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Stability Analysis of Switched Delay Systems with All Subsystems Unsta-
ble
Qingzhi Wang, Haibin Sun, and Guangdeng Zong*

Abstract: The stability problem of switched delay systems with all subsystems unstable is investigated in this paper.
A sufficient criterion is firstly proposed to guarantee asymptomatic stability of nonlinear switched delay systems
with all subsystems unstable, where the stabilization property of switching behaviors is exploited to compensate the
divergence of states. Then by constructing multiple discretized Lyapunov-Krasovskii functionals, stability criteria
are developed for linear switched time-invariant and time-varying delay systems with all subsystems unstable.
Finally, two examples are provided to illustrate the feasibility, superiority and application of the proposed approach.
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1. INTRODUCTION

Switched systems include a series of subsystems de-
scribed by differential or difference equations and a
switching signal governing the switching among these
subsystems. And many mechanical systems can be mod-
elled as switched systems, for example, flight control sys-
tems [1], electric vehicles [2], chemical processes [3],
network control systems [4, 5], etc. Hence, the stability
analysis and the controller design for switched systems
have become active topics in control theory and applica-
tion [6–11]. In addition, time delay phenomena actually
appear in various practical systems, such as chemical pro-
cesses, manufacturing systems, network control systems.
Since time delays may deteriorate the system performance
or even lead to instability, it is significant to analyze the
performance of delay systems due to the strong engineer-
ing background. Lots of results on time delay systems
have been reported in the past decade [12–15].

On the other hand, it is an important issue to design an
appropriate switching signal to guarantee system stability.
Switching signals are usually divided into two cases: time-
dependent switching signals [16–21] and state-dependent
switching signals [22, 23]. For the former, the robust
reliable control issue is discussed in [17] for uncertain
switched nonlinear systems with time delay under asyn-
chronous switching. In [21], the stability and L2 gain
analysis of switched delay systems based on average dwell
time method is studied. A dynamic output feedback con-
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troller is developed for a class of switched delay sys-
tems under asynchronous switching in [20]. For the lat-
ter, in [22], the authors have designed the state-dependent
switching signal to ensure the stability of linear switched
systems with time delay. In [23], the stability problem is
discussed for a class of linear switched systems with time-
varying delay in the sense of Hurwitz convex combination.

However, it should be pointed out that, for the former,
there exists at least one stable subsystem to guarantee the
stability of the whole switched delay systems. The basic
idea is that stable subsystems are activated for sufficiently
long time to compensate the state divergence caused by
unstable subsystems. The existing results based on time-
dependent switching signals fail to work on switched de-
lay systems with all subsystems unstable. For the latter,
state-dependent switching signals can stabilize switched
delay systems with all unstable subsystems, but the sys-
tem states must be fully measurable. So, it is particu-
larly urgent to design time-dependent switching signals
for switched delay systems with all subsystems unstable,
which motivates the present study.

In this paper, we consider the stability issue of switched
delay systems with all subsystems unstable. Firstly,
for nonlinear switched delay systems with all unstable
subsystems, a sufficient criterion is proposed to ensure
asymptotic stability of the given systems. It is worth men-
tioning that this result can work well when the system
states are not measurable because the designed switching
signal is time-dependent. Secondly, multiple discretized
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Lyapunov-Krasovskii functionals are constructed to de-
rive stability criteria for linear switched time-invariant and
time-varying delay systems with all the subsystems unsta-
ble. Finally, two examples are used to illustrate the ef-
fectiveness, superiority and application of the proposed
method.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Let C denote the space of continuous functions map-
ping [−d,0], d > 0, into Rn, that is, C : [−d,0] → Rn.
For a function ϕ ∈ C, define the norm ∥ · ∥C by ∥ϕ∥C =
sup−d≤θ≤0 ∥ϕ(θ)∥. The symbol Dτk stands for a set of
all switching signals with dwell time τk = tk+1 − tk,k =
0,1,2, · · · .

In this paper, consider the following nonlinear switched
delay system described by

Σ(1) : ẋ(t) = fσ(t)(t,xt), xt0 = φ(θ), θ ∈ [−d,0], (1)

where x(t) ∈ Rn is the state vector, fσ(t) : R≥0 ×C→ Rn.
σ(t) : R≥0 →M = {1,2, · · · ,m}, m ∈ Z+, is the switch-
ing signal which is assumed to be a piecewise constant
function and continuous from the right. m is the num-
ber of subsystems. xt = xt(θ) = x(t + θ), θ ∈ [−d,0],
with d being a positive constant. xt ∈ C, and ∥xt∥C =
sup−d≤θ≤0 ∥xt(θ)∥. φ(θ) is a continuously differential
initial function on [−d,0]. σ(t) can be given by Σ =
{xt0 ;(σ(t0), t0),(σ(t1), t1), · · · ,(σ(tk), tk), · · · ,σ(tk) ∈ M,
k = 0,1,2, · · ·}, where t0 is the initial time, xt0 is the ini-
tial state function, and tk, k = 0,1,2, · · · , are switching in-
stants. (σ(tk), tk) means that σ(tk)-th subsystem is acti-
vated on the interval [tk, tk+1).

In this paper, assume that

A1. All the subsystems are unstable.
A2. fi(t,0)≡ 0, for all t, and i ∈M.
A3. For each xt0 , there exists a unique trajectory x(t;xt0)

for (1).
A4. No state jump occurs at switching instants.

Definition 1: The switched delay system Σ(1) is said to
be uniformly stable (US) with respect to σ(t) if for any
t0 ∈ R≥0 and any ε > 0, there exists a δ = δ (ε) > 0 such
that ∥xt0∥C < δ implies ∥x(t)∥< ε for t ≥ t0. Furthermore,
if system Σ(1) is US and satisfies lim

t→∞
x(t) = 0, then system

Σ(1) is uniformly asymptotically stable (UAS) with respect
to σ(t).

3. MAIN RESULTS

3.1. Stability analysis of the nonlinear switched delay
system

In [24], sufficient criterion has been proposed to guarantee
the globally uniformly asymptotical stability of switched

systems with all unstable subsystems. Here, we will gen-
eralize the result in [24] to the switched delay system (1).

Theorem 1: Consider the nonlinear switched delay sys-
tem (1), with d > 0. If there exist continuous differentiable
functionals Vi(t,xt) : R≥0 × C → R≥0, i = 1,2, · · · ,m,
functions α1,α2 ∈ K∞, and constants η > 0, 0 < µ < 1,
such that for any i ∈M, the following inequalities hold

α1(∥x∥)≤Vi(t,xt)≤ α2(∥xt∥C), (2)

V̇i(t,xt)≤ ηVi(t,xt), (3)

Vj(t+k ,xt+k
)≤ µVi(t−k ,xt−k

), i ̸= j, (4)

ln µ +ητk < 0, (5)

then the nonlinear switched delay system (1) is UAS with
respect to the switching signal σ(t) ∈ Dτk .

Proof: For system (1), define a multiple Lyapunov
functional Vσ(t)(t,xt),σ(t) ∈M. When t ∈ [tk, tk+1), from
(3), it is easy to see that

Vσ(t)(t,xt) =Vσ(tk)(t,xt)≤ eη(t−tk)Vσ(tk)(tk,xtk). (6)

From (4) and (6), we derive

Vσ(tk+1)(tk+1,xtk+1)≤ µVσ(t−k+1)
(t−k+1,xt−k+1

)

= µVσ(tk)(t
−
k+1,xt−k+1

)

≤ µeη(tk+1−tk)Vσ(tk)(tk,xtk)

= ρVσ(tk)(tk,xtk), (7)

where ρ = µeη(tk+1−tk). From (5) and 0 < µ < 1, one
gets 0 < ρ < 1. Thus, we obtain Vσ(tk+1)(tk+1,xtk+1) <
Vσ(tk)(tk,xtk), which implies that Vσ(tk)(tk,xtk) is strictly de-
creasing as k→∞. τmax = supk=0,1,2,··· τk exists by (5). For
any ε > 0, there exists a δ = δ (ε) = α−1

2 (e−ητmax α1(ε))
such that ∥xt0∥C < δ implies Vσ(t0)(t0,xt0)< α2(∥xt0∥C)<
e−ητmax α1(ε). Since Vσ(tk)(tk,xtk) is strictly decreasing as
k → ∞, we have Vσ(tk)(tk,xtk) < e−ητmax α1(ε). This, to-
gether with (6), yields Vσ(t)(t,xt) ≤ eη(t−tk)Vσ(tk)(tk,xtk) <
eητmaxVσ(tk)(tk,xtk)< α1(ε). From (2), we have ∥x(t)∥< ε .
Therefore, we can conclude that system (1) is US.

Since Vσ(tk)(tk,xtk) is strictly decreasing as k → ∞, and
bounded from below by zero, one has Vσ(tk)(tk,xtk)→ l ≥
0, as k → ∞. Furthermore, we obtain

0 = l − l = lim
k→∞

Vσ(tk+1)(tk+1,xtk+1)− lim
k→∞

Vσ(tk)(tk,xtk)

= lim
k→∞

(Vσ(tk+1)(tk+1,xtk+1)−Vσ(tk)(tk,xtk))

≤−(1−ρ) lim
k→∞

Vσ(tk)(tk,xtk) =−(1−ρ)l. (8)

Equation (8) and 0 < ρ < 1 imply l = 0. Thus,
Vσ(tk)(tk,xtk) → 0 holds as k → ∞ . Choose ε̃ =
e−ητmax α1(ε). There exists K > 0,(K ∈ Z+) such that
Vσ(tk)(tk,xtk) < ε̃,k ≥ K. When t ∈ [tk, tk+1),k = K,K +
1, · · · , we have Vσ(t)(t,xt) ≤ eητmaxVσ(tk)(tk,xtk) < α1(ε).
Choose T = tK . When t > T , it is easy to derive Vσ(t)(t,xt)
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< α1(ε). From (2), we can see that ∥x(t)∥ < ε . Further-
more, lim

t→∞
x(t) = 0 holds. Therefore, nonlinear switched

delay system (1) is UAS with respect to switching signal
σ(t) ∈ Dτk .

Remark 1: The condition that functionals Vi(t,xt), i =
1,2, · · · ,m are continuously differentiable is restrictive. In
fact, Theorem 1 can work with the weaker conditions.
Namely, functionals Vi(t,xt), i = 1,2, · · · ,m are just con-
tinuous and satisfy (3) except for finite non-differentiable
instants.

Remark 2: For nonlinear switched delay system (1),
Theorem 1 provides a general conclusion to judge the sta-
bility, which can not only apply to the switched time-
invariant delay systems with all subsystems unstable but
also to the switched time-varying delay systems with all
subsystems unstable.

Considering that the bounded quadratic Lyapunov func-
tional is used widely, we state a restricted version of The-
orem 1 in the following corollary.

Corollary 1: Consider the nonlinear switched delay
system (1). If there exist bounded quadratic continu-
ous differentiable functionals Vi(t,xt) : R≥0 ×C → R≥0,
i = 1,2, · · · ,m, and constants υ > 0, η > 0, 0 < µ < 1,
such that for any i ∈M, the following inequalities hold

Vi(t,xt)≥ υ∥x∥2,

V̇i(t,xt)≤ ηVi(t,xt),

Vj(t+k ,xt+k
)≤ µVi(t−k ,xt−k

), i ̸= j,

ln µ +ητk < 0,

then the nonlinear switched delay system (1) is UAS with
respect to the switching signal σ(t) ∈ Dτk .

Proof: Since Vi(t,xt), i = 1,2, · · · ,m are bounded
quadratic, there exists K > 0 such that Vi(t,xt)≤ K∥xt∥2

C,
i = 1,2, · · · ,m hold. By Theorem 1, this corollary holds.

3.2. Stability analysis of linear switched time-
invariant delay system with all subsystems un-
stable

Based on Theorem 1, we further discuss the stability prob-
lem of the linear switched time-invariant systems with all
subsystems unstable.

Consider the linear switched time-invariant delay sys-
tem given by

Σ(2) : ẋ(t) = Aσ(t)x(t)+Adσ(t)x(t −d),

x(t) = φ(t), t ∈ [−d,0],
(9)

where the definitions of x(t) and σ(t) are the same with
(1). Ai,Adi are known real constant matrices with appro-
priate dimensions. Define τmin = infk=0,1,2,··· τk and τmax =
supk=0,1,2,··· τk. The symbol D[τmin,τmax] stands for a set of
all switching signals with dwell time τk ∈ [τmin,τmax],k =
0,1,2, · · · .

For t ∈ [tk, tk+1), assume that i-th subsystem is activated.
At this time, [tk, tk+1) = [tk, tk + τmin) ∪ [tk + τmin, tk+1).
[tk, tk + τmin) is divided into L segments described as
Nk,q = [tk + θk,q, tk + θk,q+1) of equal length h = τmin/L.
θk,q = qh = qτmin/L and [tk, tk + τmin) =

∪L−1
q=0 Nk,q. De-

fine a set L = {0,1,2, · · · ,L − 1} and let Pi,q > 0, q =
0,1,2, · · · ,L. Construct matrix function Pi(t) as

Pi(t) =
{

(1−α)Pi,q +αPi,q+1, t ∈Nk,q,
Pi,L, t ∈ [tk + τmin, tk+1),

(10)

where α = (t − tk −θk,q)/h, 0 ≤ α < 1, q ∈ L.
Theorem 2: Consider the system (9), with a delay

d. Given positive constants η > 0,0 < µ < 1,τmin > 0,
if, there exist matrices Pi,q > 0, q = 0,1,2, · · · ,L, i =
1,2, · · · ,m, S > 0, a constant τmax, such that for any q ∈L,
i, j ∈M, the following inequalities hold

Ξ1i,q =

[
Λ1i,q Pi,qAdi

∗ −eηdS

]
< 0, (11)

Ξ̄1i,q =

[
Λ̄1i,q Pi,q+1Adi

∗ −eηdS

]
< 0, (12)

Ξ̃1i,L =

[
Λ̃1i,L Pi,LAdi

∗ −eηdS

]
< 0, (13)

Pj,0 −µPi,L ≤ 0, i ̸= j, (14)

ln µ +ητmax < 0, (15)

where

Λ1i,q = Pi,qAi +AT
i Pi,q −ηPi,q +ψ1i,q,

Λ̄1i,q = Pi,q+1Ai +AT
i Pi,q+1 −ηPi,q+1 +ψ1i,q,

Λ̃1i,L = Pi,LAi +AT
i Pi,L −ηPi,L +S,

ψ1i,q = S+L/τmin(Pi,q+1 −Pi,q),

then system (9) is UAS under the switching signal σ(t) ∈
D[τmin,τmax].

Proof: When t ∈ [tk, tk+1), suppose σ(t)= i, and choose
the corresponding discretized Lyapunov-Krasovskii func-
tional

Vi(t,xt) = xT (t)Pi(t)x(t)+
∫ t

t−d
eη(t−ξ )xT (ξ )Sx(ξ )dξ , (16)

where Pi(t) is defined in form of (10), S > 0. Obviously,
Vi(t,xt) is continuous and contains L non-differential in-
stants, that is, tk +θk,q, q = 1,2, · · · ,L. According to Re-
mark 1, we just verify that inequalities (3) holds on Nk,q,
q ∈ L and [tk + τmin, tk+1).

When t ∈Nk,q, q ∈ L, calculating the time derivative of
(16) along the solution of system (9), we get

V̇i(t,xt) =2xT (t)Pi(t)ẋ(t)+ xT (t)Ṗi(t)x(t)

+η
∫ t

t−d
eη(t−ξ )xT (ξ )Sx(ξ )dξ

+ xT (t)Sx(t)− eηdxT (t −d)Sx(t −d).
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This, together with (16), implies

V̇i(t,xt)−ηVi(t,xt)

≤ 2xT (t)Pi(t)[Aix(t)+Adix(t −d)]

+ xT (t)Ṗi(t)x(t)+ xT (t)Sx(t)

− eηdxT (t −d)Sx(t −d)−ηxT (t)Pi(t)x(t)

≤ ηT
1 (t)Ω̃i(t)η1(t),

where

η1(t) = [ xT (t) xT (t −d) ]T ,

Ω̃i(t) =
[

Ω̃i1(t) Pi(t)Adi

∗ −eηdS

]
,

Ω̃i1(t) = Pi(t)Ai +AT
i Pi(t)−ηPi(t)+S+ Ṗi(t).

Substituting Ṗi(t) = α̇(Pi,q+1 −Pi,q) = L/τmin(Pi,q+1 −Pi,q)
and (10) into matrix Ω̃i(t), one obtains that Ω̃i(t) = (1−
α)Ξ1i,q +αΞ̄1i,q. From (11) and (12), we conclude that

V̇i(t,xt)≤ ηVi(t,xt), t ∈Nk,q, q ∈ L. (17)

When t ∈ [tk + τmin, tk+1), similar to the above process,
we get V̇i(t,xt)−ηVi(t,xt) ≤ ηT

1 (t)Ξ̃1i,Lη1(t). From (13),
one derives

V̇i(t,xt)≤ ηVi(t,xt), t ∈ [tk + τmin, tk+1). (18)

Therefore, inequalities (3) holds from (17) and (18).
Furthermore, according to (14) and (16), it is easy to see

that inequalities (4) holds. Since τmax ≥ τk, k = 0,1,2, · · · ,
(15) implies (5). By Theorem 1, the proof is completed.

Remark 3: (16) constructed here is quite usual, which
may lead to some conservativeness. In the following, an-
other discretized Lyapunov-Krasovskii functional includ-
ing the more time delay information can be chosen to re-
duce the conservativeness.

Theorem 3: Consider the system (9), with a delay
d. Given positive constants η > 0,0 < µ < 1,τmin > 0,
if, there exist matrices Pi,q > 0, q = 0,1,2, · · · ,L, i =
1,2, · · · ,m, S > 0, Q > 0, X ≥ 0, Y , a constant τmax, such
that for any q ∈ L, i, j ∈ M, the following inequalities
hold

Ξ2i,q =

[
Λ2i,q Θ2i,q

∗ −eηdS+dAT
diQAdi

]
< 0, (19)

Ξ̄2i,q =

[
Λ̄2i,q Θ̄2i,q

∗ −eηdS+dAT
diQAdi

]
< 0, (20)

Ξ̃2i,L =

[
Λ̃2i,L Θ̃2i,q

∗ −eηdS+dAT
diQAdi

]
< 0, (21)[

X Y
∗ Q

]
≥ 0, (22)

Pj,0 −µPi,L ≤ 0, i ̸= j, (23)

ln µ +ητmax < 0, (24)

where

Λ2i,q = Pi,qAi +AT
i Pi,q −ηPi,q +ψ2i,q,

Λ̄2i,q = Pi,q+1Ai +AT
i Pi,q+1 −ηPi,q+1 +ψ2i,q,

Λ̃2i,L = Pi,LAi +AT
i Pi,L −ηPi,L

+S+dAT
i QAi +dX +Y +Y T ,

ψ2i,q = S+L/τmin(Pi,q+1 −Pi,q)

+dAT
i QAi +dX +Y +Y T ,

Θ2i,q = Pi,qAdi +dAT
i QAdi −Y,

Θ̄2i,q = Pi,q+1Adi +dAT
i QAdi −Y,

Θ̃2i,q = Pi,LAdi +dAT
i QAdi −Y,

then system (9) is UAS under the switching signal σ(t) ∈
D[τmin,τmax].

Proof: When t ∈ [tk, tk+1), suppose σ(t)= i, and choose
the corresponding discretized Lyapunov-Krasovskii func-
tional as follows

Vi(t,xt) =xT (t)Pi(t)x(t)+
∫ t

t−d
eη(t−ξ )xT (ξ )Sx(ξ )dξ

+
∫ 0

−d

∫ t

t+ω
eη(t−ξ )ẋT (ξ )Qẋ(ξ )dξ dω, (25)

where Pi(t) is defined in form of (10), S > 0, Q > 0.
Obviously, Vi(t,xt) is continuous and contains L non-
differential instants, that is, tk + θk,q, q = 1,2, · · · ,L. Ac-
cording to Remark 1, we just verify that inequalities (3)
holds on Nk,q, q ∈ L and [tk + τmin, tk+1).

When t ∈Nk,q, q ∈ L, calculating the time derivative of
(25) along the solution of system (9), we get

V̇i(t,xt)

= 2xT (t)Pi(t)ẋ(t)+ xT (t)Ṗi(t)x(t)

+η
∫ t

t−d
eη(t−ξ )xT (ξ )Sx(ξ )dξ

+ xT (t)Sx(t)− eηdxT (t −d)Sx(t −d)

+η
∫ 0

−d

∫ t

t+ω
eη(t−ξ )ẋT (ξ )Qẋ(ξ )dξ dω

+dẋT (t)Qẋ(t)−
∫ t

t−d
e−η(ξ−t)ẋT (ξ )Qẋ(ξ )dξ .

This, together with (25), implies

V̇i(t,xt)−ηVi(t,xt)

≤ 2xT (t)Pi(t)[(Ai +Adi)x(t)−Adi

∫ t

t−d
ẋ(ξ )dξ ]

+ xT (t)Ṗi(t)x(t)+ xT (t)Sx(t)

− eηdxT (t −d)Sx(t −d)+dẋT (t)Qẋ(t)

−
∫ t

t−d
ẋT (ξ )Qẋ(ξ )dξ −ηxT (t)Pi(t)x(t). (26)

From (22) and Moon’s inequality, one derives

−2xT (t)Pi(t)Adiẋ(ξ )
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≤ ηT
2 (t)

[
X Y −Pi(t)Adi

∗ Q

]
η2(t), (27)

where η2(t) =
[

xT (t) ẋT (ξ )
]T . Substituting (27) into

(26), we obtain that

V̇i(t,xt)−ηVi(t,xt)

≤ 2xT (t)Pi(t)Aix(t)+dxT (t)Xx(t)+2xT (t)Y x(t)

−2xT (t)(Y −Pi(t)Adi)x(t −d)+ xT (t)Ṗi(t)x(t)

+ xT (t)Sx(t)− eηdxT (t −d)Sx(t −d)+dẋT (t)Qẋ(t)

−ηxT (t)Pi(t)x(t)≤ ηT
1 (t)Ω̄i(t)η1(t),

where

η1(t) = [ xT (t) xT (t −d) ]T ,

Ω̄i(t) =
[

Ω̄i1(t) Pi(t)Adi +dAT
i QAdi −Y

∗ −eηdS+dAT
diQAdi

]
,

Ω̄i1(t) = Pi(t)Ai +AT
i Pi(t)−ηPi(t)+S

+ Ṗi(t)+dAT
i QAi +dX +Y +Y T .

Substituting Ṗi(t) = α̇(Pi,q+1 −Pi,q) = L/τmin(Pi,q+1 −Pi,q)
and (10) into matrix Ω̄i(t), one obtains that Ω̄i(t) = (1−
α)Ξ2i,q +αΞ̄2i,q. From (19) and (20), we conclude that

V̇i(t,xt)≤ ηVi(t,xt), t ∈Nk,q, q ∈ L. (28)

When t ∈ [tk +τmin, tk+1), similar to the above process, we
get V̇i(t,xt)−ηVi(t,xt)≤ ηT

1 (t)Ξ̃1i,Lη1(t). From (21), one
derives

V̇i(t,xt)≤ ηVi(t,xt), t ∈ [tk + τmin, tk+1). (29)

Therefore, inequalities (3) holds from (28) and (29).
Furthermore, according to (23) and (25), it is easy to see

that inequalities (4) holds. Since τmax ≥ τk, k = 0,1,2, · · · ,
(24) implies (5). By Theorem 1, the proof is completed.

3.3. Stability analysis of the linear switched time-
varying delay system with all subsystems unsta-
ble

In this section, based on Theorem 1, we further discuss
the stability problem of the linear switched time-varying
delay systems with all subsystems unstable.

Consider the linear switched time-varying delay system
given by

Σ(3) : ẋ(t) = Aσ(t)x(t)+Adσ(t)x(t −d(t)),

x(t) = φ(t), t ∈ [−h1,0],
(30)

where the definitions of x(t) and σ(t) are the same with
(1). Ai, Adi are known real constant matrices with ap-
propriate dimensions. d(t) satisfies 0 ≤ d(t) ≤ h1 and
ḋ(t)≤ h2 < 1.

Similar to the discussion in section 3.2, the stability cri-
terion for (30) is derived by constructing the correspond-
ing discretized Lyapunov-Krasovskii functional

Vi(t,xt) =xT (t)Pi(t)x(t)+
∫ t

t−d(t)
eη(t−ξ )xT (ξ )Sx(ξ )dξ

+
∫ 0

−h1

∫ t

t+ω
eη(t−ξ )ẋT (ξ )Qẋ(ξ )dξ dω ,

where Pi(t) is defined in form of (10), S > 0, Q > 0.
Theorem 4: Consider system (30). Given positive con-

stants h1 > 0, h2 < 1 η > 0, 0 < µ < 1, τmin > 0, if, there
exist matrices Pi,q > 0, q = 0,1,2, · · · ,L, i = 1,2, · · · ,m,
S > 0, Q > 0, X ≥ 0, Y , a constant τmax, such that for any
q ∈ L, i, j ∈M, the following inequalities hold

Ξ2i,q =

[
Λ2i,q Θ2i,q

∗ −(1−h2)S+h1AT
diQAdi

]
< 0,

Ξ̄2i,q =

[
Λ̄2i,q Θ̄2i,q

∗ −(1−h2)S+h1AT
diQAdi

]
< 0,

Ξ̃2i,L =

[
Λ̃2i,L Θ̃2i,q

∗ −(1−h2)S+h1AT
diQAdi

]
< 0,[

X Y
∗ Q

]
≥ 0,

Pj,0 −µPi,L ≤ 0, i ̸= j,

ln µ +ητmax < 0,

where

Λ2i,q = Pi,qAi +AT
i Pi,q −ηPi,q +ψ2i,q,

Λ̄2i,q = Pi,q+1Ai +AT
i Pi,q+1 −ηPi,q+1 +ψ2i,q,

Λ̃2i,L = Pi,LAi +AT
i Pi,L −ηPi,L

+S+h1AT
i QAi +h1X +Y +Y T ,

ψ2i,q = S+L/τmin(Pi,q+1 −Pi,q)

+h1AT
i QAi +h1X +Y +Y T ,

Θ2i,q = Pi,qAdi +h1AT
i QAdi −Y,

Θ̄2i,q = Pi,q+1Adi +h1AT
i QAdi −Y,

Θ̃2i,q = Pi,LAdi +h1AT
i QAdi −Y,

then system (30) is UAS under the switching signal σ(t)∈
D[τmin,τmax].

Proof: Similar to the proof of Theorem 3, we just omit
it.

4. EXAMPLES

Two examples are provided to show the feasibility, su-
periority, and application of the proposed approach.

Example 1: Consider the switched delay system with
two subsystems. The parameters are listed as follows:
Subsystem 1

A1 =

[
−2 0.6
0.5 −0.1

]
, Ad1 =

[
0.1 0
0 0.06

]
,
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Fig. 1. The state trajectories of subsystems 1.
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Fig. 2. The state trajectories of subsystem 2.

Subsystem 2

A2 =

[
0.12 −1
0.1 −1.6

]
, Ad2 =

[
0 0.1
0 0.1

]
.

The initial state function is x(θ) ≡
[

2 3
]T , θ ∈

[−d,0], d = 0.3. Assume that the system states are not
measurable.

In the numerical example, system states are not measur-
able, thus the state-dependent switching signals in [22,23]
do not effectively work. In addition, because the two sub-
systems are unstable from Fig. 1 and Fig. 2, the pro-
posed methods based on time-dependent switching sig-
nals [16–21] can not stabilize this class of switched sys-
tems. Furthermore, in [24], the control scheme has been
proposed to guarantee stability of switched system with
unstable subsystem, but the considered switched system
does not include time delay.

Here, we apply Theorem 3 to judge the stability of the
given system. Let L = 1, µ = 0.7, η = 0.3, d = 0.3, τmin =
0.6. By Theorem 3, we can obtain the following feasible
solution

τmax = 1.1889,

P1,0 =

[
113.9662 −11.0598

∗ 207.6202

]
,

P1,1 =

[
283.4615 −84.8508

∗ 225.9784

]
,

4
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2

1

0

-1

x(
t)

20151050

t[s]

x1(t)
x2(t)

Fig. 3. The state trajectories of the whole switched delay
system.
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s
(t)

20151050

t[s]

Fig. 4. The designed signal σ(t) ∈ D[0.6, 1.1889].

P2,0 =

[
187.0579 −60.0641

∗ 152.7374

]
,

P2,1 =

[
177.1136 −30.0576

∗ 324.6626

]
,

S =

[
53.4102 −5.9524

∗ 56.8630

]
,

Q =

[
116.2253 −26.8837

∗ 104.4212

]
.

The state trajectories of the whole switched delay system
and the designed switching signal are shown in Fig. 3 and
Fig. 4. From them, the states of the given switched de-
lay system tend to the origin under the designed switching
signal σ(t) ∈ D[0.6, 1.1889], which shows the validity of the
proposed method.

Example 2: A model of combustion in rocket motor
chambers is considered. This model is a liquid monopro-
pellant rocket motor with a pressure feeding system. Un-
der the assumption of non-steady flow, lumped lag factor,
u(t) = 0, and ω(t) = 0, an appropriate linearized model
can be described in the form ẋ(t) = Aσ(t)x(t)+Adσ(t)x(t −
d). The values of these parameters are listed as follows
[25]

A1 =


ρ1 −1 0 1 0

0 0 0 − 1
ζ1J

− p
2J(1−ζ1)

0 − 1
J(1−ζ1)

− 1
J(1−ζ1)

0 1
Ee

− 1
Ee

0

 ,
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Fig. 5. The state trajectories of subsystems 1.

Fig. 6. The state trajectories of subsystem 2.

A2 =


ρ2 −1 0 1 0

0 0 0 − 1
ζ2J

− p
2J(1−ζ2)

0 − 1
J(1−ζ2)

− 1
J(1−ζ2)

0 1
Ee

− 1
Ee

−1

 ,

Adi =


−ρi 0 1 0

0 0 0 0
0 0 0 0
0 0 0 0

 , i = 1,2,

where ζi is the fractional length for pressure supply, J is
the line inertia, Ee is the line elasticity parameter, p is
the ratio of steady-state pressure and steady-state injec-
tor pressure drop, and ρi is the pressure exponent of the
combustion process. The initial state function is x(θ) ≡[

0.2 −0.1 0.3 −0.1
]T , θ ∈ [−d,0], d = 0.1.

For p = 1.02, J = 2, Ee = 0.95, ρ1 = 0.6, ζ1 = 0.6,
ρ2 = 1.12, ζ2 = 1.6, two subsystems are unstable from
Fig. 5 and Fig. 6.

Choosing L = 1, µ = 0.1, η = 4, d = 0.1, τmin = 0.1,
inequalities (19)-(24) of Theorem 3 have a feasible solu-
tion, where τmax is calculated as 0.5756. From Fig. 7 and
Fig. 8, the states of the given switched delay system con-
verge to the origin with σ(t) ∈ D[0.1, 0.5756], which shows
the effectiveness of the scheme.

5. CONCLUSIONS

Stability analysis has been studied for switched de-
lay systems with all subsystems unstable in this paper.
The sufficient criterion has been proposed for nonlinear

0.6
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0.2

0.0

-0.2

-0.4

x(
t)

2520151050

t[s]

x1(t) x2(t)
x3(t) x4(t)

Fig. 7. The state trajectories of the whole switched delay
system.
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2.0

1.0

0.0

s
(t

)

2520151050

t[s]

Fig. 8. The designed signal σ(t) ∈ D[0.1, 0.5756].

switched delay systems to ensure asymptomatic stabil-
ity. Based on it, multiple discretized Lyapunov-Krasovskii
functionals have been constructed to obtain stability cri-
teria for linear switched time-invariant and time-varying
delay systems with all subsystems unstable. Finally, two
examples have been shown to demonstrate the effective-
ness and superiority of the proposed results.
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