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Dynamic Analysis of a 5D Fractional-order Hyperchaotic System
Shan Wang and Ranchao Wu*

Abstract: In this paper, the fractional-order 5D hyperchaotic system is proposed based on the hyperchaotic Lorenz
system. Fractional-order chaotic systems are often three- or four-dimensional. There are few results about high
dimension fractional-order systems. For this 5D hyperchaotic system, the stability of equilibrium points is analyzed
by means of the stability theory of fractional systems. Then the fractional bifurcation is investigated. It is found
that the system admits bifurcations with varying fractional-order and parameters, respectively. Under different
bifurcation parameters, some conditions ensuring the bifurcations are presented. Finally, numerical simulations are
presented to confirm the given analytical results.
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1. INTRODUCTION

In recent years, there are too many results about two-,
three-, and four-dimensional chaotic systems. So it is im-
portant and imperative for us to study the dynamic be-
haviors of higher-dimensional chaotic systems. Note the
Lorenz model as the first chaotic model has great impor-
tance in nonlinear sciences and some variants have been
constructed. A 5D system was proposed by Yang and
Chen [1]. It was constructed from a 4D hyperchaotic sys-
tem [2] by adding a nonlinear controller to the first equa-
tion. As we know, some real practical problems can be de-
scribed by three- and four-dimensional autonomous sys-
tems. Now some five-dimensional (5D) systems have been
constructed from three- and four-dimensional autonomous
systems. Since the 5D autonomous systems have much
higher unpredictability than 3D and 4D systems, they may
have a good application value in the field of information
technology such as secure communication and encryption.

Now fractional calculus has been attracting increasing
interests from researchers and introduced to integer-order
models. The idea of fractional calculus has been known
since the development of the regular calculus, having al-
most the same history. Due to the difficulty, fractional
calculus has not gained much attention from many schol-
ars. Recent days, the applications of fractional order dy-
namical systems play a more vital role in real life prob-
lems. Such as the affine cipher using date of birth [3],
fuzzy fractional integral sliding mode control [4], a novel
fractional order King Cobra chaotic system [5], digital
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cryptography [6], authenticated encryption scheme [7].
Thus, investigation of fractional-order dynamical systems
is not only meaningful in the theory, but also significant
in practice. Now we will carry out the study of five-
dimensional fractional-order system. Generally, the re-
sults about higher-dimensional ones are not too many.
With higher-dimensions, it will has much complex dy-
namics and potential applications in practice. Note in
higher systems, hyperchaos could happen, which is char-
acterized with more than one positive Lyapunov expo-
nents. Historically, hyperchaos was firstly reported by
Rössler in 1979 [8]. The hyperchaotic systems have
more complex dynamical behaviors than chaotic systems
[9–15]. Such complex behaviors could be helpful in se-
cure communications, signal processing, image process-
ing, etc. In recent years, applications of hyperchaos have
become a central topic in research. But the dynamics
of hyperchaotic systems have not completely studied by
some scholars until now. So it is necessary to explore the
higher-dimensional hyperchaotic systems.

Now some interesting hyperchaotic systems were pre-
sented in the past two decades, and their dynamics have
been investigated extensively. These complex dynamics
could be explored via bifurcation analysis of systems with
varying parameters. Bifurcation is one of most active re-
search topics in the field of nonlinear science [16–18]. Up
to now, the research of fractional-order hyperchaotic sys-
tems has not been studied completely. This requires us
to construct more higher-dimensional fractional-order hy-
perchaotic systems and to study its more features. In this
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paper, we mainly discussed the dynamic behaviors of the
5D fractional-order system. It is found that the system ad-
mits complex dynamical behaviors with varying parame-
ters, such as bifurcation, chaos. Now its basic dynamical
behaviors are analyzed, especially its bifurcation is inves-
tigated in detail via theoretical as well as numerical analy-
sis. The bifurcated limit cycle will be created under some
parameter conditions. It is worth noting that the limit cy-
cle may be not a solution of the fractional system, but it
does attract nearby solutions, which is different from the
integer-order system.

The paper is organized as follows: In Section 2, some
basic definitions of fractional calculus and some useful
stability theorems of fractional-order systems are briefly
recalled. The 5D fractional-order system is proposed
based on the hyperchaotic Lorenz system. In Section 3,
the local stability and chaotic dynamics of the fractional-
order system are studied. In Section 4, the bifurcations
versus varying parameters are given. Numerical simula-
tion are also performed to verify the theoretical results.
Some conclusions are drawn in Section 5.

2. PRELIMINARIES

There are several definitions of fractional derivatives
[19–22]. In this paper, we briefly introduce the Riemann-
Liouville derivative and Caputo derivative.

Definition 1: Caputo fractional derivative with order
α for function x(t) is defined as

CDα
t0 x(t) =

1
Γ(m−α)

∫ t

t0
(t − τ)m−α−1x(m)(τ)dτ,

where m− 1 < α < m, m ∈ Z+, and t = t0 is the initial
time, Γ(·) is Gamma function.

Definition 2: Riemann-Liouville’s fractional deriva-
tives with order α for function x: R+ → R is defined as

RLDα
t0 x(t) =

1
Γ(m−α)

dm

dtm

∫ t

t0
(t − τ)m−α−1x(τ)dτ,

where m− 1 ≤ α < m, m ∈ Z+, and t = t0 is the initial
time, Γ(·) is Gamma function.

In this paper, we mainly use the definition of Caputo
fractional derivative.

Theorem 1: [23] The following autonomous system:

Dα
t x = Jx,x(0) = x0, (1)

with 0 < α ≤ 1, x ∈ Rn, and J ∈ Rn×n, is asymptotically
stable if and only if |arg(λ )| > απ/2 is satisfied for all
eigenvalues of matrix J. Also, this system is stable if
and only if |arg(λ )| ≥ απ/2 is satisfied for all eigenval-
ues of matrix J with those critical eigenvalues satisfying
|arg(λ )| = απ/2 having geometric multiplicity of one.

The geometric multiplicity of an eigenvalue λ of the ma-
trix J is the dimension of the subspace of vectors ν for
which Jν = λν .

A new 5D autonomous hyperchaotic system with three
positive Lyapunov exponents was presented in Ref. Ref.
[1]. The algebraical form of the hyperchaotic system is
very similar to the 5D controlled Lorenz system [24]. But
they are different, in fact, it has one or three unstable equi-
libria, very different from all the other 5D Lorenz-like sys-
tems. In Ref. [1], the 5D hyperchaotic system based on
Lorenz system is given by

dx/dt = a(y− x)+u,

dy/dt = cx− xz+w,

dz/dt =−bz+ xy, (2)

du/dt =−hu− xz,

dw/dt =−k1x− k2y,

where abh ̸= 0, a, b and c are the constant parameters, h,
k1and k2 are three control parameters.

When abhk1(k1 +k2)≤ 0 and k2
1 +k2

2 ̸= 0, or abhk2
1 ≤ 0

and k2 ̸= 0, the origin O(0,0,0,0,0) is the unique equilib-
rium.

When abhk1(k1 + k2) > 0 and k2 ̸= 0, system (2) has
three equlibria:

O(0,0,0,0,0),

E±(±x0,∓
k1

k2
x0,−hm,±mx0,±(hmx0 + cx0)),

where x0 =
√

abh(1+ k2
k1
),m = a( k1

k2
+1).

Using the Matlab software, it is easy to verify that
the system (2) has one unique equilibrium O(0,0,0,0,0)
when (a,b,c,h,k1,k2) = (10,8/3,28,−2,0,12.2), the hy-
perchaotic attractor is shown in Fig. 1.(a). The five Lya-
punov exponents are

λLE1 = 0.4930, λLE2 = 0.3665, λLE3 = 0.0692,

λLE4 = 0.0000, λLE5 =−11.5955,

when(a,b,c,h,k1,k2) = (10,8/3,28,−2,−0.09,8), sys-
tem (2) has three equilibria and the hyperchaotic attractor
is shown in Fig. 1.(b). The five Lyapunov exponents are

λLE1 = 0.5555, λLE2 = 0.3886, λLE3 = 0.0452,

λLE4 = 0.0000, λLE5 =−11.6555.

Now introduce the corresponding 5D fractional-order
system

Dα x = a(y− x)+u,

Dα y = cx− xz+w,

Dα z =−bz+ xy, (3)

Dα u =−hu− xz,
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(a)

(b)

Fig. 1. Hyperchaotic attractor of system (2).

Dα w =−k1x− k2y,

where abh ̸= 0, a, b and c are the constant parameters,
h, k1 and k2 are three control parameters. The fractional-
order α is supposed to lie in (0,1) in this paper.

3. LOCAL STABILITY AND CHAOS IN THE
NEW FRACTIONAL-ORDER SYSTEM

When abhk1(k1 +k2)≤ 0 and k2
1 +k2

2 ̸= 0, or abhk2
1 ≤ 0

and k2 ̸= 0, it is easy to obtain that system (3) has only
one equilibrium point O(0,0,0,0,0). If the system has
three equilibria, we can discuss the results in the similar
way. So the Jacobian matrix J at the equilibrium point
O(0,0,0,0,0) is

J =


−a a 0 1 0
c 0 0 0 1
0 0 −b 0 0
0 0 0 −h 0

−k1 −k2 0 0 0

 (4)

and its characteristic equation

f (λ ) =(λ +b)(λ +h)[λ 3 +aλ 2

+(k2 −ac)λ +a(k1 + k2)] = 0. (5)

By Theorem 1, it is easy to obtain that

Theorem 2 [23]: The equilibrium O(0,0,0,0,0) of
fractional-order system (3) is locally asymptotically sta-
ble if and only if

min
1≤i≤5

| arg(λi) |> απ/2. (6)

Remark 1: According to Theorem 2, the equilibrium
O(0,0,0,0,0) of fractional-order system (3) is unstable
when the following condition holds

min
1≤i≤5

| arg(λi) |≤ απ/2. (7)

Remark 2: Since the Hartman-Grobsman theorem is
now known to be only applicable to the integer order sys-
tems, that is to say, Hartman-Grobsman theorem is not still
showed to hold for fractional order systems. So the linear
approximation is used to investigate the local dynamical
stability of nonlinear fractional systems.

According to (5), it is clear that the minimun of |
arg(λi) |,(i = 1,2,3,4,5) depends on the roots of the fol-
lowing cubic equation, since the parameter b, h is positive.

P(λ ) = λ 3 +aλ 2 +(k2 −ac)λ +a(k1 + k2) = 0. (8)

Thus, the local stability of the equilibrium O(0,0,0,0,0)
is absolutely decided by (8) in terms of Theorem 2 and
Remark 1.

Define the discriminant D(P) of Eq.(8) by

D(P) = 18a1a2a3 +(a1a2)
2 −4a3a3

1 −4a3
2 −27a2

3 (9)

in which a1 = a,a2 = k2 −ac,a3 = a(k1 + k2).
According to [25], we have the following fractional-

order Routh-Hurwitz conditions:
(a) If D(P)> 0, then the necessary and sufficient condi-

tions for the equilibrium point to be locally asymptotically
stable, is a1 > 0,a3 > 0,a1a2 > a3.

(b) If D(P)< 0, a1 ≥ 0,a2 ≥ 0,a3 > 0, and α < 2/3,then
the equilibrium point is locally asymptotically stable ,
while the equilibrium point is unstable if D(P) < 0, a1 <
0,a2 < 0, and α > 2/3.

(c) If D(P) < 0, a1 > 0,a2 > 0,a1a2 = a3 then the
equilibrium point is locally asymptotically stable for all
0 < α < 1.

It is easy to obtain that D(P)> 0, a1 > 0,a3 > 0,a1a2 <
a3, when (a,b,c,h,k1,k2) = (10,8/3,28,−2,0,12.2).
Then the unique equilibrium O(0,0,0,0,0) is unstable
according to the result (a).

When α = 0.9, (a,b,c,h,k1,k2) = (10,8/3,28,−2,0,
12.2), and the initial condition (x0,y0,z0,u0,w0) = (2.0,
3.5,4.0,5.0,7.5), the hyperchaotic attractor of fractional-
order system (3) is shown in Fig. 2. Furthermore, the Lya-
punov exponent spectrum is shown in Fig. 3. If we choose
fractional-order α = 0.9, k2 as the bifurcation parameter
with a = 10,b = 8/3,c = 28,h = −2,k1 = 0, the bifurca-
tion diagram is shown in Fig. 4.
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Fig. 2. Hyperchaotic attractor of system (3) virus α = 0.9.

(a) The four Lyapunov exponents of system (3).

(b) The minimum Lyapunov exponent of system (3).

Fig. 3. The Lyapunov exponent spectrum of system (3).

Fig. 4. Bifurcation diagram of system (3) virus k2, k2 ∈
(0,70).

4. BIFURCATION IN THE 5D
FRACTIONAL-ORDER SYSTEM

In this section, bifurcation of system (3) will be further
investigated based on stability theory of fractional-order
system, by choosing a proper bifurcation parameter. Here
the bifurcation for fractional order systems refers to the
change of stability of equilibrium points, just similar to the
Hopf case in integer order systems, however, since it does
not have a normal form, we only explore the dynamical
behavior when the stability of equilibrium point changes.

4.1. Bifurcation analysis versus the fractional-order α
According to Theorem 1, it is known that the fractional-

order α has an effect on the stability of fractional sys-
tem. Hence similar to Hopf bifurcation, the fractional-
order α can be also chosen as the bifurcation parameter in
fractional-order system [26]. In this section, we will study
bifurcation in system (3) by choosing the fractional-order
α as the bifurcation parameter.

Now, define a function with respect to α

m(α) = απ/2− min
1≤i≤5

| arg(λi) | . (10)

So if m(α) < 0, then the equilibrium point is locally
asymptotically stable; if m(α) > 0, then the equilibrium
point is unstable. Next, we will use the function mi(α)
to investigate bifurcation in the 5D hyperchaotic system
versus the fractional-order α .

Theorem 3: When bifurcation parameter α passes
through the critical value α∗ ∈ (0,1), fractional-order sys-
tem (3) undergoes a bifurcation at the equilibrium point
O(0,0,0,0,0) if the following conditions hold

(a) the corresponding characteristic equation (5) of sys-
tem (3) has a pair of complex conjugate roots λ1,2 =
θ ± iw(wh-ere θ > 0), and three negative real roots
λ3, λ4 and λ5.
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(b) m(α∗) = α∗π/2−min1≤i≤5 | arg(λi) |= 0,

(c) dm(α)
dα |α=α∗ ̸= 0.

Proof: In order to meet the condition (a), we must have
some restrictive conditions. It is easy to find the remaining
three roots could be obtained by solving Eq.(8).

Now some conditions will be derived, under which
Eq.(8) has a pair of complex conjugate roots λ1,2 = θ ±
iw(where θ > 0), and one negative real root λ3. Using
the results of [27], if D(P) < 0, then Eq.(8) has a pair of
complex conjugate roots λ1,2 and one real root λ3. Note
thatλ1λ2λ3 = −a(k1 + k2). Hence, if λ3 < 0, we have
a(k1 + k2) > 0 and λ1,2 are a pair of complex conjugate
roots. In addition, it is not difficult to obtain that Eq.(8)
has a pair of purely imaginary conjugate roots if and only
if k1 =−ac. Moreover, according to Routh-Hurwitz theo-
rem, the roots of Eq.(8) have negative real parts if and only
if a> 0,a(k1+k2)> 0,a(k2−ac)−a(k1+k2)> 0. There-
fore, under conditions given below, condition (a) will be
guaranteed.

a(k1 + k2)> 0,D(P)< 0,

k1 +ac ̸= 0,

a(k2 −ac)−a(k1 + k2)≤ 0.

Therefore, according to condition (a), we have min1≤i≤5

| arg(λi) |= arctan | w
θ |∈ (0,π/2). Then m(α∗) =

α∗π/2− arctan | w
θ |= 0, so α∗ = 2

π arctan | w
θ |. Clearly

α∗ ∈ (0,1).
Finally, condition (c) ensures that the sign of m(α)

can change when the bifurcation parameter α passes
through the critical value α∗, i.e., the equilibrium point
O(0,0,0,0,0) is asymptotically stable for α ∈ (0,α∗), and
is unstable when α ∈ (α∗,1). Therefore, one can assert
that bifurcation in system (3) occurs at α = α∗. □

Remark 3: Also note that condition (a) can ensure
that the existence of α∗satisfying condition (b). From the
proof, one can obtain the critical value of bifurcation pa-
rameter α∗ = 2

π arctan | w
θ |.

Remark 4: It is worth noting that the limit set of a tra-
jectory of fractional-order system could be not a solution
of this system [28], which is different from the integer-
order system. In [29], it was proved the nonexistence of
periodic solutions in time-invariant fractional-order sys-
tem. In [30], an example was presented where the solu-
tions of the system are not periodic, but they converge to
periodic signals. In this paper, we focus on the final state
of the trajectory. Hence, the limit cycle may not be a so-
lution of the fractional system, but it does attract nearby
solutions.

4.2. Bifurcation analysis versus the parameter k2

In this section, the fractional-order α is fixed and the
parameter k2 is considered as a control parameter. A simi-

(a) Phase portrait with α = 0.85

(b) Phase portrait with α = 0.92

Fig. 5. Phase portrait.

lar method is adopted to analyze the bifurcation in system
(3).

Define a function of k2

m(k2) = απ/2− min
1≤i≤5

| arg(λi(k2)) | . (11)

Theorem 4: When bifurcation parameter k2 passes
through the critical value k∗2, fractional-order system
(3) undergoes a bifurcation at the equilibrium point
O(0,0,0,0,0) if the following conditions hold

(a) the corresponding characteristic equation (5) of sys-
tem (3) has a pair of complex conjugate roots λ1,2 =
θ(k2)± iw(k2)(where θ(k2) > 0), and three negative
real roots λ3, λ4 and λ5.

(b) m(k∗2) = α∗π/2−min1≤i≤5 | arg(λi(k∗2)) |= 0,

(c) dm(k2)
dk2

|k2=k∗2 ̸= 0.

Proof: It can be proved in the way similar to that of
Theorem 4. So it is omitted here. □
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4.3. Numerical simulations

Simulation results are presented in this section, which
are carried out by virtue of the Adams-Bashforth-Moulton
scheme in [31].

Case 1: In this case, choose fractional-order α as the
bifurcation parameter with a = 10,b = 8/3,c = 28,h =
4,k1 =−199,k2 = 350.

When abhk1(k1 + k2)≤ 0 and k2
1 + k2

2 ̸= 0, then the ori-
gin O(0,0,0,0,0) is the unique equilibrium.

It is easy to obtain D(P) = −49458700 < 0,k1 + k2 =
151 > 0,k1 + ac > 0. Then using the Matlab soft-
ware, one can calculate the five roots of the characteris-
tic equation (8) of system (3), which are λ1,2 = 1.6429±
10.5336i,λ3 = −13.2858,λ4 = −2.6667,λ5 = −4.0000,
when a = 10,b = 8/3,c = 28,h = 4,k1 =−199,k2 = 350.
By condition (b) in Theorem 3, one can get the critical
value of bifurcation parameter

α∗ =
2
π

arctan | w
θ
|= 2

π
arctan | 10.5336

1.6429
|= 0.9015.

Finally,we have dm(α)
dα |α=α∗= π/2 ̸= 0, so condition (c)

hold.
Hence when 0 < α < 0.9015, the equilibrium

O(0,0,0,0,0) of system (3) is locally asymptotically sta-
ble as shown in Fig. 5.(a). When α = 0.9015, system
(3) undergoes a Hopf bifurcation as mentioned above, the
fixed point becomes unstable, and the limit cycle appears
for α ∈ (0.9015,1). When α = 0.92, a limit cycle which
attracts nearby solutions appears as shown in Fig. 5.(b).

Case 2: In this case, choose fractional-order α = 0.85,
k2 as the bifurcation parameter with a = 10,b = 8/3,c =
28,h = 4,k1 =−199.
Using the proposed conditions in Theorem 4, the critical
bifurcation value is localized at k∗2 = 295.2611. It is easy
to verify that condition (6) holds, when k2 = 295. Hence,
when k2 = 310, the equilibrium O(0,0,0,0,0) of system
(3) is locally asymptotically stable as shown in Fig. 6.(a).
When k∗2 = 295.2611, system (3) undergoes a bifurcation
as mentioned above, the fixed point becomes unstable.
When k2 = 285, a limit cycle which attracts nearby so-
lutions appears as shown in Fig. 6.(b).

5. CONCLUSIONS

In this paper, we have proposed the corresponding 5D
fractional-order hyperchaotic system based on the hyper-
chaotic Lorenz system and its basic properties such as sta-
bility and bifurcation are investigated. It is found that it
admits complex and interesting dynamic system behav-
iors, such as chaos (hyperchaos) and bifurcation. Some
conditions ensuring stability and bifurcation are derived,
respectively. Numerical simulations are also carried out
to verify the theoretical analysis.

(a) Phase portrait with k2 = 310

(b) Phase portrait with k2 = 285

Fig. 6. Phase portrait.
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