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Risk-sensitive Control of Markov Jump Linear Systems: Caveats and Dif-
ficulties
Jun Moon* and Tamer Başar

Abstract: In this technical note, we revisit the risk-sensitive optimal control problem for Markov jump linear
systems (MJLSs). We first demonstrate the inherent difficulty in solving the risk-sensitive optimal control problem
even if the system is linear and the cost function is quadratic. This is due to the nonlinear nature of the coupled
set of Hamilton-Jacobi-Bellman (HJB) equations, stemming from the presence of the jump process. It thus follows
that the standard quadratic form of the value function with a set of coupled Riccati differential equations cannot be
a candidate solution to the coupled HJB equations. We subsequently show that there is no equivalence relationship
between the problems of risk-sensitive control and H∞ control of MJLSs, which are shown to be equivalent in the
absence of any jumps. Finally, we show that there does not exist a large deviation limit as well as a risk-neutral limit
of the risk-sensitive optimal control problem due to the presence of a nonlinear coupling term in the HJB equations.
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1. INTRODUCTION

Markov jump linear systems (MJLSs) are switching
systems, where the switching process is determined ac-
cording to a finite- or infinite-state Markov chain. They
are also known as piecewise-deterministic or stochastic
hybrid linear systems. One of the remarkable features
of MJLSs is that they allow for modeling of a number
of different system modes depending on a state space of
the Markov chain, which enables capturing more general
system behaviors that are subject to dynamic uncertainties
and abrupt changes in modeling parameters. Hence, appli-
cations of MJLSs can be found in a wide variety of fields,
such as solar power stations, flight systems, economic sys-
tems, power systems, and communication systems, among
many others [1].

Optimal control of MJLSs driven by Brownian mo-
tion process is one of the fundamental stochastic con-
trol problems, and the linear-quadratic-Gaussian (LQG)
and/or the H∞ control settings have been of particular in-
terest to many researchers [1–4] (detailed expositions can
be found in the recent book [1] and/or the recent survey
papers [5, 6], and the references therein). Specifically, it
was shown that the state feedback mode-dependent (LQG
or H∞) optimal controller can be obtained by solving a set
of coupled Riccati differential equations associated with
the coupled Hamilton-Jacobi-Bellman (HJB) equations.
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The problem of risk-sensitive control of MJLSs, on the
other hand, has not been discussed as extensively due to its
inherent difficulty. Specifically, in [1, page 82], it is noted
that “Although the avenues of research to a risk sensitivity
approach for the optimal control of MJLS seem to be fas-
cinating, this is a topic which has defied the researchers
up to now.” The difficulty was discussed briefly in [7], but
the main source of the underlying difficulty was not pre-
sented clearly. Moreover, the author in [7] did not discuss
the large deviation limit as well as the risk-neutral limit,
which are fundamental properties of risk-sensitive control
as mentioned in [8]. It does not appear that there is any
literature on risk-sensitive control for MJLSs except [7].

In this technical note, we revisit the risk-sensitive opti-
mal control problem of MJLSs to address the issues men-
tioned above. Our main contributions of the note are as
follows:

(i) We obtain a set of coupled HJB equations for risk-
sensitive control of MJLSs, and show that it is
not possible to solve it in closed form analytically
even if the system is linear and the cost function is
quadratic.

(ii) We show that for the case of MJLSs, the risk-
sensitive control is not equivalent to the H∞ control
studied in [4, 9].
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(iii) We prove nonexistence of the large deviation
limit as well as the risk-neutral limit.

In Section 2, we show that the main difficulty of the
problem stems from the nonlinear coupling nature of
the corresponding HJB equations by which the quadratic
value, not admitting, for example, a quadratic structure for
its solution, thus ruling out a Riccati differential equation
based representation. In Sections 3 and 4, we discuss, re-
spectively, (ii) and (iii), which lead to the conclusion that
the equivalence relationship, and existence of the two lim-
iting behaviors for the jump-free case1 do not hold for the
Markov jump case. These two results also follow from the
nonlinear coupling nature of the HJB equations. In Sec-
tion 5, we conclude by providing a recap of highlights of
the note and also discussing some future research direc-
tions.

2. RISK-SENSITIVE CONTROL OF MJLSS:
DIFFICULTY

Consider a controlled stochastic differential equation
(SDE) defined on a complete probability space (Ω,F ,P):

dx(t) = A(θ(t))x(t)dt +B(θ(t))u(t)dt (1)

+
√

εD(θ(t))dB(t),

where x(0) = x0, x ∈ Rn is the state, u ∈ Rq is the con-
trol, {B(t), t ≥ 0} is a p-dimensional standard Brownian
motion, and ε > 0 is a noise intensity parameter. In (1),
{θ(t), t ≥ 0} is a continuous-time Markov chain taking
values in the finite state space S = {1,2, ...,s} with in-
finitesimal generator Λ = {λi j, i, j = 1, ...,s}. In this for-
mulation, the initial state x0 is not random, and {B(t)} and
{θ(t)} are independent of each other. Moreover, for any
θ(t) = i, i ∈ S, Ai := A(θ(t) = i), Bi := B(θ(t) = i), and
Di := D(θ(t) = i) are time-invariant matrices with appro-
priate dimensions. Under this setting, (1) is known as a
Markov jump linear system (MJLS) [1]. We assume that
DiDT

i > 0 for all i ∈ S.
The control input u is generated by a Markov strategy

µ : Rn ×S → Rq:

u(t) = µ(x(t),θ(t)), (2)

where µ is measurable both in x and θ , and Lipschitz
continuous in x. Let us denote the class of all such state-
feedback Markov control policies by U .

The performance index to be minimized is the risk-
sensitive one, given by

J(µ; t,x, i) (3)

= δ logE
{

e
1
δ [
∫ T

t ∥x(τ)∥2
Q(θ(τ))+∥u(τ)∥2

R(θ(τ))dτ+∥x(T )∥2
L(θ(T ))]

1It was shown in [8, 10] that for the jump-free case, there
exist two limiting behaviors in risk-sensitive control, and risk-
sensitive optimal control is equivalent to H∞ control.

|x(t) = x, θ(t) = i
}
,

where δ > 0 is the risk-sensitivity (risk-averse) parame-
ter, Qi := Q(θ(t) = i) ≥ 0, Li := L(θ(T ) = i) ≥ 0 and
Ri := R(θ(t) = i) > 0 for all i ∈ S. Note that the optimal
control problem thus formulated may be thought of as be-
ing simple, due to the linearity of the system (1) and the
quadratic nature of the exponent in the cost function. In
the following, we show that the problem above is, on the
contrary, not easy to solve even if the problem setting may
seem to be simple.

Let ϕ(t,x, i), i∈ S, be the value function associated with

E
{

e
1
δ [
∫ T

t ∥x(τ)∥2
Q(θ(τ))+∥u(τ)∥2

R(θ(τ))dτ+∥x(T )∥2
L(θ(T ))]

|x(t) = x, θ(t) = i
}
,

that is,

ϕ(t,x, i) (4)

= inf
µ∈U

E
{

e
1
δ [
∫ T

t ∥x(τ)∥2
Q(θ(τ))+∥u(τ)∥2

R(θ(τ))dτ+∥x(T )∥2
L(θ(T ))]

|x(t) = x, θ(t) = i
}
.

subject to (1). It is clear that for i ∈ S,

V (t,x, i) := inf
u∈U

J(µ; t,x, i) = δ logϕ(t,x, i). (5)

From Lemma 1 in Appendix A, ϕ(t,x, i) can be differ-
entiated in the Itô sense:

dϕ(t,x, i) =
[
ϕt(t,x, i)+ϕ T

x (t,x, i)(Aix(t)+Biu(t))

+
s

∑
j=1

λi jϕ(t,x, j)+
ε
2

Tr(DiDT
i ϕxx(t,x, i))

]
dt,

where ϕt and ϕx are the partial derivatives of ϕ with respect
to t and x, respectively, and ϕxx is the second partial deriva-
tive with respect to x. Using the Itô-Dynkin formula, the
dynamic optimization problem yields [11]

inf
µ∈U

{dϕ(t,x, i)+
1
δ
(∥x(t)∥2

Qi
+∥u(t)∥2

Ri
)ϕ(t,x, i)dt}= 0.

Thus, one obtains

ϕt(t,x, i)+
ε
2

Tr(DiDT
i ϕxx(t,x, i))+

s

∑
j=1

λi jϕ(t,x, j)

(6)

+ inf
µ∈U

{ϕ T
x (t,x, i)(Aix(t)+Biu(t))

+
1
δ
(∥x(t)∥2

Qi
+∥u(t)∥2

Ri
)ϕ(t,x, i)}= 0,

where ϕ(T,x, i) = e(1/δ )xT Lix, i ∈ S.
To establish the connection between (4) and (5), in view

of (5), we use the value function transformation:

ϕt =
1
δ

Vtϕ , ϕx =
1
δ

Vxϕ , ϕxx =
1
δ

Vxxϕ +
1

δ 2 VxV T
x ϕ .



464 Jun Moon and Tamer Başar

Substituting these in (6), and dividing throughout by
ϕ/δ , leads to the set of coupled Hamilton-Jacobi-Bellman
(HJB) equations for the risk-sensitive optimal control
problem of MJLSs:

−Vt(t,x, i)

=
ε
2

Tr(DiDT
i Vxx(t,x, i))+

ε
2δ

∥DT
i Vx(t,x, i)∥2

+δ
∑s

j=1 λi je(1/δ )V (t,x, j)

e(1/δ )V (t,x,i) (7)

+ inf
µ∈U

{V T
x (t,x, i)(Aix(t)+Biu(t))

+∥x(t)∥2
Qi
+∥u(t)∥2

Ri
},

where the boundary condition is V (T,x, i) = xT Lix, i ∈ S.
Note that the above optimization problem has a unique

solution, which can be written as

u∗(t) =−1
2

R−1
i BT

i Vx(t,x, i) , i ∈ S. (8)

Substituting the above optimal solution in the HJB equa-
tions yields

−Vt(t,x, i)

=
ε
2

Tr(DiDT
i Vxx(t,x, i))+ xT (t)Qix(t)

+δ
∑s

j=1 λi je(1/δ )V (t,x, j)

e(1/δ )V (t,x,i)

+V T
x (t,x, i)Aix(t)−

1
4

V T
x (t,x, i)BiR−1

i BT
i Vx(t,x, i)

+
ε

2δ
V T

x (t,x, i)DiDT
i Vx(t,x, i).

Now, from the verification theorem [11, Theorem 4.1],
if there is a value function V (t,x, i) that is a solution to the
above set of HJB equations for all i ∈ S, then (8) is the
optimal controller for the MJLS in (1) that minimizes the
risk-sensitive performance index in (3). Note that since
the set of HJB equations is uniformly parabolic for all
i ∈ S (DiDT

i > 0, ∀i ∈ S), it admits a unique bounded pos-
itive solution. Unfortunately, unlike the cases of LQG and
H∞ control of MJLSs, it does not seem to be possible to
find an explicit expression for the value function, V (t,x, i),
for all i ∈ S, analytically, due to the nonlinear coupling
term (7). Specifically, the usual quadratic value function
with the coupled Riccati differential equations cannot be
a candidate solution to the set of HJB equations due to the
presence of (7). This shows that the nonlinear coupling
term (7) is the main source of the difficulty that defies at-
tempts to find closed-form analytical solutions to the risk-
sensitive optimal control problem for MJLSs.

Remark 1: From [8, Lemma 9.1, Chapter VI], we can
show that the nonlinear coupling term in (7) can be written
as

δ
∑s

j=1 λi je(1/δ )V (t,x, j)

e(1/δ )V (t,x,i)

= δ sup
ki>0

{ s

∑
j=1

λ̄i j

δ
V (t,x, j)+

∑s
j=1 λi jk j

ki
−

s

∑
j=1

λ̄i j logk j

}
,

where λ̄i j = λi j
k j

ki
when i ̸= j and λ̄ii = −∑ j ̸=i λ̄i j. More-

over, the supremum can be achieved by k∗i = e
1
δ V (t,x,i) for

all i ∈ S. With this transformation, the HJB equation be-
comes

−Vt(t,x, i)

=
ε
2

Tr(DiDT
i Vxx(t,x, i))+

ε
2δ

∥DT
i Vx(t,x, i)∥2

+δ sup
ki>0

{ s

∑
j=1

λ̄i j

δ
V (t,x, j)+

∑s
j=1 λi jk j

ki
−

s

∑
j=1

λ̄i j logk j

}
+ inf

µ∈U
{V T

x (t,x, i)(Aix(t)+Biu(t))

+∥x(t)∥2
Qi
+∥u(t)∥2

Ri
}.

Then it is easy to see that the underlying difficulty of the
problem stems from the additional optimization term in-
duced by the nonlinear coupling term. Note that the above
HJB equation cannot be solved with a quadratic value
function. □

It should be mentioned that a similar difficulty was
identified via the large deviation theory in [7]. The main
source of the difficulty (that is the nonlinear coupling term
in (7)), however, was not presented in a transparent way,
and the corresponding HJB equation was not provided.
Specifically, in [7], it was claimed that the risk-sensitive
optimal control problem of MJLSs is difficult because the
assumptions given in [7] are hard to check (see [7, The-
orem 4]), but the author did not provide any sufficient
conditions for such assumptions, and did not mention the
nonlinear coupling nature of the HJB equation as the main
source of the difficulty. In this technical note, we do not
make any critical assumptions on the problem, and pro-
vide a clear reason as to why it is hard to obtain the closed-
form analytical optimal solution. The following example
further demonstrates that point, for the simplest possible
scenario.

Example 1: Suppose that A1 =−0.2, A2 = 0.4, S = 2,
L = 0, and λ12 = λ21 = B=D=Q= R= T = ε = 1. Then
the associated pair of HJB equations can be written as

−Vt(t,x, i)

=
1
2

Vxx(t,x, i)+
1

2δ
V 2

x (t,x, i)

+
δ (−e(1/δ )V (t,x,i)+ e(1/δ )V (t,x, j))

e(1/δ )V (t,x,i)

+ inf
µ∈U

{Vx(t,x, i)(Aix(t)+u(t))+ x2(t)+u2(t)},

where V (1,x,1) = V (1,x,2) = 0. It should be apparent
from the above that it is not possible to have a closed-
form solution with a quadratic value function because of
the nonlinear exponential coupling term. □
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Remark 2: As can seen from Example 1, even for the
simplest possible case, one has to resort to numerical tech-
niques to solve the coupled partial differential equations.
A detailed discussion on numerical techniques is provided
in Section 5. □

Before concluding this section, we note that if a solu-
tion to the coupled HJB equations, V (t,x, i), exists, for all
i ∈ S, then as to be expected, the optimal controller in (8)
is depends on the transition rate {λi j}, since V (t,x, i) de-
pends on {λi j} in view of (7).

3. NON-EQUIVALENCE BETWEEN
RISK-SENSITIVE CONTROL AND

STOCHASTIC ZERO-SUM DIFFERENTIAL
GAMES FOR MJLSS

In this section, we show that the problem in Section 2
is not equivalent to the problem of H∞ optimal control for
MJLSs studied in [4,9]. Toward that end, we compare the
set of HJB equations in Section 2 to that of stochastic zero-
sum differential games (more precisely, set of Hamilton-
Jacobi-Isaacs (HJI) equations) of MJLSs.

Consider the following SDE:

dx(t) = A(θ(t))x(t)dt +B(θ(t))u(t)dt

+D(θ(t))v(t)dt +
√

εD(θ(t))dB(t), (9)

where v ∈ Rp is the disturbance that is generated by a
state-feedback strategy ν as in (2). Let us denote the class
of all admissible disturbance strategies by V .

The (risk-neutral) cost function for this differential
game is given by

J̄(µ,ν ; t,x, i) (10)

= E
{∫ T

t
∥x(τ)∥2

Q(θ(τ))+∥u(τ)∥2
R(θ(τ))− γ2∥v(τ)∥2dτ

+∥x(T )∥2
L(θ(T ))|x(t) = x,θ(t) = i

}
,

where γ > 0 is the disturbance attenuation parameter.
Let W (t,x, i), i ∈ S, be the value function associated

with (10), that is,

W (t,x, i)

= inf
µ∈U

sup
ν∈V

E
{∫ T

t
∥x(τ)∥2

Q(θ(τ))+∥u(τ)∥2
R(θ(τ))

− γ2∥v(τ)∥2dτ +∥x(T )∥2
L(θ(T ))|x(t) = x,θ(t) = i

}
= sup

ν∈V
inf

µ∈U
E
{∫ T

t
∥x(τ)∥2

Q(θ(τ))+∥u(τ)∥2
R(θ(τ))

− γ2∥v(τ)∥2dτ +∥x(T )∥2
L(θ(T ))|x(t) = x,θ(t) = i

}
,

subject to (9).
Note that the Brownian motion, {B(t), t ≥ 0}, is inde-

pendent of {θ(t), t ≥ 0}. Then from [4], and by employ-
ing the Itô-Dynkin formula, we obtain the corresponding

set of Hamilton-Jacobi-Isaacs (HJI) equations for all i ∈ S
(after carrying out the maximization with respect to v)

−Wt(t,x, i)

=
ε
2

Tr(DiDT
i Wxx(t,x, i))+

1
4γ2 ∥DT

i Wx(t,x, i)∥2

+
s

∑
j=1

λi jW (t,x, j) (11)

+ inf
µ∈U

{W T
x (t,x, i)(Aix(t)+Biu(t))

+∥x(t)∥2
Qi
+∥u(t)∥2

Ri
},

where the boundary condition is W (T,x, i) = xT Lix, i ∈ S.
We can easily see that the set of HJI equations above is

not identical to the set of HJB equations in Section 2 due to
the difference between the linear coupling term in (11) and
the nonlinear coupling term in (7) (or the additional opti-
mization problem in Remark 1); hence, the corresponding
value functions, V (t,x, i) and W (t,x, i) will generally not
be the same. This shows that in contrast to the standard
case (with no jump parameter process), the equivalence
relationship between risk-sensitive and H∞ control does
not hold for the MJLS case.

The above set of HJI equations admits as solution a
quadratic value function, W (t,x, i) = xT Pi(t)x, where Pi(t)
is the solution to the following coupled generalized Ric-
cati differential equations for all i ∈ S:

−dPi(t)
dt

=AT
i Pi(t)+Pi(t)Ai +Qi

−Pi(t)(BiR−1
i BT

i −
1
γ2 DiDT

i )Pi(t)

+
s

∑
j=1

λi jPj(t),

where Pi(T ) = Li. In this case, the optimal controller is

u∗(t) =−1
2

R−1
i BT

i Wx(t,x, i) , i ∈ S, (12)

where Wx(t,x, i) = 2Pi(t)x. Note that (12) is not identical
to (8) because the corresponding value functions, W and
V , cannot be identical.

Example 2: Given the parameters in Example 1, the
corresponding pair of HJI equations can be solved in terms
of the following pair of (linearly) coupled Riccati differ-
ential equations:

−dPi(t)
dt

=2AiPi(t)+1−P2
i (t)

(
1− 1

γ2

)
−Pi(t)+Pj(t),

where P1(1) = P2(1) = 0. This is a system of ordinary
differential equations, which can be solved easily by con-
ventional numerical methods [12]. □
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4. NON-EXISTENCE OF LIMITING BEHAVIORS

4.1. Large deviation limit
We first discuss the large deviation limit (small noise

limit), in which case we take δ = ε and let ε → 0. More-
over, it is necessary to have the modified infinitesimal gen-
erator, Λ = Λ/ε , since we need to observe a rare event of
the jump process. In this case, the corresponding set of
HJB equations becomes similar to that in Section 2, which
can be written as (for all i ∈ S)

−Vt(t,x, i)

=
ε
2

Tr(DiDT
i Vxx(t,x, i))+

1
2
∥DT

i Vx(t,x, i)∥2 (13)

+
∑s

j=1 λi je(1/ε)V (t,x, j)

e(1/ε)V (t,x,i)

+ inf
µ∈U

{V T
x (t,x, i)(Aix(t)+Biu(t))

+∥x(t)∥2
Qi
+∥u(t)∥2

Ri
}.

Note that as ε → 0, the first term in (13) becomes zero and
the second term remains the same.

To see the limiting behavior of the third term in (13) as
ε → 0, consider the case when S = {1,2}, and expand the
corresponding nonlinear coupling term for i = 1

λ11e(1/ε)V (t,x,1)+λ12e(1/ε)V (t,x,2)

e(1/ε)V (t,x,1)

= λ11 +λ12e(1/ε)(V (t,x,2)−V (t,x,1)), (14)

and for i = 2

λ21e(1/ε)V (t,x,1)+λ22e(1/ε)V (t,x,2)

e(1/ε)V (t,x,2)

= λ22 +λ21e(1/ε)(V (t,x,1)−V (t,x,2)), (15)

where λ12 > 0 and λ21 > 0.
Now, since the value function is a mapping from R×

Rn ×S to R≥0, we must have

V (t,x,2)−V (t,x,1)≥ 0 or V (t,x,2)−V (t,x,1)≤ 0.

If V (t,x,2)−V (t,x,1) > 0, then (14) goes to infinity as
ε → 0. On the other hand, if V (t,x,2)−V (t,x,1)< 0, then
(15) goes to infinity as ε → 0. Therefore, (14) and (15)
have a limit if and only if V (t,x,2)−V (t,x,1) = 0, which
is not possible, since the system and/or cost parameters
are not the same for i = 1 and i = 2.

This shows that the large deviation limit does not exist
when S = {1,2}. From this, we can easily deduce that the
large deviation limit does not exist for S= {1,2, ...,s}, and
thereby the risk-sensitive control problem for MJLSs does
not have any connection with the H∞ control of MJLSs
in [4, 9]. We should recall that for the jump-free case,
the large deviation limit of risk-sensitive optimal control
is equivalent to deterministic H∞ control [8, 10].

4.2. Risk-neutral limit

The second limit we study is the risk-neutral limit, that
is, we let δ → ∞ for a fixed ε . In this case, as can be
seen from the set of HJB equations in Section 2, the sec-
ond term in (13) approaches zero, but (7) goes to infinity.
This implies that the risk-sensitive optimal control prob-
lem becomes not solvable; hence it is not equivalent to the
standard LQG control of MJLSs in [2]. Let us again recall
that for the jump-free case, under the risk-neutral limit, the
risk-sensitive control and the LQG control become identi-
cal in the sense that the corresponding optimal controllers
with the value functions are the same [8, 10].

5. CONCLUSIONS

In this technical note, we have revisited the risk-
sensitive optimal control problem for Markov jump linear
systems. We have shown that although the problem set-
ting may seem to be simple, it is not possible to obtain
closed-form analytical solutions to the associated set of
HJB equations due to the presence of a nonlinear coupling
term. We have also shown that the problem has no connec-
tion with that of H∞ optimal control of MJLSs, and does
not have a large deviation limit as well as a risk-neutral
limit. These two results also follow from the nonlinear
coupling nature of the HJB equations.

One immediate future research direction would be de-
veloping numerical techniques to solve the set of cou-
pled HJB equations in Section 2 that leads to the optimal
risk-sensitive controller for MJLSs. Toward that end, it
would be possible to use a numerical approximation tech-
nique proposed in [13], where the algorithm constructs a
discrete-time, finite-state, MJLS and the associated back-
ward dynamic programming equation to approximate the
corresponding SDE and the HJB equation, respectively.
It was shown in [13] that under some conditions, when
the approximation step size tends to zero, the value func-
tion of the (approximated) backward dynamic program-
ming equation converges weakly to the solution of the
HJB equation. The results in [13] are for the risk-neutral
case, which can easily be extended to the risk-sensitive
case. This extension is currently under study.

Finally, another important extension would be to the
partial observation problem, which also does not admit a
closed-form solution as can be expected from the result of
this technical note, and hence constitutes a challenging re-
search topic. Specifically, unlike the H∞ control problem
for MJLSs studied in [4, 9], it is not possible to construct
the closed-form output feedback optimal controller for the
partial observation case due to the presence of the nonlin-
ear coupling term in the set of coupled HJB equations.
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APPENDIX A

Lemma 1 (Martingale representation of a continuous–
time Markov chain and its differentiation in the Itô sense)
[1]: Suppose that Ft is the right-continuous complete fil-
tration generated by σ(θ(s),s ≤ t), where σ(·) is the σ -
algebra generated by its argument. Set, for i ∈ S,

Mi(t) := 1{θ(t)=i}−1{θ(0)=i}−
∫ t

0

s

∑
l=1

λli1{θ(s−)=l}ds,

where the notation 1{θ(s−)=l} represents the left-hand limit
of 1{θ(s)=l}. Then {Mi(t); t ≥ 0} is a Martingale with re-
spect to {Ft ; t ≥ 0} for any i ∈ S, where Mi(0) = 0 almost
surely. Moreover, for any i ∈ S with a differentiable func-
tion f (t, i) taking values in Rn, its differential form can be
obtained in the Itô sense:

d f (t, i) =
[

ft(t, i)+
s

∑
l=1

λil f (t, l)
]
dt + f (t, i)dMi(t).

□
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