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Internal Model Control Based PID Tuning Using First-Order Filter
Sahaj Saxena* and Yogesh V. Hote

Abstract: The selection of filter plays an important role in internal model control (IMC) based controller design.
As per the rule, for a minimum-phase delay free plant, IMC based controller is obtained by augmenting a filter.
We suggest the use of first-order filter for controller design, which is then parameterized to a conventional PID
controller. The proposed scheme brings filter size reduction, closed-loop bandwidth enhancement, and easy for-
mulation of the PID structure. The proposed scheme is applied to some class of linear and nonlinear processes.
Further the hardware testing for velocity control of precision modular servo system which contains DC servomotor
is carried out through this scheme. Quantitative comparison of servo, regulatory and optimal attributes of the pro-
posed scheme with other popular IMC-PID control techniques depicts sharp reference tracking, good disturbance
rejection and minimum integral error performance.
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1. INTRODUCTION

The synthesis of PID controller from internal model
control (IMC) scheme has brought a surge in PID tuning
research [1–3]. This is because all the three parameters
of PID controller can be obtained from a single parame-
ter called IMC filter time constant ′λ ′ and λ> 0. In re-
cent years, PID tuning based on soft computing techniques
(such as genetic algorithm and fuzzy logic concepts [4,5])
and robust optimization (such as H∞ [6]) are reported.
However in comparison to these schemes, IMC scheme is
simple, robust, suboptimal and can be easily implemented
to linear, nonlinear and time-delayed systems. Therefore,
IMC scheme has been intensively studied. In this tech-
nique, it is observed that selection and structure of filter
plays an important role in determining the PID parameters
[7, 8]. The filter ensures closed-loop stability, physical re-
alization, robustness to parametric/modeling error, H2 op-
timality, and robust performance to reference tracking and
disturbance rejection [9]. Various high-order filter struc-
tures are proposed [10,11] but the choice of filter F(s) for
designing the controller is generally a low-pass filter of
the form

F(s) = (1+λ s)−n, n ∈ I. (1)

While designing IMC controller Q(s), the value of n is
considered higher than the order of plant and then Q(s)
is parameterized into controller C(s) in a framework of
conventional unity feedback control system, using
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C(s) ∆
=

Q(s)
1− P̄(s)Q(s)

=
F(s)P̄−1(s)

1−F(s)
, (2)

where P̄(s) is a model of plant and Q(s) = P̄−1(s)F(s).
The next step is to reconfigure C(s) into an ideal PID form
given by C(s) = KP +KI/s+KDs.

Researchers have presented various IMC schemes to
obtain PID tuning. Some schemes have complex math-
ematical manipulations whereas other require additional
filter with PID [12–14]. For example, IMC-PID scheme
presented by Rivera et al. [1] depicted that converting Q(s)
into C(s) yields additional lag-term for some plants of first
and second-order and integrating type. Hang et al. showed
that IMC-PID fails for lag dominated plant with relative
small dead-time [15]. Horn and co-workers framed IMC-
PID controller in series with second or high-order filter
that leads to high-order controller with complex tuning
formulation [16]. Furthermore, some recent PID tuning
techniques are evaluated on the concept of percentage
overshoot specification, maximum complementary sensi-
tivity function, two-degree-of-freedom structure, H∞ opti-
mization and frequency dependent uncertainty constraints
[17–21]. However, after going through these techniques,
we realized that PID can be evolved in another fashion
through basic or traditional IMC concept.

In this paper with the aim of reducing the computational
effort and modeling error, IMC based PID tuning method
is proposed. Here, an attempt has been made to exhibit
a simple and optimal IMC-PID methodology on the basis
of selection of filter. Normally, to implement the IMC
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scheme, P̄(s) is generally modeled as a first/second-order
plus dead time (FOPDT/SOPDT) system. For FOPDT
system, IMC scheme yields PI controller when order of
filter in (1) is n = 1 whereas for SOPDT system, it gen-
erates PID augmented with extra lag-term when n = 2
[1]. Therefore, an IMC-PID technique is proposed using
first-order filter. It is shown that there is no need to use
high-order filter for high-order plants. The first-order filter
is just sufficient for second-order plant or approximated
model instead of considering n ≥ 2 in (1). We observe
the following benefits of the proposed scheme: (i) the PID
structure obtained is free from additional lag-term (of the
form 1

1+ϕs , ϕ > 0), (ii) the bandwidth of the closed-loop
system increases, (iii) the formulation and evaluation of
tuning parameters are simple, (iv) the size of filter reduces
thereby making easy hardware implementation.

The rest of the paper is organized in the following six
sections. The controller formulation and its advantages
are described in Section 2. Definition of performance in-
dices for optimality testing are explained in Section 3.
Simulation results for different linear and nonlinear sys-
tems are presented in Section 4 followed by the real-time
implementation on PMS system in Section 5. Finally con-
clusions are drawn in Section 6.

2. CONTROL SCHEME AND ITS UTILITY

2.1. Proposed PID controller formulation
Given a plant of the generalized form

P(s) =
axsx +ax−1sx−1 +ax−2sx−2 + ...+a0

bysy +by−1sy−1 +by−2sy−2 + ...+b0
, x ≤ y, (3)

let us consider its minimum phase, delay-free approxi-
mated second-order model as

P̄(s) = K/(as2 +bs+ c), K,a,b,c > 0. (4)

Invert P̄(s) and augment the first-order filter of form (1)
with n = 1 to obtain IMC based controller as

Q(s) = (as2 +bs+ c)/K(1+λ s). (5)

Note that Q(s) is improper. Now on manipulating C(s) us-
ing (2) gives PID form: C(s) = KP +KIs−1 +KDs, where

KP = b/Kλ , KI = c/Kλ , KD = a/Kλ , (6)

and λ is the single tuning parameter. The value of λ can be
selected offline or online. In this control scheme, the order
of filter instead of plant is reduced. Note that if P̄(s) con-
tains delay-term (e−θs) then we factorize the plant into two
parts as P̄(s) = P̄−(s)P̄+(s) where P̄+(s) contains the delay
term and P̄−(s) contains the rest portion of P̄(s). Now us-
ing P̄−(s) only, we can obtain the PID controller. Note that
the proposed scheme effectively compensates the time de-
lay because the controller includes the characteristics of
the plant and therefore it does not wait for the plant output
that originates after the time delay [22].

2.2. Utility of the proposed scheme
We observe that the proposed scheme prevents plant or-

der reduction to avoid modeling error, which improves
the robustness of the control system. However, the con-
trol practitioners use FOPDT model of high-order process
for controller synthesis and analysis. The delay term in
FOPDT model inherits the property of instability. One can
develop a FOPDT model using methods like maximum
slope method, two-point method for estimating time con-
stant, time constant (63.2% calculation) based approach,
etc [22]. Generally, the modeling is done in such a way
that only steady-state response of model matches with the
original plant. This is illustrated in theorem 1 but the in-
formation about transient-state response and system prop-
erties (like peak overshoot, relative stability, etc) cannot be
retained in such type of system identification. Moreover,
estimating the plant to FOPDT brings variation in phase
response at high frequency zone of operation because the
phase of modeling error is high. This is also explained
through the corollary 1.

Theorem 1: For the reduced model given by (7) of the
system described by (4)

P̃(s) =
α

β s+1
e−γs, α,β ,γ ≥ 0, (7)

where for steady-state tracking lim
s→0

P̄(s) = lim
s→0

P̃(s) gives

K
/

c = α, (8)

the modeling error ∆ defined by

∆(s)≡ P̄(s)− P̃(s) (9)

is zero at steady state for unit step and impulse type inputs.

Proof: On substituting (4) and (7) in (9), we get

∆(s) =
−αae−γss2 +(Kβ −αbe−γs)s+(K −αce−γs)

aβ s3 +(bβ +a)s2 +(cτ +b)s+ c
.

(10)

Let ∆δ (t) and ∆u(t) be the time domain error response for
the unit impulse and step inputs, respectively. After apply-
ing final value theorem of Laplace transformation to (10),
we get steady state error as

lim
t→∞

∆δ (t) = lim
s→0

s∆(s) = 0, (11)

and

lim
t→∞

∆u(t) = lim
s→0

∆(s) = 0. (12)

Therefore from (11) and (12), it is clear that modeling er-
rors are zero at steady state while in transient state, errors
are unknown. □
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Corollary 1: For modeling error ∆ described in (10),
the magnitude is zero and phase is finite at high frequency.

Proof: On putting s = jω and evaluating ∆( jω) from
(10), we get

∆( jω) =
M+ jN
Q+ jR

, (13)

where

M = aαω2 cos(γω)−bαω sin(γω)+K(1− cos(γω)),
N = aαω2 sin(γω)+Kβω −bαω cos(γω)+K sin(γω),
Q = c−ω2(a+bβ ), R = (cτ +b)ω −aβω3.

(14)

After calculating magnitude and phase at high frequency,
we get

lim
ω→∞

|∆( jω)|= 0, (15)

and

lim
ω→∞

(∠∆( jω)) ̸= 0. (16)

This is a required proof. □

The other advantage of proposed scheme is that if we
select the filter of second-order (n = 2) in (1) then Q(s) in
(5) becomes semi-proper but the corresponding feedback
controller C(s) leads to PID controller augmented with ex-
tra lag-term of the form (1/(ϕ +s)). This lag-term reduces
the speed of response and increases the settling time of the
overall control system. To avoid this situation, the plant
is approximated to FOPDT model but reducing the origi-
nal plant into FOPDT may create plant-model mismatch,
which should be avoided. The plant-model mismatch does
not create any instability at low frequency in presence of
disturbance but deteriorates the performance at high fre-
quency. Some characteristics of actual system also vanish
on reducing the plant dynamics. Therefore, it is appropri-
ate to adopt controller reduction scheme (i.e., selecting the
low-order filter in case of IMC here) rather than diminish-
ing the system properties through model order reduction
algorithm.

Theorem 2: Suppose P(s) as expressed in (3) be the
plant and C(s) be a controller parameterized from IMC
based controller, then the closed-loop transfer function
T (s) of the control system is the filter F(s) used in IMC
design.

Proof: We select the filter F(s) = (1+λ s)−n; n ≥
y− x to obtain IMC based controller Q(s) = P−1(s)F(s).
Now, we convert Q(s) into C(s) using (2) and substitute
C(s) in T (s) = P(s)C(s)(1+P(s)C(s))−1 to obtain the
overall closed-loop transfer function of the control system
which yields T (s) = F(s). □
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Fig. 1. Frequency response of filter F(s) (λ = 0.001).

Thus Theorem 2 indicates that the behavior of the
closed-loop response of the control system totally depend
upon the filter opted. If we see the Bode plots of filters
in Fig. 1, we can say that the bandwidth of the first-order
filter is more than that of the second-order filter. Since
the closed-loop transfer function is equal to filter transfer
function, therefore bandwidth of the closed-loop system
increases when a low-order filter is used. The higher the
order of filter, lower the bandwidth. This can easily be
proved from sensitivity function ∑(s) of the closed-loop
system given by

∑(s) ∆
= (1+ P̄(s)C(s))−1 = 1− P̄(s)Q(s). (17)

For the second-order systems (4), ∑(s) can be obtained as

∑(s) =
⟨

λ s(1+λ s)−1 ∀n = 1,
(2λ s+λ 2s2)(1+λ s)−2 ∀n = 2.

(18)

To calculate the bandwidth ωb, set |∑( jω)|ω=ωb
= 0.707,

which yield

ωb =

⟨
1/λ ∀n = 1,
0.402837/λ ∀n = 2.

(19)

From (19), it is clear that the bandwidth of the closed-loop
system using first-order filter is 2.48 times greater than
that obtained using second-order filter. The increment in
bandwidth results in improved disturbance attenuation and
sharp reference tracking. Furthermore, (19) also suggests
that λ should be selected as small as possible. From the
above discussion, we can infer that filter-order reduction
is a better choice than opting the plant order reduction.
Therefore, we augment the first-order filter with the actual
plant to design PID controller.

In the proposed design scheme, λ is the only vari-
able which needs to be selected properly. Larger the
λ , slower the response and less sensitive to model mis-
matches, while smaller the λ , faster the closed-loop re-
sponse but the controller action may be aggressive and
produce tighter response. Thus, a trade-off is required for
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handling robustness/performance and servo/regulator [1].
However, it is, in fact, very easy to get a good insightful
feel for the influence of λ on stability and performance if
we set its value equal to maximum time constant and then
gradually reduce its value. Therefore, after extensive sim-
ulation studies, we found that λ should be less than the
maximum time constant of the plant. This gives a reason-
ably fast response and good robustness margin. Hence,
manual tuning is a viable option, and in many cases it is
the preferred choice.

3. PERFORMANCE EVALUATION

To test the optimal performance of the control scheme,
we select the performance indices (cost functions) in the
form of integral error criterion. They are integrated er-
ror (IE), integral of the squared error (ISE), integral of the
absolute error (IAE), and integral of the time weighted ab-
solute error (ITAE) defined, respectively, by

IE =
∞∫
0

e(t)dt; ISE =
∞∫
0

e(t)2dt,

IAE =
∞∫
0
|e(t)|dt; ITAE =

∞∫
0

t |e(t)|dt,
(20)

where e(t) is the error signal, i.e., the difference between
the set-point (desired) input and the actual output. The IE
index simply accumulates the net error and describes the
performance of monotonic response. The ISE index de-
notes indirectly several characteristics like settling time,
overshoot, speed of response, and all other important fea-
tures of the transient response [23]. The IAE index is
a measure of disturbance rejection for integral controller
[24]. The ITAE index accounts for long duration error.
Here, our objective is to minimize these cost functions to
prove the optimality of the proposed scheme.

4. ILLUSTRATIVE EXAMPLES

In this section, we illustrate our proposed scheme for
some linear and nonlinear class of systems.

Example 1: Consider a repeated pole second-order sys-
tem

P̄(s) =
1

(s+1)2 . (21)

Using the proposed scheme, the PID parameters for (21)
are: KP = KI = KD = 1/λ . The PID parameters for this
system when second-order filter, i.e., n = 2 provide the
same value of each term but with an extra lag-term of the
form (1+ϕs)−1 where ϕ = 2/λ . We also stablize (21) us-
ing SIMC approach [7] in which we get τI = min(1,4λ ),
KP = τI/λ , τD = 1. During computer simulation for
λ = 0.1, the output response for unit step input is shown
in Fig. 2(a) wherein the output using proposed technique
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Fig. 2. Output for step-type (a) set-point and (b) distur-
bance of Example 1.

quickly reaches the steady state with less overshoot and
oscillations in comparison to SIMC. And, the response
using second-order filter (n = 2) gives less overshoot but
is sluggish in nature due to lag-term. Now to observe
the disturbance attenuation property, a step disturbance of
amplitude of 0.5 is applied at t = 0. In Fig. 2(b), the
proposed technique gives faster attenuation than that ob-
tained from second-order filter, whereas SIMC gives os-
cillatory response during rejection. To test the optimality,
the different performance indices are calculated in Table 1
which state that for reference tracking, the proposed tech-
nique produces least error among the other applied meth-
ods. However for SIMC, the IE index is the least due to
oscillatory nature of the response.

Example 2: An integrating plus first-order plus dead-
time system

P̄(s) =
1

s(s+1)
e−s (22)

is taken from Kaya [25]. This example gives naturally the
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Fig. 3. Output for step-type (a) set-point and (b) distur-
bance of Example 2.

PD form of controller as integrator is already present in
the plant model and if we compare the model with (4), we
get c = 0. The PD form from proposed method produce
KP = KD = 1/λ , and λ = 0.714. The PD parameters used
by Kaya are: KP = 1.047 and τD = 1. Along with PID,
the second-order filter gives lag-term where ϕ = 2.8011.
The set-point tracking and disturbance responses of the
proposed scheme as depicted in Fig. 3 are the fastest and
optimal among all (See Table 1, Example 2).

Example 3: Consider a lag dominated plant with delay

P̄(s) =
1

(20s+1)(2s+1)
e−s, (23)

where the time constant τ = 20 is responsible for gener-
ating lag in the response apart from the delay. In order
to stabilize this plant through proposed technique, we set
KP = 22/λ , KI = 1/λ , KD = 40/λ and λ = 2.5. Using
second-order filter, the extra term augmented along with
PID is 1/(s+ 0.8). The responses of both methods are
compared for step reference and disturbance in Fig. 4
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Fig. 4. Output for step-type (a) set-point and (b) distur-
bance for Example 3.

where the output of PID with lag term depicts overshoot
but the proposed technique shows smooth reference and
the response is also optimal (See Table 1, Example 3).

Example 4: Consider a non-minimum phase system
with time delay from [26]

P̄(s) =
(−0.5s+1)

(s+1)(2s+1)
e−s. (24)

Using the proposed technique, the PID parameters are:
KP = 3/(λ + 0.5), KI = 1/(λ + 0.5), KD = 2/(λ + 0.5)
where we set λ = 3. Using the second-order filter, the PID
controller obtained is

C(s) =
1

λ 2

(
3+

1
s
+2s

)(
1

s+ϕ

)
, (25)

where ϕ = (0.5+ 2λ )/λ 2 and λ = 2. The parameters of
Wang’s controller [26] are: KP = 1.1194, KI = 0.369, and
KD = 0.9765. The closed-loop responses are presented
in Fig. 5(a) for step input, where the proposed scheme
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Fig. 5. Output for step-type (a) set-point and (b) distur-
bance for Example 4.

produces a slight increment in overshoot in comparison to
other compared methods however the speed of response
is fast and settle quicker to the desired value in compari-
son to all other methods. Similarly, from Fig. 5(b), dis-
turbance rejection is faster in comparison to other meth-
ods. Due to slight increase in overshoot, the ISE and IAE
are slightly increased in comparison to Wang’s method
whereas as usual it is lesser than that using second-order
filter (See Table 1, Example 4).

Example 5: Consider a high-order system from [7]

P(s) =
(−0.3s+1)(0.08+1)

(2s+1)(s+1)(0.4s+1)(0.2s+1)(0.05s+1)3 ,

(26)

and its second-order approximated model

P̄(s) =
1

(2s+1)(1.2s+1)
e−0.77s, (27)

where mismatching between plant and its model is
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Fig. 6. Output for step-type (a) set-point and (b) distur-
bance for Example 5.

present. The PID parameters for this model using pro-
posed technique are KP = 3.2/λ , KI = 1/λ , KD = 2.4/λ
and λ = 2. Using the second-order filter, the extra lag
term obtained is 1/(s + 1). The SIMC approach gives
KP = 1.3, τI = 2, τD = 1.2. For both reference tracking
and disturbance attenuation, the closed-loop performances
are shown in Fig. 6 wherein the response is fastest and
smoothest with least oscillation using the proposed tech-
nique in comparison to SIMC and PID with lag term. The
proposed scheme is also optimal in comparison to other
techniques (See Table 1, Example 5).

Example 6: Consider an undamped oscillator

P̄(s) =
1

s2 +4
(28)

for which the controller parameter using proposed method
gives KI = 4/λ , KD = 1/λ where λ = 15. Since the sys-
tem is oscillatory in nature, therefore, λ should be large
enough to prevent fluctuations to make the system stable.
For the same system, the second-order filter gives lag-term
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Fig. 7. Output for step-type (a) set-point and (b) distur-
bance for Example 6.

with ϕ = 0.133. The step and disturbance rejection per-
formances are shown in Fig. 7 where due to oscillatory
nature of the original system (28), the steady state output
is oscillatory but is within a 2% of the steady state value
whereas huge overshoot is found when second-order filter
is used. It is interesting to note that the performance is
optimal in case of second-order filter due to presence of
overshoot and undershoot (See Table 1, Example 6).

Example 7: Consider a slow process with large delay

P̄(s) =
0.001667

(0.05s+1)(0.33s+1)
e−40s. (29)

The proposed method gives PID parameters as KP =
50/λ , KI = 600/λ , KD = 1/λ and λ = 60. Now, applying
the second-order filter, the conventional IMC technique
gives an extra lag-term having ϕ = 0.033. The closed-loop
responses in Fig. 8 show that the proposed method yields
stable response whereas the lag term creates instability if
the higher-order filter is used.

Example 8: In continuation to the linear systems, we
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Fig. 8. Output for step-type (a) set-point and (b) distur-
bance for Example 7.

Fig. 9. Nonlinear system with separable nonlinearity.

extend our proposed work to the class of nonlinear system
so-called separable system, which comprises of a linear
part defined by its transfer function, and a nonlinear part
defined by a time-independent relationship Γ between its
input u and output uΓ as shown in Fig. 9 [27–29].

Consider a second-order integrating type system

P(s) =
4

s(0.5s+1)
, (30)

having input saturation nonlinearities defined as

Γ :
{

uΓ = u, |u| ≤ δ ,
uΓ = δ sgn(u), |u|> δ , (31)

where δ = 0.05. For such system, only the linear part
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Fig. 10. Output for step-type (a) set-point and (b) distur-
bance for Example 8.

Fig. 11. Input-output plot for backlash nonlinearity.

is utilized for the proposed PID scheme, and we get PD
controller as

C(s) =
1
λ

(
1
4
+0.125s

)
, (32)

where λ = 0.16. The responses to a unit step input and
disturbance rejection of the proposed and PID with ϕ =
2/λ are shown in Fig. 10 wherein the PID with lag term
yields sluggish response in comparison to the proposed
one. The performance indices of the proposed scheme are
also less (See Table 1, Example 8).

Example 9: Consider a force-actuated mass-damper-
spring system

P(s) =
1

ms2 +bs+ k
, (33)
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Fig. 12. Output for step-type (a) set-point and (b) distur-
bance for Example 9.

where m = 1, k = 4 and b = 16. The friction force is
represented by the backlash model as shown in Fig. 11,
where deadzone is δ = 1.5. We design PID controller in a
similar fashion as mentioned in Example 8 by considering
only the linear part. The obtained PID controller is

C(s) =
1
λ

(
4+

16
s
+ s

)
, (34)

where λ = 1. The closed-loop responses of the proposed
scheme and PID with ϕ = 2 are shown in Fig. 12 where
we can observe the faster tracking of the proposed scheme
in comparison to that of PID with lag-term. Similarly, the
disturbance rejection is fast for the proposed method. The
proposed controller also shows the optimal performance
(See Table 1, Example 9).

5. EXPERIMENTAL RESULTS

To verify the advantages of the suggested technique, the
precision modular servo (PMS) system consisting of DC
servomotor from Feedback Instruments Ltd., U.K., is con-
sidered (See Fig. 13) [30]. The transfer function for the
velocity control of PMS is

P̄(s) =
1.362×108

s2 +1000s+8.476×104 . (35)

Using the procedure defined in section 2.1, the PID param-
eters with filter of order n = 1 and 2, are calculated. To
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Table 1. Performance comparison for simulation examples.

Examples Method Reference tracking Disturbance rejection
ISE IAE ITAE IE ISE IAE ITAE IE

Example 1
Proposed 0.739 1.69 4.323 0.3004 0.1850 0.8448 2.162 -0.1502

n = 2,ϕ = 20 1.727 2.841 7.715 2.003 0.4319 1.421 3.857 -1.001
SIMC [7] 0.8221 1.974 5.929 0.1004 0.2055 0.9868 2.965 -0.05021

Example 2
Proposed 1.172 1.606 1.976 1.591 0.293 0.804 0.9882 -0.7954

n = 2,ϕ = 2.8011 2.199 2.951 5.639 2.951 0.5498 1.475 2.82 -1.475
Kaya [25] 1.369 1.906 2.633 1.906 0.3422 0.9531 1.316 -0.9531

Example 3 Proposed 2.988 5.199 49.35 2.521 0.747 2.599 24.67 -1.26
n = 2,ϕ = 0.8 3.799 6.628 68.2 2.058 0.9496 3.314 34.1 -1.029

Example 4
Proposed 2.924 3.872 10.34 2.5 0.7299 1.93 5.126 -1.25

n = 2,ϕ = 1.125 4.229 5.6 21.22 4.501 1.057 2.801 10.63 -2.25
Wang et al. [26] 2.894 3.819 10.61 2.71 0.723 1.911 5.341 -1.355

Example 5
Proposed 2.002 2.82 6.418 2 0.5006 1.41 3.209 -1

n = 2,ϕ = 1 3.044 4.74 19.35 1.999 0.761 2.37 9.672 -0.9994
SIMC [7] 2.324 4.238 21.01 1.542 0.581 2.119 10.5 -0.7708

Example 6 Proposed 7.563 15.56 271.6 14.97 1.891 7.779 135.8 7.486
n = 2,ϕ = 0.133 4.882 10.79 174.8 2.005 1.22 5.397 87.39 1.002

Example 8 Proposed 2.122 3.002 5.98 3.002 0.3134 0.8771 1.054 0.8771
n = 2,ϕ = 12.5 2.123 3.019 6.079 3.019 0.3147 0.8938 1.111 0.8938

Example 9 Proposed 0.5826 1.048 1.137 1.046 0.1517 0.5474 0.6077 0.5463
n = 2,ϕ = 2 1.383 2.094 3.32 2.094 0.3713 1.094 1.757 1.094

Table 2. PID parameters and performance comparison for PMS system.

Method KP KI KP ISE IAE ITAE IE
Proposed
method (n = 1)

0.0073 0.6223 7.3421
x10−6

1.832
x104

60.59 165 1.232

n = 2
(ϕ = 2000)

0.073 6.223 7.3421
x10−5

4.138
x104

122.4 278.6 23.91

Hang
et al. [15]

6.6564
x10−3

1.502
x105

17.1877 1.634
x104

3375 1.85
x104

10.69

Alcántara
et al. [14]

0.0213 7.559
x104

8.5425 1.634
x106

3409 1.85
x104

16.83

evaluate the efficiency of proposed controller, two more
PID controllers are designed using the method suggested
by Hang et al. [15] and Alcántara et al. [14]. Table 2 de-
picts the calculated tuning parameters along with different
integral error performance indices for reference tracking.
Note that for all methods, λ = 0.001 is considered.

The time domain step responses are depicted in Fig.
14(a), which states that the speed of response and settling
time for the proposed controller is better than the PID with
lag term whereas the other two methods, i.e., Hang et al.
[15] and Alcántara et al. [14] keep on oscillating about the
reference speed of 1000 rpm. In the experimental results,
the data points on x-axis in Fig. 14 have been divided by
100 to convert the axis scale into time-scale of “seconds”

unit. To observe the disturbance rejection performance,
load is applied through magnetic brakes at 8 sec as shown
in Fig. 14(b) and removed at 11 sec during operation and
it is observed that the proposed scheme yield good distur-
bance rejection performance among all.

6. CONCLUSION AND FUTURE SCOPE

In this paper, IMC based PID tuning scheme is sug-
gested for the stable linear and separable nonlinear sys-
tems after employing first-order filter in place of second
or higher-order filter. The proposed technique is further
implemented on the real-time PMS system to show its ef-
fectiveness in bringing good servo, regulator, and optimal
performances. Through the simulation and hardware re-
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(a)

(b)

Fig. 13. (a) Pictorial and (b) block diagram of PMS set-up.
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Fig. 14. Output for step-type (a) set-point and (b) distur-
bance for PMS system.

sults, it is shown that the optimality of the controller per-
formance depends upon the choice of filter selected. The
proposed technique can be useful in industrial applications
like power electronics, electrical drives, robotics, process
control, aerospace engineering, etc.

We have covered varieties of second- and higher-order
processes. The presented examples are stable in nature but
the design scheme for unstable systems is yet to explore.

The proposed scheme is further applied for a class of non-
linear systems so called separable systems but the control
of pure nonlinear system is not described. Apart from this,
we have opted manual λ tuning, thus a mathematical for-
mulation of tuning law is also required. These research
gaps pave the path for the control researchers to proceed
further in this area.
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