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Chaotic Synchronization of Regular and Irregular Complex Networks
with Fractional Order Oscillators
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Abstract: Synchronization of N-coupled fractional-order (FO) chaotic oscillators arranged in regular and irregular
topologies is numerically studied. Synchronization is achieved based on the coupling matrix from the complex
systems theory. In particular, we consider complex dynamical networks composed by Lorenz, Volta, Duffing and
Financial FO chaotic oscillators, where the interaction of the nodes is defined by coupling only one state of each
FO oscillator.
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1. INTRODUCTION

Fractional calculus is over 300 years old, however in
the last twenty years it has attracted attention of differ-
ent fields. This is due mainly because there are several
phenomena in nature that are better represented by using
fractional derivatives.

In 1695, L’Hopital wrote a letter to Leibniz posing the
question on the meaning of Dn f where n was not an in-
teger in the common concept of derivative. Since then,
numerous contributions to the theory of fractional calcu-
lus have been made [1]. Nowadays, applications of the
fractional calculus theory can be found in many natural
and artificial phenomena [2–4]. The interested reader is
referred to [5, 6] for a detailed treatment of fractional cal-
culus and its applications.

On the other hand, regarding the use of complex net-
works; a complex network is defined as a set of coupled in-
terconnected nodes, where each node is a dynamical sys-
tem. The study of the complex networks has been inten-
sively researched in the last two decades [7]. Some sys-
tems of interest are neural networks, the nervous system,
genetic and metabolic networks, etc. Complex networks
can also be found in technological applications such as
telecommunication networks such as the World Wide Web
[8].

The ways in which the network nodes are connected
correspond to regular or irregular topologies. Under regu-
lar topologies, nodes are connected with a definite pattern
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(ring coupled, global coupled, star coupled); however, in
irregular topologies, nodes are connected without a defi-
nite link pattern, which leads to higher complex structures,
e.g. small-world networks, random networks or scale-free
networks [9–13]. In both cases the complexity in the net-
work might be increased if fractional-order (FO) chaotic
oscillators are considered as nodes [14] instead of integer-
order chaotic oscillators.

Synchronization of complex networks has fascinated
researchers for its possible applications [15–18]. Mean-
while, chaotic synchronization has received an increasing
attention since the studies of Pecora and Carroll, in which
two identical chaotic systems with different initial con-
ditions were synchronized [12]. Chaotic synchronization
has been intensively studied in the integer-order systems
and recently in the FO systems. At present time, chaotic
synchronization applications are focused on data encryp-
tion, process control and systems description [13, 14]. In
contrast with the well-known integer order oscillators, in a
FO oscillator, chaos can exist for different system param-
eters and different order in the system derivatives. This
benefits applications such as encryption, considering that
the former property enlarge the key space [15]. The for-
mer idea is similar to that used in projective synchroniza-
tion where the scales between the synchronized states of
the network could be used also as encryption parameters
[19].

Several methods have been proposed to achieve syn-
chronization between two FO chaotic systems, e.g.,
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Pecora-Carroll (PC) method [12], linear control [20], pin-
ning control [21], H∞ control [22], and backstepping con-
trol [23]. In general, these methods have a complex design
procedure and the resulting control law is present in every
state of the system.

The main goal of this paper is to synchronize N-coupled
FO chaotic oscillators by using only one state in the con-
trol law, our purpose is to obtain a “less invasive” control
strategy. This objective is achieved by appealing to results
from complex systems theory. We demonstrate numeri-
cally that these results hold for FO systems. In this work
we extend the results shown in [24] to irregular topologies.
Furthermore, the results obtained by applying this method
to the Volta, Duffing and Financial FO chaotic oscillators
are included.

This paper is arranged as follows: In Section 2 we in-
troduce some necessary definitions and notations of frac-
tional calculus; in this section a brief review on synchro-
nization of complex dynamical networks is also included.
In Section 3, the problem of synchronization N-coupled
FO chaotic systems in regular network is exposed as well
as the FO model of Lorenz and Volta systems which will
be used as fundamental nodes to compose the regular net-
works used. Then, in Section 4 we synchronize two ir-
regular networks with Duffing and Financial FO systems.
For each worked case, the corresponding simulation re-
sults are provided. Finally, some conclusions are given.

2. PRELIMINARIES

2.1. Fractional-order calculus
Fractional calculus is a generalization of integration and

differentiation for integers to the non-integer-order funda-
mental operator aDα

t , where a and t are the bounds of the
operation. The continuous integro-differential operator is
defined as

aDα
t =


dα

dtα , α > 0,

1, α = 0,
∫ t

a
(dτ)−α , α < 0

(1)

with α ∈ R.
There are three common definitions of a FO derivative:

the Grünwald-Letnikov (GL) definition, the Caputo defi-
nition and the Riemann-Liouville definition. These defini-
tions are equivalent under some conditions. The interested
reader can be referred to [1, 4].

First, we define the GL definition in non-integer differ-
entiation as

aDα
t f (t) = lim

h→0
f−α

t−a
h

∑
j=0

(−1) j
(

α
j

)
f (t − jh), (2)

where(
α
j

)
=

α(α −1) · · ·(α − j+1)
j!

(3)

is the relation between the Euler’s Gamma function and
the factorial.

For a numerical solution of FO differentiation we can
use the relation derived from GL definition given by the
following expression [1, 4]

k−Lm/hDα
t f (t)≈ h−q

k

∑
j=0

(−1) j
(

α
j

)
f (tk − j). (4)

The general numerical solution of (4) is

aDα
t f (t) = f (y(t), t), (5)

and can be expressed as

y(tk) = f (y(tk), tk)hq −
k

∑
j=v

c(q)j y(tk − j), (6)

where the calculation of the binomial coefficients are
given by

c(q)0 = 1,

c(q)j =

(
1− 1+q

j

)
c(q)j−1.

(7)

2.2. Summary on synchronization of complex sys-
tems

A complex network can be defined as an interconnected
set of oscillators (two or more), where each oscillator is a
fundamental unit, with its dynamic depending of the na-
ture of the network.

Each oscillator represents a node of the network, The
i-th oscillator Ni will be defined as follows:

aDαr
t xi,r (t) = fi,r (xi,r, t)+ui,r;i = 1,2, . . . ,N,

r = 1,2, . . . ,n,
(8)

where xi = ( xi,1 xi,2 · · · xi,n )T ∈ Rn are the state
variables of the Ni node.

In order to synchronize the network, the signal ui,r ∈ R
is added to only one state of each node. For example, if
the network is synchronized through the k-th state of each
node, the control law achieves ui,r = 0 for r ̸= k, and

ui,r =C
n

∑
j=1

ai, jΓx j, i = 1, . . . ,n, (9)

for r = k [9, 10], where C > 0 represents the coupling
strength; Γ is a constant matrix which links the state vari-
ables. Assume Γ = diag(γ1,γ2, . . . ,γn) a diagonal matrix
with γk = 1 for a particular k and γ j = 0 for j ̸= k. Then
the matrix Γ links the nodes through their k-th state vari-
ables.

The matrix A= (ai, j)∈ Rn×n is named the coupling ma-
trix. This matrix reflects the network topology and is de-
fined as follows: If there is a connection between node i
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(a) (b)

Fig. 1. Regular network topologies: (a) Globally coupled
network, (b) Ring coupled network.

and j, then , otherwise . For i = j the diagonal elements
of A are defined as

ai,i =−
n

∑
j=1, j ̸=i

ai, j

=−
n

∑
j=1, j ̸=i

a j,i, i = 1,2, . . . ,n.
(10)

The dynamical network composed by (8)-(9) is said to
achieve complete synchronization if

x1 = x2 = · · ·= xn, as t → ∞. (11)

The complexity of the network depends on the topology
or the oscillators used as nodes. The topology may follow
a regular or irregular pattern. In this work, we consider
regular and irregular networks with N identical oscillators
with a FO chaotic dynamics.

In Fig. 1 the two types of regular networks that will be
used in this paper are shown: global and ring connection.
The irregular networks used in this work will be presented
later in Section 4. In order to guarantee the synchroniza-
tion of the network (8)-(9) we use the results from [9] and
[10] to compute the appropiate coupling strength for all
the cases presented. A brief summary of [9] and [10] is
presented in appendix in order to make this document as
self-contained as possible.

3. SYNCHRONIZATION OF REGULAR
NETWORKS WITH N-COUPLED FO

OSCILLATORS VIA COUPLING MATRIX

Regular coupled networks are one of the configura-
tions more studied in synchronization of complex net-
works (globally coupled and ring coupled networks for
example). Here, we present the synchronization of these
networks using FO chaotic Lorenz system as nodes in the
globally coupled case and the FO chaotic Volta system in
the ring connection.
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Fig. 2. Chaotic attractor of a FO Lorenz oscillator with
σ = 10, ρ = 29, β = 8/3 and q1 = q2 = q3 = 0.995.

3.1. Case 1: Globally coupled network with FO
Lorenz oscillators

First, we synchronize complex networks of identical glob-
ally coupled FO Lorenz oscillators. This globally coupled
network topology is shown in Fig. 1(a).

In 1963 Edward N. Lorenz found a chaotic attrac-
tor based on the mathematical equations that model the
weather, formerly named after him. Later on, it was found
chaotic behavior with different FOs in the derivatives of
the system. We use FO Lorenz system in each oscillator.
Thus, the i-th node of the network Ni is defined as follows:

Ni =


0Dq1

t xi (t) = σ (yi (t)− xi (t))+ui,1,

0Dq2
t yi (t) = xi (t)(ρ − zi (t))− yi (t) ,

0Dq3
t zi (t) = xi (t)yi (t)−β zi (t) ,

(12)

where σ = 10, ρ = 29, β = 8/3 and the FO when q∈ [0,1]
is given by q1 = q2 = q3 = 0.995. Under these assump-
tions the oscillator is chaotic [25]. The chaotic attractor is
shown in Fig. 2.

According to (10), the coupling matrix for the configu-
ration shown in Fig. 1(a) is given by

Agc =


−11 1 1 · · · 1

1 −11 1 · · · 1
...

. . . . . . . . .
...

1 1 1 · · · 1
1 1 1 · · · −11

 . (13)

Note from (11) that Γ is defined as Γ = diag(1, 0, 0)
this means the synchronization is achieved by the first
state of each oscillator. According to (9), the first law of
control is given by the first row of the Agc matrix

u1,1 =C(−11x1 + x2 + x3 + x4 + x5 + x6

+ x7 + x9 + x10 + x11 + x12).
(14)
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Fig. 3. Phase portrait of the first states (, where i=1,2,...,12) of the twelve FO Lorenz oscillators.

The next oscillator of the network is defined as follows:

N2 =


0Dq1

t x2 (t) = σ (y2 (t)− x2 (t))+u1,2,

0Dq2
t y2 (t) = x2 (t)(ρ − z2 (t))− y2 (t) ,

0Dq3
t z2 (t) = x2 (t)y2 (t)−β z2 (t) ,

(15)

and the second control law as

u2,1 =C(x1 −11x2 + x3 + x4 + x5 + x6

+ x7 + x8 + x9 + x10 + x11 + x12),
(16)

up to the last node,

N12 =


0Dq1

t x12 (t) = σ (y12 (t)− x12 (t))+u1,12,

0Dq2
t y12 (t) = x12 (t)(ρ − z12 (t))− y12 (t) ,

0Dq3
t z12 (t) = x12 (t)y12 (t)−β z12 (t)

(17)

with control law u12,1 = C(x1 + x2 + x3 + x4 + x5 + x6 +
x7 + x8 + x9 + x10 + x11 −11x12).

The numerical simulation presented was obtained by
using a step time of size 0.005, considering the mentioned
parameter set. The initial conditions used for this, and the
three other cases presented in this document, are shown in
Table 1.

In all cases, we apply Lemma 1 of Appendix to calcu-
late C. Resulting in a value of C = 20 for this case. Under
this coupling strength, each state synchronizes with the
corresponding state of each system as we can see in phase
portraits shown in Fig. 3. Note that each subfigure shows
the appearance of a line of 45◦ reflecting the synchroniza-
tion of the network.

3.2. Case 2: Ring coupled network with FO Volta os-
cillators

In this type of coupling, only the nearest neighbors are
connected. In addition the last oscillator is connected to
the first one. In the proposed case, a ring coupled network
with twelve FO Volta oscillators was synchronized. This
topology is illustrated in Fig. 1(b).

The systems used as nodes were discovered by Volta in
1984. The FO Volta oscillator is defined as follows:

Ni =


0Dq1

t xi (t) =−xi (t)−ayi (t)− yi (t)zi (t) ,

0Dq2
t yi (t) =−yi (t)−bxi (t)− xi (t)zi (t) ,

0Dq3
t zi (t) = 1+ czi (t)+ xi (t)yi (t) .

(18)

The system (17) is chaotic under the parameters a = 19,
b = 11, c = 0.73 and a FO equal to q = 2.97, where q1 =
q2 = q3 = 0.99 [25]. The chaotic attractor related to (17)
is shown in the Fig. 4.

For this case, the oscillators of the dynamical network
are arranged as follows:

Ni =


0Dq1

t xi (t) =−xi (t)−ayi (t)− yi (t)zi (t) ,

0Dq2
t yi (t) =−yi (t)−bxi (t)− xi (t)zi (t)+ui,2,

0Dq3
t zi (t) = 1+ czi (t)+ xi (t)yi (t) ,

(19)

where i = 1, 2, ..., 12 represents the node number. The
coupling matrix for the ring connection is given by

Anc =


−k 1 0 · · · 1
1 −k 1 · · · 0
...

. . . . . . . . .
...

0 0 1 · · · 1
1 0 · · · 1 −k

 , (20)
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Fig. 4. Chaotic attractor of the FO Volta oscillator, with
a = 19, b = 11, c = 0.73 and q1 = q2 = q3 = 0.99.

where k = 2 since each oscillator is adjacent to the neigh-
boring oscillators.

The Gamma matrix for this case is defined as Γ =
diag(0, 1, 0), this means that the synchronization is
achieved by the second state of each oscillator. The syn-
chronization is achieved by using the following coupling
signals, where each ui,2 is applied to each node (Ni).

u1,2 =C (−2y1 + y2 + y12) ,

u2,2 =C (y1 −2y2 + y3) ,

...

u11,2 =C (y10 −2y11 + y12) ,

u12,2 =C (y1 + y11 −2y12) .

(21)

A numerical simulation where synchronization is
achieved using a coupling strength C = 13 was performed.
The resulting phase portraits are shown in Fig. 6. In this
particular case, the synchronization is achieved with a
small coupling strength compared with the FO Lorenz
oscillators case.

4. IRREGULAR NETWORKS

In addition, we propose to synchronize two irregular
coupled networks with the FO Duffing and Financial os-
cillators. In irregular networks the patterns of the coupling
matrix are not defined.

We consider G = (V,E), a graph, where N = |V |, with
V =V (G) = ( ν1 ν2 · · · νN ) representing the set of
nodes and M = |E| connections between oscillators, where
E = E (G) = ( e1 e2 · · · eM ) represents set of con-
nections.

In Fig. 7, the connections among the nodes of both net-
works considered are shown. There are two important ma-
trices that can be used to synchronize these networks; they

−1.5 −1 −0.5 0 0.5 1 1.5
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Fig. 5. FO Duffing attractor for α = 0.15, δ = 0.3, ω = 1,
and q1 = 0.9, q2 = 1.

are the adjacency matrix and the degree matrix which are
defined below.

1) Adjacency matrix A(G) : N ×N matrix. The ele-
ments ai, j are defined as follows :

ai, j =

{
1, if (i, j) ∈ E(G)
0, otherwise,

(22)

where (i, j) ∈ E(G) means that node i is connected with
node j.

2) Degree Matrix D(G) : N ×N matrix. The elements
di, j are defined as

di, j =

{
di, if i = j,
0, otherwise,

(23)

where di is a degree of node i, and given that node i is
connected without a definite pattern, then di is the sum of
elements of the row i of the Adjacency matrix A(G).

With the last two matrices we can form the Laplacian
matrix as L(G) = D(G)−A(G). For N nodes L(G) is a
N ×N matrix with elements.

li, j =


−1, if (i, j) ∈ E(G)
di, j, if i = j,
0, otherwise.

(24)

When the network is irregular, the properties of each
coupling configuration are different for each case.

4.1. Case 3: Irregular network with FO-Duffing sys-
tems

The Duffing oscillator was introduced in 1918 by G. Duff-
ing, this system has negative linear stiffness, damping and
periodic excitation. The FO representation of this oscilla-
tor is given by

Ni =

{
0Dq1

t xi (t) = yi (t) ,

0Dq2
t yi (t) = xi (t)−αyi (t)x3

i (t)+δcos(ω) .
(25)
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Fig. 6. Phase portrait of the second states (yi, where i = 1,2, . . . ,12) of the ring coupled Volta oscillators.

(a) (b)

Fig. 7. Irregular coupled network used for (a) FO Duffing
oscillator case, (b) FO Financial oscillator case.

Under the parameters α = 0.15, δ = 0.3, ω = 1, and a
FO equal to q = 1.9, where q1 = 0.9 and q2 = 1 the oscil-
lator is chaotic [25]. The attractor related to this system is
presented in Fig. 5.

We use the irregular structure shown in Fig. 7(a), with
its nodes defined by FO Duffing oscillators as follows:

N1 =

{
0Dq1

t x1 (t) = y1 (t)+u1,1,

0Dq2
t y1 (t) = x1 (t)−αy1 (t)x3

1 (t)+δcos(ω) ,

(26)

up to

N12 =

{
0Dq1

t x12 (t) = y12 (t)+u12,1,

0Dq2
t y12 (t) = x12 (t)−αy12 (t)x3

12 (t)+δcos(ω) ,

(27)

First, the Laplacian Matrix is computed by using (22)

L(G) =

−2 0 0 1 1 0 0 0 0 0 0 0
0 −3 1 1 0 0 1 0 0 0 0 0
0 1 −3 0 1 0 0 1 0 0 0 0
1 1 0 −2 0 0 0 0 0 0 0 0
1 0 1 0 −3 0 0 0 0 0 0 1
0 0 0 0 0 −3 0 1 1 0 0 1
0 1 0 0 0 0 −4 1 0 1 1 0
0 0 1 0 0 1 1 −4 1 0 0 0
0 0 0 0 0 1 0 1 −3 0 1 0
0 0 0 0 0 0 1 0 0 −2 1 0
0 0 0 0 0 0 1 0 1 1 −3 0
0 0 0 0 1 1 0 0 0 0 0 −2


.

(28)

Now, from (26), control laws for the Fig. 7.a case with
FO Duffing oscillators as nodes are defined as follows:

ui,1 =C
n

∑
j=1

li, jx j, i = 1, . . . ,12, (29)

where li, j represents the i-th element of the j-th column
of the laplacian matrix shown in equation (22). In Fig. 9
the phase portraits of the twelve FO Duffing systems are
shown, we use a coupling strength C = 15. It can be seen
that all the systems are synchronized with the coupling
strength selected. For this case the Gamma matrix is Γ =
diag(1, 0), it means that the synchronization is achieved
by the first states xi.

4.2. Case 4: Irregular network with FO financial
chaotic oscillator

The topology of the second and last irregular network pre-
sented is shown in Fig. 7(b). For this case we consider
FO Financial oscillators as nodes. This oscillator was pro-
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posed in 1985 in macro economics and is described as

Ni =

 0Dq1
t xi (t) = zi (t)− x(yi (t)−a),

0Dq2
t yi (t) = 1−byi (t)− x2

i (t) ,
0Dq3

t zi (t) = xi (t)− czi (t) ,
(30)

where, under the orders q1 = 1, q2 = 0.95, q3 = 0.9, and
the parameters a = 1, b = 0.1, c = 1 the oscillator (30)
exhibit chaotic behaivor [25]. The FO chaotic attractor is
shown in Fig. 8.

As in the previous example, we need to calculate the
Degree and Adjacency matrices to calculate the Laplacian
matrix for Fig. 7(b). case as shown below

L(G) =

−2 1 0 0 0 0 0 0 1 0 0 0
1 −4 0 1 0 1 0 0 0 0 0 1
0 0 −3 0 0 0 0 1 1 0 1 0
0 1 0 −3 0 0 0 1 0 0 1 0
0 0 0 0 −2 0 0 1 0 1 0 0
0 1 0 0 0 −3 0 0 0 1 1 0
0 0 0 0 0 0 −2 0 0 1 0 1
0 0 1 1 1 0 0 −3 0 0 0 0
1 0 1 0 0 0 0 0 −2 0 0 0
0 0 0 0 1 1 1 0 0 −3 0 0
0 0 1 1 0 1 0 0 0 0 −3 0
0 1 0 0 0 0 1 0 0 0 0 −2


.

(31)

With the L(G) matrix we obtain the control laws of this
irregular network as in (26); for this case the li, j represents
the i-th element of the j-th column of the laplacian matrix
shown in (31).

Now we apply (A.1) to the set of twelve FO oscillators
in irregular connection

N1 =

 0Dq1
t x1 (t) = z1 (t)− x(y1 (t)−a)+u1,1,

0Dq2
t y1 (t) = 1−by1 (t)− x2

1 (t) ,
0Dq3

t z1 (t) = x1 (t)− cz1 (t) ,
(32)

up to

N12 =

 0Dq1
t x12 (t) = z12 (t)− x(y12 (t)−a)+u12,1,

0Dq2
t y12 (t) = 1−by12 (t)− x2

12 (t) ,
0Dq3

t z12 (t) = x12 (t)− cz12 (t) .

(33)

In Fig. 10 the phase portrait of the first states of the
irregular coupled network is shown. The synchronization
is achieved by the first states of each node xi where i =
1, 2, ..., 12, as in the other systems, therefore, the L(G)
matrix is the same. The coupling strength used for this
case is C = 10.

5. CONCLUSIONS AND FUTURE WORKS

In this paper, synchronization of N-coupled FO chaotic
oscillators was numerically shown by using complex net-
work theory. Regular and irregular topologies were con-
sidered.

The coupling signal was used only in one state of the
chaotic oscillators. It was shown that, by computing the
coupling strength C, the synchronization was achieved for
all cases presented.

We considered FO Lorenz and Volta chaotic oscillators
for the regular coupled networks. Additionally, we ex-
plore the irregular complex networks and synchronize two
networks, conformed by FO Duffing and Financial FO os-
cillators as nodes. Numerical simulations are provided to
verify the effectiveness of this method. Simulations show
the effectiveness of the proposed synchronization scheme.
Phase portraits are shown for every case in order to con-
firm the synchronization of the networks. We have ex-
tended the results reported in [24] for irregular topologies.
In a forthcoming work we will be concerned on a physical
implementation using electronic devices.

APPENDIX A

We assume the following condition: Suppose that there
are no isolated clusters in the network, then the coupling
matrix A, obtained as explained in Section 2.2, is a sym-
metric irreducible matrix, so one eigenvalue of A is zero
and all the other eigenvalues are strictly negative.

Theorem 1 [9]: Consider the dynamical network given
by (8) and (9). Let

0 = λ1 > λ2 ≥ λ3 ≥ ·· · ≥ λN (A.1)

be the eigenvalues of the coupling matrix A. Suppose that
there exist an n× n diagonal matrix D > 0 and two con-
stants d < 0 and τ > 0, such that

[Dq f (s(t))+dΓ]T D+D[Dq f (s(t))+dΓ]≤ τIN (A.2)

for all d ≤ d, where IN ∈ ℜn×n is an unitary matrix. If
moreover,

Cλ2 ≤ d, (A.3)

then the synchronization error is exponentially stable, i.e.,
x1 = x2 = · · ·= xn, as t → ∞.
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Fig. 9. Phase portrait of the first states (where i=1,2,...,12) of the synchronization with twelve FO Duffing oscillators.
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Fig. 10. Phase portrait of the first states (, where i=1,2,...,12) of the irregular coupled network with Financial oscillators.

The coupling strength C, that determines the stability of
the synchronization state and that is present in the control
law (9), is computed based on the following lemma:

Lemma 1 [10]: Consider the network given by (8) and
(9). Let λ2 be the largest nonzero eigenvalue of the cou-
pling matrix A of the network. The synchronization state
of network (1) defined by x1 = x2 = · · ·= xn is asymptot-
ically stable, if the coupling strength meets the restriction

C ≤ − T
λ2

, (A.4)

where C > 0 denotes the coupling strength and T > 0 a

positive constant such that zero is an exponentially stable
point of the n-dimensional system

0Dq1
t z1 = f1 (z1,z2, . . . ,zn)−T z1,

0Dq2
t z2 = f2 (z1,z2, . . . ,zn) ,

...

0Dqn
t zn = fn (z1,z2, . . . ,zn) .

(A.5)

Condition (A.4) means that the entire network will syn-
chronize provided that 1) the topology of the network is
such that λ2 is negative enough, and 2) there exist a con-
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Table 1. Initial conditions used for the different nodes Ni in the four cases presented.

Case State N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12

x(0) -5.1 0.8 2.3 10 6.5 9 -3.7 4.5 -1 5.7 0 0.191) Globally coupled
y(0) 0.2 12 -5 10 9 1.2 -1 8 0.01 7.9 3 4Lorenz FO Osc.
z(0) 2.5 -1 -2.6 1 3 3.57 4 6 4 3.1 0 7.5
x(0) 0.2 8 4 -7 5 -4 3.4 6.1 4.5 2.1 7.2 10.12) Ring coupled
y(0) -0.1 -4 0.1 5 3.2 -2.9 -2 7.7 8.1 -1.1 3 -6Volta FO Osc.
z(0) 0.1 -9 2 5.21 -3 0.12 4.3 -5.2 1.1 0.65 8 1.3

3) Irregular coupled x(0) 0.5 -2 0.3 0.3 1.25 3.4 7.2 2.2 3 3.1 5 2.3
Duffing FO Osc. y(0) 3.2 -3.5 4.2 0.5 0.01 -1.6 4.3 -5 2.2 0.12 1 -2

x(0) 4 -1 -3.2 6 3 1 0.2 -3 -2.1 5 1 34) Irregular coupled
y(0) 2 0.5 -3 7 1.5 2 -4 -1 -5.3 1.23 3 2.8Financial FO Osc.
z(0) 1 3 1 -5 3 0.5 -5.1 6 3.55 -3 -0.5 -2

stant T so that the self-feedback term −T z1 can stabilize
an isolated oscillator.
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