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Asymptotical Synchronization for Delayed Stochastic Neural Networks
with Uncertainty via Adaptive Control
Dongbing Tong*, Liping Zhang*, Wuneng Zhou*, Jun Zhou, and Yuhua Xu

Abstract: In this paper, the problem of the adaptive synchronization control is considered for neural networks
with uncertainty and stochastic noise. Via utilizing stochastic analysis method and linear matrix inequality (LMI)
approach, several sufficient conditions to ensure the adaptive synchronization for neural networks are derived. By
the adaptive feedback methods, some suitable parameters update laws are found. Finally, a simulation result is
provided to substantiate the effectiveness of the proposed approach.
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1. INTRODUCTION

During the past years, neural networks have found their
important applications in various fields [1,2] such as affine
invariant matching, pattern recognition, associative mem-
ory and optimization solvers. It has been known that time
delays are often encountered in neural networks. And in
the neural networks, time delays are often unavoidably en-
countered due to the finite speeds of signals switching and
transmission between neurons, which may cause undesir-
able dynamic network behaviors such as oscillation and
instability. For neural networks with time-delays, various
sufficient conditions have been proposed to guarantee the
asymptotic or exponential stability in many of recent liter-
atures, (see e.g., [3–9]). What is more, it is very important
to analyze the robustness of delayed neural networks due
to practical implementation that inevitably has uncertain-
ties resulting from parameter drifting, fluctuation or mod-
eling errors. In the uncertain neural networks, the inter-
val uncertainty and the norm-bounded uncertainty are the
most widely considered two types. Unfortunately, adap-
tive asymptotical synchronization problem for stochastic
neural networks with uncertainties has not been fully in-
vestigated yet, which is the partly motivation of our re-
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Up to now, the synchronization control of the neural

networks has drawn much attention due to its potential ap-
plications in many fields, such as signal processing, com-
binatorial optimization, communication, secure commu-
nication, etc. (see e.g., [10–14]). And the synchroniza-
tion control of neural networks is to achieve the accor-
dance of the states of the drive neural networks and the re-
sponse neural networks in a moment. Moreover, the adap-
tive synchronization control for neural networks has been
extensively investigated over the last decade due to their
successful applications in many areas, (see e.g., [15–19]),
such as communication, signal processing and combina-
torial optimization, etc.

It should be pointed out that, up to now, the problem
of delay-dependent adaptive synchronization control for
delayed neural networks with uncertainties and stochastic
noises has received very little research attention.

Summarizing the above discussions, the focus of this
paper is on the delay-dependent adaptive synchronization
control for stochastic delayed neural networks without un-
certainties and with uncertainties. The main novelty of our
contribution lies in three folds: 1) A new delay-dependent
adaptive synchronization control for delayed neural net-
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works with uncertainties and stochastic noise is addressed;
2) Using the adaptive feedback control techniques, adap-
tive feedback controller is designed; 3) The LMIs method
of the adaptive synchronization controller is given by em-
ploying a new nonnegative function.

2. PROBLEM FORMULATION AND
PRELIMINARIES

In this paper, we consider the delayed neural networks
with uncertainties and stochastic noises described by

dx(t) =
[
−C̄x(t)+ Ā f (x(t))+ B̄g(x(t − τ1(t)))

+D̄
∫ t

t−τ2

h(x(s))ds+ J
]

dt,
(1)

where x(t) = (x1(t),x2(t), · · · ,xn(t))T ∈ Rn is a real n-
vector denoting the state variables associated with the neu-
rons, f (x(t)) = ( f1(x1(t)), f2(x2(t)), · · · , fn(xn(t)))T ∈Rn

denotes the activation function of the neurons, τ1(t) and
τ2(t) are the transmission delay satisfying that 0 < τi(t)≤
τ̄i and τ̇i(t)≤ τ̂i < 1, where τ̄i, τ̂i are constants, and i = 1,
2. J ∈ Rn is a constant external input vector. And the
matrices C̄, Ā, B̄ and D̄, respectively, are the self-feedback
matrix, the connection weight matrix and the delayed con-
nection weight matrix satisfying

C̄ =C+∆C(t), Ā = A+∆A(t),

B̄ = B+∆B(t), D̄ = D+∆D(t),
(2)

where C = diag{c1, c2, · · · , cn}, A, B and D are known
constant matrices with appropriate dimensions. In addi-
tion, ∆C(t), ∆A(t), ∆B(t), ∆D(t) are the parameter uncer-
tainties, which are assumed to be of the form

[∆C(t),∆A(t),∆B(t),∆D(t)]

= MF(t)[NC,NA,NB,ND]
(3)

where M, NC, NA, NB and ND are some given constant
matrices with appropriate dimensions, and F(t) is an
unknown matrix representing the parameter perturbation
which satisfies

FT (t)F(t)≤ I. (4)

For the drive systems (1), a response system is con-
structed as follows:

dy(t) =[−C̄y(t)+ Ā f (y(t))+ B̄g(y(t − τ1(t)))

+ D̄
∫ t

t−τ2(t)
h(y(s))ds+ J+u(t)]dt

+σ(t,y(t)− x(t),y(t − τ1(t))− x(t − τ1(t)),

y(t − τ2(t))− x(t − τ2(t)))dω(t),

(5)

where y(t) is the state vector of response system (5),
u(t)= (u1(t),u2(t), · · · ,un(t))T ∈Rnis a control input vec-
tor with the form of

u(t) = k(t)(y(t)− x(t))

= diag{k1(t),k2(t), · · · ,kn(t)}(y(t)− x(t)),
(6)

ω(t) = (ω1(t), ω2(t), · · · , ωn(t))T is an n-dimensional
Brown moment defined on a complete probability space
(Ω,F ,P) with a natural filtration {Ft}t≥0 (i.e., Ft =
σ{ω(s) : 0 ≤ s ≤ t} is a σ -algebra), and σ : R+×S×
Rn ×Rn → Rn×n is the noise intensity matrix and can be
regarded as a result from the occurrence of eternal random
fluctuation and other probabilistic causes.

Let e(t) = y(t)−x(t). For the purpose of simplicity, we
mark e(t − τ(t)) = eτ(t), f (e(t)) = f (y(t)) − f (x(t)),
g(e(t)) = g(y(t)) − g(x(t)) and h(e(t)) = h(y(t)) −
h(x(t)). From the drive system (1) and the response
system (2), the error system can be represented as follows

de(t) =[−C̄e(t)+ Ā f (e(t))+ B̄g(eτ1(t))

+ D̄
∫ t

t−τ2

h(e(s))ds+u(t)]dt

+σ(t,e(t),eτ1(t),eτ2(t))dω(t).

(7)

To obtain the main result, we need the following as-
sumptions, definition and lemmas.

Assumption 1: The activation functions of the neurons
f (x(t)), g(x(t)) and h(x(t)) satisfy the Lipschitz condi-
tion. There exist diagonal matrices L−

i j = diag(l−i1 , l−i2 , . . .,
l−in) and L+

i j = diag(l+i1 , l+i2 , . . ., l+in), (i = 1, 2, 3; j = 1, 2,
· · · , n) satisfying

L−
1 j ≤

f j(u)− f j(v)
u− v

≤ L+
1 j,

L−
2 j ≤

g j(u)−g j(v)
u− v

≤ L+
2 j,

L−
3 j ≤

h j(u)−h j(v)
u− v

≤ L+
3 j,

for all u,v ∈ Rn, u ̸= v.
Assumption 2: The noise intensity matrix σ(·, ·, ·, ·)

satisfies the linear growth condition. That is, there exist
positive definite matrices R1, R2 and R3 such that

trace[σ T (t,x1,x2,x3)σ(t,x1,x2,x3)]

≤ xT
1 R1x1 + xT

2 R2x2 + xT
3 R3x3,

for all x1, x2, x3 ∈ Rn and t ∈ R+.
Definition 1: Consider an n-dimensional stochastic de-

layed differential equation (SDDE, for short)

dx(t) = ϕ(t,x(t),xτ(t))dt +φ(t,x(t),xτ(t))dω(t) (8)

on t ∈ [0,∞) with the initial data given by

{x(θ) : −τ̄ ≤ θ ≤ 0}= ξ ∈ Lp
L0
([−τ̄,0];Rn).
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If V ∈ C2,1(R+ ×Rn;R+), define an operator L from
R+×Rn to R by

LV (t,x,xτ)

=Vt(t,x)+Vx(t,x)ϕ(t,x,xτ)

+(1/2)trace(φT (t,x, tτ)Vxx(t,x)φ(t,x,xτ)),

where Vt(t,x) =
∂V (t,x)

∂ t , Vxx(t,x) =
(

∂ 2V (t,x)
∂x j∂xk

)
n×n

, Vx(t,x) =(
∂V (t,x)

∂x1
, ∂V (t,x)

∂x2
, · · · , ∂V (t,x)

∂xn

)
.

Lemma 1 [20]: Assume that there are functions V ∈
C2,1(R+ × S×Rn;R+), ψ ∈ L1(R+;R+) and w1, w2 ∈
C(Rn;R+) such that

LV (t, i,x,y)≤ ψ(t)−w1(x)+w2(y),

∀(t, i,x,y) ∈ R+×S×Rn ×Rn,
(9)

w1(0) = w2(0) = 0,w1(x)> w2(x) ∀x ̸= 0, y ̸= 0,
(10)

lim
|x|→∞

inf
0≤t<∞,i∈S

V (t, i,x) = ∞. (11)

Then the solution of equation (8) is almost surely asymp-
totically stable.

Lemma 2 [21]: For any vectors a,b∈Rn, the inequality
2aT b ≤ aT Xa+ bT X−1bholds, in which X is any matrix
with X > 0.

Lemma 3 [21]: For any positive definite matrix X ∈
Rn×n, a scalar γ > 0, vector function ψ : [0,γ]→ Rnsuch
that the integration concerned are well defined, then(∫ γ

0
ψ(s)ds

)T

X
(∫ γ

0
ψ(s)ds

)
≤ γ

∫ γ

0
ψT (s)Xψ(s)ds.

Lemma 4 [22]: Let U , V and Z be real matrices of
appropriate dimensions with Z = ZT , then

Z+UVW+WTVTUT < 0

for all VTV ≤ I, if and only if there exists a scalar ε > 0
such that

Z+ ε−1UUT + εWTW < 0.

3. MAIN RESULTS

In this section, the adaptive synchronization control for
the neural networks (1) and (5) is investigated under As-
sumptions 1-2. Firstly, the adaptive synchronization con-
trol of neural networks (1) and (5) will be handled without
uncertainties.

Theorem 1: Under Assumptions 1-2, the stochastic
neural networks (1) and (5) without uncertainties can be
adaptive almost surely asymptotically synchronized, if
there exist positive diagonal matrices H1, H2, H3, P =
diag(p1, p2, . . ., pn) positive definite matrices Q1, Q2, Q3,

S, and a positive scalar η such that the following matrix
inequalities hold,

P ≤ ηI, (12)

τ̄2S ≤ Q2, (13)


Π11 0 PA 0 PB PD
∗ Π22 0 0 0 0
∗ ∗ −H1 0 0 0
∗ ∗ ∗ τ̄2Q2 −H2 0 0
∗ ∗ ∗ ∗ −H2 0
∗ ∗ ∗ ∗ ∗ −S

< 0,

(14)

where Π11 = −2PC + η(R1 + R3) + Q1 + L1H1L1 +
L2H2L2, Π22 = ηR2 − (1− τ̂1)Q1 +L3H3L3.

And the adaptive feedback controller is designed as

u(t) = k(y(t)− x(t)), (15)

where the feedback strength k = diag(k1, k2, . . ., kn), is
chosen as

k̇ j =−ν je2
j(t) (16)

with ν j > 0 ( j = 1, 2, . . ., n), an arbitrary positive constant.
Proof: Consider the following Lyapunov-Krasovskii

function for system (7) as follows:

V (t,e(t)) =
4

∑
i=1

Vi(t,e(t)), (17)

where

V1(t,e(t)) = eT (t)Pe(t),

V2(t,e(t)) =
∫ t

t−τ1(t)
eT (s)Q1e(s)ds,

V3(t,e(t)) =
∫ 0

−τ2(t)

∫ t

t+θ
hT (e(s))Q2h(e(s))dsdθ ,

V4(t,e(t)) =
n

∑
j=1

p j

ν j
k2

j .

Computing LV (t,e(t)) along the trajectory of error system
(7), one can get that

LV1(t,e(t))

= 2eT (t)P[−Ce(t)+A f (e(t))+Bg(eτ1(t))

+D
∫ t

t−τ2(t)
h(e(s))ds+ k(t)e(t)]

+ trace[σ T (t,e(t),eτ1(t),eτ2(t))

×Pσ(t,e(t),eτ1(t),eτ2(t))]

= eT (t)[−2PC]e(t)+ eT (t)[2PA] f (e(t))

+ eT (t)[2PB]g(eτ1(t))+ eT (t)[2PD]
∫ t

t−τ2(t)
h(e(s))ds

+2
n

∑
j=1

p jk j(t)e2
j(t)
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+ trace[σ T (t,e(t),eτ1(t),eτ2(t))

×Pσ(t,e(t),eτ1(t),eτ2(t))].
(18)

From Lemma 2, yields

eT (t)[2PD]
∫ t

t−τ2(t)
h(e(s))ds

≤ eT (t)[PDS−1DT PT ]e(t)

+

[∫ t

t−τ2(t)
h(e(s))ds

]T

S
[∫ t

t−τ2(t)
h(e(s))ds

]
.

(19)

Applying the Lemma 3, one gets[∫ t

t−τ2(t)
h(e(s))ds

]T

S
[∫ t

t−τ2(t)
h(e(s))ds

]
≤ τ2(t)

∫ t

t−τ2(t)
hT (e(s))Sh(e(s))ds

≤
∫ t

t−τ2(t)
hT (e(s))[τ̄2S]h(e(s))ds.

(20)

It follows from Assumption 2 and inequality (12) that

trace[σ T (t,e(t),eτ1(t),eτ2(t))Pσ(t,e(t),eτ1(t),eτ2(t))]

≤ λmax(P)trace[σ T (t,e(t),eτ1(t),eτ2(t))

×σ(t,e(t),eτ1(t),eτ2(t))]

≤ η [eT (t)R1e(t)+ eT
τ1
(t)R2eτ1(t)+ eT

τ2
(t)R3eτ2(t)],

(21)

where η = λmax(P).
By Itô’s differential formula, we have

LV2(t,e(t))

= eT (t)Q1e(t)− (1− τ̇1(t))eT
τ1
(t)Q1eτ1(t)

≤ eT (t)Q1e(t)− eT
τ1
(t)[(1− τ̂1)Q1]eτ1(t),

(22)

LV3(t,e(t))

= τ2(t)hT (e(t))Q2h(e(t))

−
∫ t

t−τ2(t)
hT (e(s))Q2h(e(s))ds

≤ hT (e(t))[τ̄2Q2]h(e(t))

−
∫ t

t−τ2(t)
hT (e(s))Q2h(e(s))ds,

(23)

LV4(t,e(t)) = 2
n

∑
j=1

p j

ν j
k j k̇ j =−2

n

∑
j=1

p jk je2
j(t). (24)

Furthermore, the condition (13) yields∫ t

t−τ2(t)
hT (e(s))[τ̄2S]h(e(s))ds

−
∫ t

t−τ2(t)
hT (e(s))Q2h(e(s))ds ≤ 0.

(25)

On the other hand, from Assumption 1, it follows that

eT (t)L1H1L1e(t)− f T (e(t))H1 f (e(t))≥ 0, (26)

eT (t)L2H2L2e(t)−hT (e(t))H2h(e(t))≥ 0, (27)

eT
τ1
(t)L3H3L3eτ1(t)−gT (eτ1(t))H3g(eτ1(t))≥ 0, (28)

where Li = diag(li1, li2, . . ., lin), li j = max{|l−i j |, |l+i j |}, (i =
1, 2, 3) for j = 1, 2, . . ., n.

According to (18)-(28), one can obtain that

LV (t,e(t))

= eT (t)[−2PC+Q1 +η(R1 +R3)+PDS−1DT PT

+L1H1L1 +L2H2L2]e(t)+ eT (t)[2PA] f (e(t))

+ eT (t)[2PB]g(eτ1(t))+ eT
τ1
(t)[ηR2 − (1− τ̂1)Q1

+L3H3L3]eτ1(t)+hT (e(t))[τ̄2Q2 −H2]h(e(t))

+ f T (e(t))[−H1] f (e(t))+gT (eτ1(t))[−H3]g(eτ1(t))

− eT (t)[ηR3]e(t)+ eT
τ2
(t)[ηR3]eτ2(t)

= ΨT (t)ΞΨ(t)− eT (t)[ηR3]e(t)+ eT
τ2
(t)[ηR3]eτ2(t),

(29)

where

ΨT (t) = [eT (t),eT
τ1
(t), f T (e(t)),hT (e(t)),gT (eτ1(t))]

T ,

Ξ =


Ξ11 0 PA 0 PB
∗ Π22 0 0 0
∗ ∗ −H1 0 0
∗ ∗ 0 τ̄2Q2 −H2 0
∗ ∗ ∗ 0 −H3

 ,

(30)

Ξ11 =−2PC+Q1 +η(R1 +R3)+L1H1L1 +L2H2L2

+PDS−1DT PT .

In addition, by Schur complement, inequality (14) is
equivalent to (30). Therefore, Ξ < 0.

Let δ = λmin(−Ξ), clearly, the constant δ > 0. This
together with (29) gives

LV (t,e(t))≤− eT (t)(ηR3 +δ I)e(t)

+ eT
τ2
(t)(ηR3 −δ I)eτ2(t)

=−ω1(e(t))+ω2(eτ2(t)),

(31)

where ω1(e(t)) = eT (t)(ηR3 + δ I)e(t) and ω2(e(t)) =
eT

τ2
(ηR3 −δ I)eτ2(t).
Let ψ(t) = 0, ω1(e) = eT (t)(ηR3 + δ I)e(t) and

ω2(eτ2) = eT
τ2
(t)(ηR3 − δ I)eτ2(t). Then inequality (31)

holds such that inequality (9) holds. ω1(0) = 0 and
ω2(0) = 0 when e = 0 and eτ2 = 0, and it can be seen
that ω1(e(t)) > ω2(e(t)) for any e(t) ̸= 0. So (10) holds.
Moreover, (11) holds when |e| → ∞ and |eτ2 | → ∞. By
Lemma 1, therefore, the error system (7) is adaptive al-
most surely asymptotically stable, and hence the response
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neural networks (5) can be adaptive almost surely asymp-
totical synchronized with the drive neural networks (1).
This completes the proof.

Remark 6: In Theorem 1, the condition of adaptive
synchronization control is obtained for neural networks
without uncertainty. Next, we will deal with the synchro-
nization control of neural networks (1) and (5) with uncer-
tainty.

Theorem 2: Under Assumption 1-2, the stochastic neu-
ral networks (1) and (5) with uncertainty can be adaptive
almost surely asymptotically synchronized, if there exist
positive diagonal matrices H1, H2, H3, P = diag(p1, p2,
. . ., pn), positive definite matrices Q1, Q2, S, and a pos-
itive scalar η such that the following matrix inequalities
hold,

P ≤ ηI, (32)

τ̄2S ≤ Q2, (33)

Θ11 0 PA 0 PB PD PM εNT
C

∗ Θ22 0 0 0 0 0 0
∗ ∗ −H1 0 0 0 0 εNT

A
∗ ∗ ∗ Θ44 0 0 0 0
∗ ∗ ∗ ∗ −H3 0 0 εNT

B
∗ ∗ ∗ ∗ ∗ −S 0 εNT

D
∗ ∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI


< 0, (34)

whereΘ11 = −2PC + η(R1 + R3) + Q1 + L1H1L1 +
L2H2L2, Θ22 = ηR2 − (1 − τ̂1)Q1 + L3H3L3, Θ44 =
τ̄2Q2 −H2.

And the adaptive feedback controller is designed as

u(t) = k(y(t)− x(t)), (35)

where the feedback strength k = diag(k1, k2, . . ., kn), is
chosen as

k̇ j =−ν je2
j(t) (36)

with ν j > 0 ( j = 1, 2, . . ., n), an arbitrary positive constant.
Proof : Replacing C, A, B and D in (14) by C̄, Ā, B̄, D̄,

respectively. Then, one gets
Θ̄11 0 PĀ 0 PB̄ PD̄
∗ Θ22 0 0 0 0
∗ ∗ −H1 0 0 0
∗ ∗ ∗ Θ44 0 0
∗ ∗ ∗ ∗ −H2 0
∗ ∗ ∗ ∗ ∗ −S

< 0, (37)

where Θ̄11 = −2PC̄ + η(R1 + R3) + Q1 + L1H1L1 +
L2H2L2.

By Schur complement lemma, (37) is equivalent to

Θ+ΛFΓ+(ΛFΓ)T < 0, (38)

Θ =


Θ11 0 PA 0 PB PD
∗ Θ22 0 0 0 0
∗ ∗ −H1 0 0 0
∗ ∗ ∗ Θ44 0 0
∗ ∗ ∗ ∗ −H3 0
∗ ∗ ∗ ∗ 0 −S

< 0,

(39)

Λ =
[
(PM)T 0 0 0 0 0

]T
,

Γ =
[

NC 0 NA 0 NB ND
]
.

According to Lemma 4, then

Θ+ εΛT Λ+ ε−1ΓΓT < 0, (40)

holds if and only if there exists ε > 0.
Again by Schur complement lemma, (40) is equivalent

to (34).This completes the proof.
Remark 7: Up to now, the condition of adaptive syn-

chronization control are got for neural networks with un-
certainty and without uncertainty. Note that the obtained
criteria are dependent on not only the upper bound but
also the lower bound of the time-varying delay, hence less
conservative than the traditional delay-independent ones.
Also, the LMI-based criteria can be checked efficiently via
the Matlab LMI Toolbox.

4. ILLUSTRATIVE EXAMPLE

Consider the delayed neural networks (1), the response
stochastic delayed neural networks (5) and the error sys-
tem (7) with the network parameters given as follows:

C =

 2.9 0 0
0 2.8 0
0 0 2.3

 , A =

 0.2 0.18 0
0.3 0.19 0.2
0.4 0.7 0.6

 ,

B =

 0.3 0 0.5
0.4 0.5 0
0.2 0.7 0.4

 , D =

 1 0 0
0 1 0
0 0 1

 ,

NC =

 1.3 0 0
0 0.7 0
0 0 0.8

 , NA =

 1.3 0.48 0.3
0.4 0.19 0.2
0.1 1.12 1.6

 ,

NB =

 1.3 0 0.2
0.5 0.8 0.4
0.6 0.9 0.1

 , ND =

 1 0 0
0 1 0
0 0 1

 ,

M =

 4 0.2 0
0.16 4 0

0 0 4

 , I =

 1 0 0
0 1 0
0 0 1

 ,

f (e(t)) = g(e(t)) = h(e(t)) = tanh(e(t)),

σ(t,e(t),e(t − τ1),e(t − τ2))

= [0.3e1(t − τ1)+0.4e2(t − τ2);

0.5e2(t)+0.2e3(t − τ2);

0.3e3(t)+0.1e1(t − τ2)]
T ,
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Fig. 1. The dynamic curve of the errors system e(t).

Fig. 2. The dynamic curve of the feedback gain k(t).

L1 = L2 = L3 = 1,R1 = R2 = R3 = 0.4I,

τ̄1 = τ̄2 = τ̂1 = τ̂2 = 1.

Let the initial data as e(0) = k(0) = [−4,0,4]T , we can
draw the response curve of e(t) of the errors system, and
the dynamic curve of the feedback gain k(t), respectively,
as Figs. 1-2. From the simulation figures, one can see
that the stochastic delayed neural networks (1) and (5) are
adaptive synchronized.

5. CONCLUSION

In this paper, we have dealt with the problem of the
adaptive synchronization for neural networks with uncer-
tainties and stochastic noises. By using the adaptive feed-
back control technique and LMIs method, an adaptive
feedback controller has been designed to achieve the syn-
chronization for the stochastic neural networks.
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