problem objective functions.

The Generational Distance (GD) measures the distance
between the elements of the set of non-dominated solu-
tions found and the elements of the Pareto optimal set. The
Spacing (SP) measures the distribution of the solutions in
the research space. The Error Ratio (ER) calculates the
percentage of the non-dominated solutions found that are
not in the optimal Pareto front [10, 19, 20]. In these equa-
tions, di denotes the Euclidean distance between each of
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Table 1. MOPSO and NSGA-II algorithms specifications.

Pop. Iter. Arch. Parameters
MOPSO 100 100 100 c1 = 1.5, c2 = 1.7
NSGA-II 100 100 – nGrid=30

Table 2. The algorithm’s computation times in sec.

F1 F2 F3 F4
MOPSO 74.451 37.801 90.771 63.412
NSGA-II 161.124 147.147 162.184 104.356

the solutions found and the nearest element of the Pareto
optimal set, nD is the number of non-dominated solutions
found, d is the mean value of all di and nV is the number of
vectors in the current set of non-dominated vectors. The
parameter ei is equal to 0 if i is a member of the Pareto op-
timal and ei = 1 otherwise. The idea is to test the ability of
the proposed approach to identify the optimal Pareto front
and a quantitative evaluation of its performance. For that,
three points are normally considered [14, 21, 24]:

• reducing the distance between Pareto optimal front
and the one produced by the developed algorithm,

• maximizing the spread of solutions,
• maximizing the number of elements of the Pareto

front found by the MOPSO algorithm.

In the concept of multi-objective optimization, several
test functions are used to compare the effectiveness of
the proposed MOPSO and NSGA-II metaheuristic algo-
rithms. In this paper, four benchmark problems are se-
lected from the literature [11, 13, 14] and described in
the APPENDIX. The parameters of Table 1 are used to
verify, analysis and compare the MOPSO and NSGA-
II algorithms. The used Non Sorting Genetic Algorithm
II (NSGA-II) algorithm, proposed by, Deb [11, 12], in-
spires the same concepts of genetic algorithm. This tech-
nique uses a sorting method based on non-dominance to
construct the Pareto front. It uses a comparison operator
based on the calculation of the crowding-distance.

Table 2 gives the computation times of the proposed
algorithms for the considered test functions. As shown
in Figs. 3, 4, 5 and 6, as well as the results of Tables 3,
4 and 5, neither of the two algorithms converge on the
optimal Pareto front for the considered test functions.

The value of ER of MOPSO algorithm is less than the
one of NSGA-II algorithm. Regarding the GD metric, we
can conclude that the obtained value is lower in MOPSO
technique. So, we observe that MOPSO gets better per-
formance for the used test functions in this metric but the
value of SP of MOPSO is greater than the one of NSGA-
II. We can conclude that the algorithm MOPSO obtained
the best solutions with respect to ER, GD and SP met-
rics for the considered test functions. The proposed algo-
rithm returns a greater number of solutions belonging to

Table 3. Obtained GD metric of the test functions.

Functions F1, F2, F3 and F4 MOPSO NSGA-II
Best 8.25 10−5 0.000129

Worst 0.000124 0.135470
Average 0.000101 0.013578
Std. Dev. 2.34 10−5 0.031450

Best 0.006450 0.005610
Worst 0.008970 0.100100

Average 0.007450 0.028600
Std. Dev. 0.000470 0.021200

Best 0.000330 0.000600
Worst 0.152100 0.200100

Average 0.029900 0.411000
Std. Dev. 0.051200 0.052100

Best 0.001200 0.002120
Worst 0.334000 0.538000

Average 0.024100 0.072200
Std. Dev. 0.101000 0.121400

Table 4. Obtained SP metric of the test functions.

Functions F1, F2, F3 and F4 MOPSO NSGA-II
Best 0.006670 0.000120

Worst 0.016120 0.013540
Average 0.010110 0.002870
Std. Dev. 0.001824 0.002684

Best 0.057100 0.016700
Worst 0.112000 0.554000

Average 0.091200 0.025100
Std. Dev. 0.015400 0.015300

Best 0.034500 0.021000
Worst 0.421000 0.032800

Average 0.077100 0.031200
Std. Dev. 0.102000 0.008510

Best 0.036100 0.000930
Worst 0.502000 1.238000

Average 0.092100 0.063100
Std. Dev. 0.101000 0.215000

the true Pareto front and the minimum GD. In addition,
the MOPSO has a better spread of solutions compared to
the given NSGA-II ones as well as a lower computation
time as shown in Table 2.

4. APPLICATION TO DC DRIVE BENCHMARK
SPEED CONTROL

4.1. Plant description
The considered benchmark is a 250 watts electrical DC

drive [5]. The speed of the machine rotation is 3000 rpm
at 180 volts DC armature voltage. The motor is supplied
by an AC-DC power converter. The model parameters are
given with their associated uncertainty bounds of ±50%
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Table 5. Obtained ER metric of the test functions.

Functions F1, F2,
F3 and F4

MOPSO NSGA-II

Best 0.150000 0.010000
Worst 0.390000 0.97100

Average 0.286000 0.323000
Std. Dev. 0.088100 0.364700

Best 0.130000 0.055000
Worst 0.323000 1.010000

Average 0.231700 0.461000
Std. Dev. 0.038800 0.377400

Best 0.001000 0.010000
Worst 1.010000 1.010000

Average 0.247000 0.384000
Std. Dev. 0.383000 0.411000

Best 0.071000 0.680000
Worst 0.190000 0.940000

Average 0.121000 0.781000
Std. Dev. 0.388000 0.051100
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Fig. 3. Pareto fronts produced by the algorithms for F1.
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Fig. 4. Pareto fronts produced by the algorithms for F2.

as used in [1, 18]. We denote by G0 = 0.05 the static
gain of the plant, τm = 300 ms and τe = 14 ms are the me-
chanical and electrical constant times, respectively. The
discrete-time model is obtained by sampling of this con-
tinuous second order transfer function where Ts = 0.01
sec.
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Fig. 5. Pareto fronts produced by the algorithms for F3.
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Fig. 6. Pareto fronts produced by the algorithms for F4.

4.2. Simulation results
The RST synthesis problem can be solved by the con-

strained MOPSO-based approach given as follows:
minimize

xxx=[s1,r0,r1]
T∈R3

( f1 (xxx) , f2 (xxx))

subject to :
g1 (xxx) =

∣∣Syd
(
q−1,xxx

)∣∣− ∣∣W−1
∣∣
sup ≤ 0

g2 (xxx) =
∣∣W−1

∣∣
inf −

∣∣Syd
(
q−1,xxx

)∣∣≤ 0,

(27)

where g1 and g2 are the inequality constraints of the for-
mulated RST design and tuning problem.

Remember that the output sensitivity function∣∣Syd
(
q−1,xxx

)∣∣ of (27) denotes the closed-loop transfer
function, between the output system yk an the disturbance
input dk, explicitly defined in (28). The variables

∣∣W−1
∣∣
sup

and
∣∣W−1

∣∣
inf are the modulus bounds of this transfer func-

tion in the frequency responses domain. These filters, as
given in (13), represent the upper and lower robustness
templates for the sensitivity modulus shaping.

Syd =
A
(
q−1

)
S
(
q−1,xxx

)
A(q−1)S (q−1,xxx)+q−zB(q−1)R(q−1,xxx)

. (28)

In this multi-objective optimization RST control prob-
lem, the IAE and MO criteria are considered as the ob-
jective functions f1 and f2. Fig. 7 is the result of the two



1614 Riadh Madiouni, Soufiene Bouallègue, Joseph Haggège, and Patrick Siarry

0.033 0.034 0.035 0.036 0.037 0.038
0.32

0.34

0.36

0.38

0.4

0.42

0.44

MO

IA
E

 

 

Main Population

Pareto Front by MOPSO

0.043 0.044 0.045 0.046
0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

MO

IA
E

 

 

Pareto Front by NSGA−II

Fig. 7. Pareto fronts for the RST tuning problem.

Table 6. Optimization results for the RST tuning problem.

s1 r0 r1 IAE MO
MOPSO 0.504 0.044 0.455 0.363 0.035
NSGA-II 0.371 0.038 0.461 0.395 0.045

algorithms for the RST synthesis problem (27). The so-
lution placed in the hypercubes have a coordinates (xgrid ,
ygrid) which are the values of the two objective functions
MO and IAE respectively.

For the implemented MOPSO algorithm, we chose a
population size equal to 50. The maximum iteration num-
ber is fixed as 50. The archive size is equal to 50. The
PSO cognitive and social parameters c1 and c2 are kept as
1.5 and 1.7, respectively. The optimized RST coefficients
obtained in the Mean case are given in Table 6. Remember
that all the solutions in the obtained Pareto front related to
objectives f1 and f2 are non-dominated and can be consid-
ered as potential solutions for the RST optimization prob-
lem. So, we can choose arbitrarily any solution among
them as an optimum of the formulated multi-objective op-
timization problem.

The objective of the external archive is to store all non-
dominated solutions when the number of non-dominated
solutions is equal to the maximum archive size. The new
solution founded will be compared 50 times with the ex-
isting solutions in the archive. Fig. 8 shows the change in
the non dominated particle number in the archive, which
affected its maximum capacity in an iteration interval be-
tween 30 and 50. In our case and after testing, we achieve
the optimal result when we used the mentioned MOPSO
and NSGA-II parameters. The robustness of the proposed
MOPSO algorithm convergence, under variation of the
cognitive and inertia factor parameters, is analysed on the
basis of numerical simulations as shown in Fig. 9.

The comparison of MOPSO and NSGA-II algorithms
shows the performance of the proposed one, as presented
in Fig. 10. The MOPSO algorithm converges to the better
solution after a number of iterations less than the num-
ber of generations for the NSGA-II one. Hence, the con-
vergence speed of the proposed approach and the quality
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Fig. 8. Evolution of particles number in the archive.
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of the solutions is proved relative to the NSGA-II algo-
rithm. In order to get some statistical data on the quality
of optimization results, it is necessary to run the algorithm
several times. The algorithm is executed 20 times and fea-
sible solutions were found in 95% of trials and within an
acceptable CPU computation time.

As explained in [1, 3], the robustness of the designed
RST controller is guaranteed as can be seen in Fig. 11
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and Fig. 12. Indeed, the module of the output sensitiv-
ity functions Syd remains inside the predefined template
and that of the input sensitivity function Sud presents at-
tenuation in high frequencies. This result leads also to ob-
taining high time-domain performances of the proposed
MOPSO-tuned RST controller structure. These simula-
tion results show that the actual speed of DC motor tracks
the desired trajectory with high performance. The track-
ing error is very small in the transient regime and equal
to zero in steady-state. Fig. 13 shows the system step
responses for the MOPSO, NSGA-II and Sylvester-based
algorithms, which are plotted with the mean values of the
optimized parameters.

The proposed MOPSO-based approach produces bet-
ter responses than that obtained using the other meth-
ods [1,5]. The multi-objective optimization well improves
performance and design stage of the polynomial RST con-
trollers. The practical implementation of such a digital
MOPSO-tuned controller becomes easy while program-
ming the obtained control law as a recurrent equation. In
our previously work [1], we used the low cost Microchip
PIC16F876 microcontroller to implement, for such a DC
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Fig. 13. Responses comparison for the RST controller.

drive plant, the RST recurrent equation obtained by the
classical Sylvester-based approch.

5. CONCLUSIONS

The synthesis and tuning problem of digital RST con-
trollers, using a MOPSO-based technique, is proposed
and successfully applied to the variable speed control of
an electrical DC drive. Different tests on the bench-
mark functions are done in order to validate the designed
and implemented MOPSO algorithm. The MOPSO tech-
nique, based on Pareto dominance, proves its superiority
compared to the NSGA-II technique which is based on
crowding distance strategy. The obtained simulation re-
sults show the efficiency in terms of performances, ro-
bustness and less complexity of the proposed RST control
approach. In addition, our approach shows a better com-
putation time than with the NSGA-II one. This work can
be enriched by using the MOPSO with the two strategies;
ε-dominance and the mutation operator.

APPENDIX A

• Test Function F1:{
f1 (x1,x2) = x1

f2 (x1,x2) = g(x1,x2)h(x1,x2)
(A.1)

0 ≤ x1 ≤ 1, −30 ≤ x2 ≤ 30

g(x1,x2) = 11+ x2
2 −10cos(2πx2)

h(x1,x2) =


1−

√
f (x1,x2)

g(x1,x2)
,

if f (x1,x2)≤ g(x1,x2)
0, otherwise
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• Test Function F2:
f1 (x) =

n−1
∑

i=1

(
−10exp

(
−0.2

√
x2

i + x2
i+1

))
f2 (x) =

n
∑

i=1

(
|xi|0.8 +5sin

(
x3

i

))
(A.2)

−5 ≤ x ∈ R3 ≤ 5

• Test Function F3:{
f1 (x1,x2) = x1

f2 (x1,x2) =
g(x1,x2)

x1

(A.3)

0.1 ≤ x1,x2 ≤ 1

g(x1,x2) = 2− exp
(

x2 −0.2
0.004

)2

−0.8exp
(

x2 −0.6
0.4

)2

• Test Function F4:{
f1 (x1,x2) =−x2

1 + x2

f2 (x1,x2) = 0.5x1 + x2 +1
(A.4)

0 < x1,x2 ≤ 7

0.5x1 + x2 −6.5 ≤ 0

0.5x1 + x2 −7.5 ≤ 0
5
x1

+ x2 −30 ≤ 0
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