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Abstract: Markovian jump systems are a special class of hybrid and stochastic systems which can be 

used to describe many real world applications, such as manufacturing systems, power systems, chemi-

cal systems, economic systems, communication and control, etc. In this paper, a survey on recent de-

velopments of modeling, analysis and design of Markovian jump systems is presented. First, stability 

issues on Markovian jump systems are addressed. Then a variety of control and filter design methods 

are systematically recalled. Furthermore, the new trends of Markovian jump systems with uncertain 

transition rates as well as semi-Markovian jump systems are also discussed. 
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1. INTRODUCTION 

 

Markovian jump systems (MJSs) are a special class of 

parameter-switching systems, and they are modeled by a 

set of linear or nonlinear systems with the transitions 

between the models determined by a Markov chain 

taking values in a finite set [1]. Some of the earliest 

works with these features include [2-6]. MJSs can also 

be considered as special case of switched hybrid systems 

with the switching signals governed by a Markovian 

chain. From a mathematical point of view, MJSs can be 

regarded as a special class of stochastic systems with 

system matrices changing randomly at discrete-time 

points governed by a Markov process and remaining 

time-invariant between random jumps. Over the past 

decades, a great amount of attention has been paid to 

MJSs, due their wide applications in practical systems.  

Applications of MJSs can be found in many real world 

applications, such as economic systems [7-9], flight 

systems [10], power systems [11-13], communication 

systems [14] and networked control systems [15,16]. In 

the following, we will give a brief exposition of some 

selected topics regarding applications of MJSs.  

Economics: The economy model has been studied in 

[7] which assumed that the state of the economy could be 

roughly lumped into three possible operation modes 

(“normal”, “boom”, and “slump”) and that the switching 

between them could be modeled as a homogeneous 

Markov chain. The subsequent problem considered in [7] 

corresponds to MJSs version of the optimal linear 

quadratic control setup.  

Flight systems: MJSs have been employed in [10] for 

the stability analysis of controlled flight systems whose 

on-board electronic devices fails randomly under 

external disturbances such as lightning, thermal noise, 

and radio signals. The accumulative effect of these 

disturbances are modeled as a Markov process, rendering 

the arrival of new disturbances as a Poisson process with 

exponentially distributed sojourn times.  

Power systems: The modeling and control of power 

systems subject to Markov jumps has been addressed in 

[12] which uses the switching mechanism to model 

random load changes, generating unit outages and 

transmission line faults. The theoretic findings have been 

applied to solve the problem of dynamic security 

assessment that determines whether certain parameters of 

the electrical system will remain within a safe region of 

operation at a given period. A security measure has been 

defined to quantify the vulnerability of the current 

system state and network topology to two types of 

stochastic contingency events: primary ones, driven by a 

continuous-time Markov process taking values in a finite 

set, and secondary ones, modeled by state-dependent 

jumps. Recent advances in power systems control using 

decentralized design methods and the S-procedure have 

also been reported in [11,13]. 

Communication systems: Applying MJSs in 

communication systems modeling is by now another 

promising trend boldly that is motivated, in discrete-time 

by the connection between MJSs and the Gilbert-Elliott 

model for burst communication channels [14], which in 

its simplest form corresponds to a two-state Markov 

chain. A convenient feature of these models (relative 
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simplicity aside) is their ability to describe the fact that 

eventual packet losses typically occur during intervals of 

time. As pointed out in [14], large packet-loss rates 

imply poor performance or even instability, and 

controllers implemented within a network may provide 

considerably better results if their design takes into 

account the probabilistic nature of the network. 

Networked control systems: With packet loss rate 

known and constant, networked control systems have 

been formulated as MJSs in [16] with two operation 

modes. The approach in [15] considers that sudden 

variations, modeled by MJSs, occur in the network due 

to, e.g., mobility and topological variations. The 

consideration of time delay in the underlying model is of 

major importance, owing to the time that packets must 

wait on a queue before being processed, together with 

the fact that the network nodes are geographically 

separated. Furthermore, this latter constraint motivated 

the consideration of a decentralized control scheme. The 

ultimate problem considered in [15] was the 

minimization of the worst-case queuing length, with the 

aid of H
∞
 control method. 

 

In recent years, to ease the practical application of 

MJSs, considerable efforts have been made, and a lot of 

progresses have been made on topics such as: 1) 

modeling of MJSs; 2) stability and performance analysis; 

3) control and filtering; 4) fault detection and fault 

tolerance; 5) identification via networks; and so on. In 

this survey, we will recall recent development on 

Markovian jump systems, paying particular attention to 

those carried out since the publishing dates of the 

surveys referred to. The interested readers may go to the 

original source for the full development of the ideas 

involved. We attempt to present all the important results 

on all the aspects here but not emphasize their 

applicability or their limitations, if any, since the 

encountered scenario varies. Clearly covering all the 

contributions on the topic in this paper is impossible, we 

devote ourselves to identifying explicit research lines and 

helping categorize the methodologies. But, if we can 

generate the feeling that, after having read this paper, the 

reader has a better understanding of what the subject is 

about and what the problems of the subject are, then we 

achieved our goals. This paper is organized as follows. 

Section 2 recalls a variety of stability properties on 

MJSs; and one more general MJSs are discussed, that is, 

MJSs with partially known jump rates. Control and 

filtering design techniques on Markovian jump systems 

and semi-Markovian jump systems are presented in 

Section 3, and Section 4 provides the conclusion and lists 

the expected future lines of research. 
 

Notation: Throughout this paper, n

�  denotes the n  

dimensional Euclidean space; m n×

�  is the space of real 

matrices of dimension m n× . The notation ( , , Pr)Ω F  

represents the probability space with the sample space 

,Ω  σ-algebra F  of subsets of the sample space, and 

probability measure Pr; {}⋅E  denotes the expectation 

operator; 
2
[0 ),∞�  refers to the space of square-

summated infinite vector sequences over [0 );,∞ | ⋅ |  

refers to the Euclidean vector norm. For continuous-time 

systems, { , 0}
t
tη ≥  is a time homogeneous Markov 

process with right continuous trajectories and taking 

values in a finite set {1,2, , }M= �M  with stationary 

transition probabilities 

( ), ,
Pr( | )

1 ( ), ,

ij

t h t

ij

h o h i j

j i
h o h i j

π

η η
π

+

+ ≠⎧⎪
= = = ⎨

+ + =⎪⎩
 (1) 

where 0,h >
0

lim ( ) 0
h

o h h
→

/ =  and 0
ij

π ≥  is the 

transition rate from mode i at time t to mode j at time 

t + h, and 
1

.

M

ii ijj j i
π π

= , ≠

= −∑  For discrete-time systems, 

{ , 0,1, }
k
kγ = �  is a time homogeneous Markov chain 

taking values in a finite set {1,2, , }M= �M  with 

stationary transition probabilities 

1
Pr( )

ij k k
j iλ γ γ

+
= = | = ,  (2) 

where 0
ij

λ ≥  is the transition probability from mode i  

at time k  to mode j at time 1k +  and 
1

1.
M

ijj
λ

=

=∑  

 

2. STABILITY ANALYSIS FOR MARKOVIAN 

JUMP SYSTEMS 

 

It is common knowledge that the stability of a 

dynamical system is one of the primary concerns in the 

design and synthesis of a control system. The study of 

stability of jump linear systems has attracted the 

attention of many researchers. The stability analysis and 

stabilization problems for MJSs have been addressed in 

[17-29]. Specifically, Cao and Lam investigated the 

stochastic stabilizability for discrete-time jump linear 

systems with time delay in [19]; de Souza studied the 

robust stability and stabilization problems for uncertain 

discrete-time MJSs in [20]; Gao et al. considered the 

stabilization problem for two-dimensional (2-D) MJSs in 

[21]; and Sun et al. discussed the robust exponential 

stabilization for MJSs with mode-dependent input delay 

in [26]. In addition, there have been many progresses on 

the stability and stabilization for stochastic systems with 

Markovian jump parameters. To mention a few, Boukas 

and Yang proposed an exponential stabilizability 

condition for stochastic systems with Markovian jump 

parameters in [17]; while Wang et al. solved the 

stabilization problem for bilinear uncertain time-delay 

stochastic systems with Markovian jump parameters 

[27]; and some other results on Markovian jump 

stochastic systems can be found, for example [23], and 

the references therein. 

 

2.1. Stability analysis of Markovian jump stochastic dif-

ferential equations 

Following the development of stochastic differential 

equations, stochastic differential equations with 

Markovian switching have become an active area of 

stochastic analysis in the past 30 years. In [22] and [30] 

the stability of such jump linear systems were studied. 

Basak et al. discussed the stability of a semi-linear 

stochastic differential equation with Markovian switch-
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ing in [31], while the stability of a nonlinear stochastic 

differential equation with Markovian switching was 

investigated in [32]. Taking a further step, it is realized 

that, in real systems, the future state is usually dependent 

not only on the present state but also on the past states, 

so they should be modeled by differential equations with 

time delays. Shaikhet took the time delay into account in 

[33] and considered the stability of a semi-linear 

stochastic differential delay equation with Markovian 

switching, while Mao et al. addressed the stability of a 

nonlinear stochastic differential delay equation with 

Markovian switching [34]. 

Consider stochastic differential equations with 

Markovian switching [32]: 

0

0 0

d ( ) ( ( ) )d ( ( ), )d ( ), ,

( ) ,

t t
x t f x t t g x t B t t t

x t x

η η= , + ≥

=

 (3) 

with solutions defined on 0t ≥  with initial values 

0

n

x ∈�  and 
0
.η  Here ( ) ,n nf ⋅ : × →� �M ( ) n

g ⋅ :�  
n m×

× → �M  and ( )B ⋅  is an m-dimensional Brownian 

motion defined on the underlying probability space and 

independent of .

t
η  Both ( )f ⋅  and ( )g ⋅  satisfy the 

local Lipschitz condition and grow at most linearly. 

Under these conditions, (3) has a unique solution; see 

[34] for more details. 
 

Definition 1 [23,35]: Consider stochastic differential 

equations (3) with Markovian switching, the equilibrium 

point is 

i) stochastically stable if for any initial state 
0

η  and 

0
0,t ≥  there exists 0ρ >  and (0 1)ε ∈ ,  such 

that 

0 0 0 0
Pr{ ( , , ) , for all } 1x t x t tη ρ ε| |< ≥ ≥ − .  

ii) stochastically asymptotically stable in the large if 

it is stochastically stable and, moreover, 

{ }0 0 0
Pr lim ( ) 0 1

t

x t x η
→∞

, , = = .  

iii) almost surely exponential stable if for any initial 

state 
0

η  and 
0

0,t ≥  

0 0 0

1
lim sup log( ( ) ) 0x t x

t

η| , , | < .  

iv) p th moment stable, if for any initial state 
0

η  and 

0
0,t ≥  there exists 0ε >  such that 

0 0
{ ( , , ) }px t t η ε| | < .E  

v) exponentially stable in mean square if there exist 

constants 
1

0>ε  and 
2

0>ε  such that for all 0t ≥  

2 2

0 1 0 2
{ (0 ) } exp( )x x tη| , | ≤ | | − .E ε ε  

 

Remark 1: Note that necessary and sufficient condi-

tions are presented in [36] for the three equivalent mo-

ment stability properties i), ii) and v). A similar condition 

is established in [22] for stochastic stabilizability in a 

different format. As mentioned in [22,36], stochastic 

stability or exponential mean square stability of (3) im-

plies almost sure stability. It is well known that the con-

verse statement is not true, i.e., second moment stability 

is stronger than sample stability. However, as observed 

in [37], for a certain class of stochastic systems, sample 

stability properties are inherited by pth moment stability 

properties for small p. 

In the following, using the comparison principle, some 

stochastic stability criteria are presented for stochastic 

differential equations with Markovian switching. 

Let 
2,1( [0 ) )n

C
+

× ,+∞ × ;� �M  denote the family of 

all nonnegative function ( )V x t i, ,  on [0 )
n

× ,+∞ ×M�  

which are continuously twice differentiable in ( )x t  and 

once differentiable in t. For any ( ) [0 )n

x t i, , ∈ × ,+∞�  

,×M  define an operator L  by 

1

( , , ) ( , , ) ( , , ) ( , , )

1
trace ( , , ) ( , , ) ( , , )

2

( , , ),

t x

T
xx

M

ij

j

V x t i V x t i V x t i f x t i

g x t i V x t i g x t i

V x t jπ

=

= +
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+∑

L

 

where πij is defined in (1) and 

1

2

( )
( )

( ) ( )
( )

( )
( )

t

x

n

xx

i j
n n

V x t i
V x t i

t

V x t i V x t i
V x t i

x x

V x t i
V x t i

x x
×

∂ , ,
, , ,

∂

⎛ ⎞∂ , , ∂ , ,
, , , , ,⎜ ⎟

∂ ∂⎝ ⎠

⎛ ⎞∂ , ,
, , .⎜ ⎟

⎜ ⎟∂ ∂⎝ ⎠

�

� �

�

 

Theorem 1 [38]: Consider the stochastic differential 

equation (4) and the following ordinary differential equa-

tion 

d ( )
( ( )) 0

d

x t
h t x t t

t
= , , ≥ .  (4) 

where ( )h
+

⋅ : × →� � �  is a continuous mapping, 

( ,0) 0.h t ≡  

i) Assume that there exists a nonnegative function 

( )V x t i, ,  such that 

( ) ( ( )) 0V x t i h t V x t i t, , ≤ , , , , ≥ .L  

ii) { ( , )} ( , { })h t h tξ ξ≤E E  for any n-dimensional sto-

chastic vector ξ  on the probability space ( ,Ω  

,Pr).F  

iii) There exist a function b(x) and a function ( )a t x,  

such that 

( ( ) ) ( ) ( ( ) )b x t V x t i a t x t≤ , , ≤ , .� � � �  (5) 

Then, the following hold. 

i) The trivial solution of (4) is stable (asymptotically 

stable) implies that the trivial solution of (3) is sta-

ble in probability (asymptotically stable in proba-

bility). In particular, If ( ) ( )a t x a x, ≡  in (5), then 

the trivial solution of (4) is uniformly stable (un-
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iformly asymptotic stable) implies that the trivial 

solution of (3) is uniformly stable in probability 

(uniformly asymptotic stable in probability). 

ii) If condition (5) is replaced by 

( ( ) ) ( ) ( ( ) )p p
b x t V x t i a t x t≤ , , ≤ , ,� � � �  (6) 

then the trivial solution of (4) is stable (asymptoti-

cally stable, exponentially stable) implies that the 

trivial solution of (3) is the pth moment stable (pth 

moment asymptotic stable, pth moment exponen-

tially stable). In particular, If ( , ) ( )a t x a x≡  in (6), 

then the trivial solution of (4) is uniformly stable 

(uniformly asymptotically stable, uniformly expo-

nentially stable) implies that the trivial solution of 

(3) is the pth moment uniformly stable (pth mo-

ment uniformly asymptotic stable, pth moment un-

iformly exponentially stable). 

 

On the other hand, time delays and nonlinearities are 

frequently encountered in practical systems, which are 

two of the main sources for causing instability and poor 

performances. Due to the two facts just aforesaid, 

Markovian jump systems with time delay and 

nonlinearities are of great significance in efficiently 

modeling many practical dynamics systems, and have 

received considerable attentions, see for example, [25-

27] and the references therein. 

 

2.2. Stability of continuous time linear Markovian jump 

systems 

Stability properties of systems described by multiple 

models switching according to Markov processes/chains 

can be analyzed via the notion of stochastic stability 

introduced in [22]. When parameters of Markov process/ 

chain describing the transition between different models 

are not completely known, it is important to know how 

much uncertainty can be tolerated for the system to be 

stochastically stable. In [36], the problem of almost sure 

instability has studied of the random harmonic oscillator. 

One convenient way to classify Markovian jump 

systems is based on the dynamics of their subsystems, 

for example continuous-time or discrete-time, linear or 

nonlinear and so on. Consider the following continuous- 

and discrete-time MJSs with state vectors ( ) n

x t ∈�  

and ( ) ,nx k ∈�  respectively. 

( ) ( ) ( ),
t

x t A x tη=�  (7) 

( 1) ( ) ( ).
k

x k A x kγ+ =  (8) 

Much work has been done, for example [22,39], 

studied the stability issue of such jump linear systems. 

 

Definition 2 [40,41]: For system (7) with transition 

probabilities satisfied (1), the equilibrium point is 

i) asymptotically mean square stable, if for any ini-

tial state x0 and initial distribution η0 

{ }20 0
lim ( ) 0,
t

x t x η
→+∞

, , =E � �  

ii) exponentially mean square stable, if for every ini-

tial state x0 and initial distribution η0, there exist 

constants 0α >  and 0β >  such that 

{ }2 2

0 0 0
( ) exp( )x t x x tη α β, , < − ,E � � � �  0t∀ > .  

iii) stochastically stable, if for every initial state x0 and 

initial distribution η0, 

{ }2

0 0
0

( ) dx t x tη
+∞

, , < +∞.∫E � �  

iv) almost surely (asymptotically) stable, if for any in-

itial state x0 and initial distribution η0 

{ }{ }0 0
Pr lim ( ) 0 1

t

x t x η
→+∞

, , = = .E � �  

 

Remark 2: By analyzing the stochastic properties of 

the transition matrix for jump linear systems, it has been 

shown in [36] that the second moment stability concepts, 

namely, mean square stability, stochastic stability and 

exponential mean square stability are all equivalent, and 

any one of them implies almost sure stability. 
 

Remark 3: The problem establishes the equivalence 

of second moment stability properties and the fact that 

each of them is sufficient for almost sure stability of (7). 

The fact that moment stability implies almost sure sam-

ple stability was observed earlier in [42], for a special 

class of randomly switched systems. A general result for 

systems in the form (7) with ηt an arbitrary stationary 

random process satisfying certain separability and 

boundness conditions was obtained by [41]. In particular, 

for (7), the results in [41] give the fact that ii) or iii) im-

plies iv). 
 

Remark 4: For discrete-time MJSs (8) with a time 

homogeneous Markov chain γk satisfying (2), the defini-

tions of stochastically stable, mean square stable and 

exponentially mean square stable are given in [43,44]. 

Also, the work in [43] established the equivalence of 

these three stability concepts. That is, stochastic, mean 

square and exponential mean square stability are the 

same for discrete-time MJSs. Moreover, the almost sure 

stability for systems (8) and (2) are given in [43]. In par-

ticular, stochastic stability, mean square stability and 

exponentially mean square stability are each sufficient 

but not necessary for almost sure stability. 
 

The following Theorems on the stochastic stability of 

systems (7) and (8) are recalled based on Lyapunov 

method and their proofs can be found in the cited 

references. 

Theorem 2 [18]: System (7) is stochastically stable if, 

and only if, there exists a set of matrices ,
i
P i∈M  

satisfying 

0
T

i i i i i
A P P A+ + < ,P  (9) 

where 
i ij j

j

Pπ

∈

∑
M

P �  and ( ),
i t

A A η� .

t
η ∈M  



A Survey on Markovian Jump Systems: Modeling and Design 

 

5

Theorem 3 [45]: System (8) is stochastically stable if, 

and only if, there exists a set of matrices ,
i
P i∈M  

satisfying 

0
T

i i i i
A A P− < ,P  (10) 

where .

i ij j

j

Pλ

∈

∑�

M

P  

Remark 5: It should be emphasized that Theorems 1 

and 2 play an important role in determining the stability 

of Markovian jump systems, and are given in the form of 

strict linear matrix inequalities that allow solutions to be 

readily obtained via available optimization techniques. 

 

2.3. Stability of MJSs with partially known transition rates 

In previous subsections, all the transition rates in the 

corresponding Markov jumping process, as a crucial 

factor, are assumed to be completely accessible. In 

practice, it is difficult to obtain the exact value of the 

switching probabilities. For instance, in the soft landing 

process of a reentry body [46], the probability of opening 

the parachute is determined by the altitude as well as its 

rate of change. Another example refers to internet based 

networked control systems, where the packets dropouts 

and channel delays can be modeled by Markov chains 

[47], but the delay or packet loss is distinct at different 

periods, which leads to the resulting transition 

probability (TP) matrix changing throughout the running 

time. Similar phenomenon also arises in other systems, 

such as electronic circuits, mental health analysis, and 

manpower systems. To overcome the above issues, MJSs 

with uncertain transition probabilities have been studied 

in [28,48,49], in which robust approaches were adopted 

to cope with some compact sets with polytopic-type or 

norm-bounded structure in the transition probability 

matrix. 

In [50-52], the transition rates or probabilities of the 

jump are considered to be partially accessed, i.e., some 

elements in matrix [ ]
ij

π π�  or [ ]
ij

λ λ�  are unknown. 

For notational clarity, denote i i

K UK
l l l= +  for any i∈  

M  with 

{ : ( ) is known},i
K ij ijl j orπ λ�  (11) 

{ : ( ) is unknown}.i
UK ij ijl j orπ λ�  (12) 

Also, we denote 
i
K

i
K ij

j l

π π

∈

∑�  and ,

i
K

i
K ij

j l

λ λ

∈

∑�  respec-

tively. 
 

Remark 6: The accessibility of the jumping process 

{ , 0}
t
tη ≥  (or { , 0,1, })

k
kγ = �  in literature is common-

ly assumed to be completely accessible ( ,
UK
l = ∅  

)
K
l l=  or completely inaccessible ( ,

UK
l l= ).

K
l = ∅  

Moreover, the transition rates or probabilities with poly-

topic or norm-bounded uncertainties require the know-

ledge of bounds or structure of uncertainties, which can 

still be viewed as accessible. Therefore, the transition 

rates or probabilities matrix considered in [50-53] is a 

more natural assumption to Markovian jump systems, 

thus have more practical potentials. 

The following theorems present sufficient conditions 

on the stochastic stability of the considered system with 

partially known transition probabilities (11) and (12), 

respectively. 

 

Theorem 4 [52]: Consider system (7) with partially 

known transition probabilities (11). The corresponding 

system is stochastically stable if there exist matrix ,
i
P  

,i∈M  such that 

(1 )( ) 0

0, , ,

0, , ,

i T i
K i i i i K

T i
i i i i j UK

T i
i i i i j UK

A P P A

A P P A P j l j i

A P P A P j l j i

π+ + + < ,

+ + ≥ ∀ ∈ =

+ + ≤ ∀ ∈ ≠

P

 

where .

i
K

i
K ij j

j l

Pπ

∈

∑�P  

 

Theorem 5 [52]: Consider system (8) with partially 

known transition probabilities (12). The corresponding 

system is stochastically stable if there exist matrix ,
i
P  

,i∈M  such that 

0

0

T i i
i K i K i

T i
i j i i UK

A A P

A P A P j l

λ− < ,

− < , ∀ ∈ ,

P
 

where .

i
K

i
K ij j

j l

Pλ

∈

∑�P  

 

In [52], the stability and stabilization problems of a 

class of continuous-time and discrete-time MJSs with 

partially known transition probabilities are investigated. 

The system under consideration is more general, which 

covers the systems with completely known and 

completely unknown transition probabilities as two 

special cases-the latter is hereby the switched linear 

systems under arbitrary switching. Moreover, in contrast 

with the uncertain transition probabilities studied 

recently, the concept of partially known transition 

probabilities proposed in [52] does not require any 

knowledge of the unknown elements. The sufficient 

conditions for stochastic stability and stabilization of the 

underlying systems are derived via linear matrix 

inequality formulation, and the relation between the 

stability criteria currently obtained for the usual MJSs 

and switched linear systems under arbitrary switching, 

are exposed by the proposed class of hybrid systems. 

 

3. DESIGN OF MARKOVIAN JUMP SYSTEMS 

 

In this section, we will review some recent advance-

ments on control design for Markovian jump systems, 

including robust control for systems with uncertainties. 

We know that robust control theory plays a very 

effective role against model uncertainty and external 

disturbances. Consequently, robust control problem for 

MJSs has become a hot topic. A great number of 

fundamental concepts and results on continuous-time 

MJSs have been developed, for example, optimal control 

[2,4,8,9,54], dissipative control [55], observer design 
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[56-58]. Other results related to discrete-time MJSs have 

also been reported in [19,25,29,60,59]. 
 

Definition 3 [22]: Consider the Markovian jump con-

trol system 

( ) ( ) ( ) ( ) ( ),
t t

x t A x t B u tη η= +�  (13) 

( 1) ( ) ( ) ( ) ( ).
k k

x k A x k B u tγ γ+ = +  (14) 

If there exists a feedback control 

( ) ( ) ( ),
t

u t K x tη= (respectively ( ) ( ) ( ))
k

u k K x kγ, = ,  (15) 

such that the resulting closed-loop control system is sta-

ble, where ( )
t

K η  (respectively ( ))
k

K γ  is the control-

ler gain to be determined, respectively. Then the control 

system (13) (respectively (14)) is said to be stochastical-

ly stabilizable in the corresponding sense. If the resulting 

closed-loop system is absolutely stable, then (13) (re-

spectively (14)) is absolutely stabilizable.  
 

For the stabilization problem of Markovian jump 

systems, readers may refer to [20,21,25-27,29,61,62]. 

Design of control systems that can handle model 

uncertainties has been one of the most challenging 

problems and received considerable attention from 

academics, scientists and engineers in the past decades. 

There are two major issues in robust controller design. 

The first is concerned with the robust stability of the 

uncertain closed-loop system (see for example, [20] and 

the references therein), and another is robust 

performance. On the other hand, convex analysis has 

shown to be a powerful tool to derive numerical 

algorithms for control problems. For state feedback 

MJSs case, convex analysis had been previously 

considered in [39]. 

 

3.1. Control and filtering for Markovian jump systems 

In order to ensure the performance of MJSs, the 

researchers have proposed linear quadratic control theory 

[22], H2 control theory [63,64], H∞ control theory 

[19,65,60,66], H∞ filtering theory [67-69], and so on by 

defining accordingly performance index. Since its 

introduction in 1980s, the so-called H∞ optimal control 

has been one of the most attractive and dominated 

research topics in the past 30 years [70]. 

Consider the following Markovian jump control 

system in probability space ( , ,Pr) :Ω F  

( ) ( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

t t t

t t

x t A x t B u t G w t

z t C x t D u t

η η η

η η

= + +

= +

�

 (16) 

where ( , 0)
t
tη ≥  are finite Markov processes satisfying 

(1); x(t) is the system state; u(t) is control input satisfying 

(15); ( )w t  is the disturbance input which belongs to 

2
[0 );l ,∞  and ( )z t  is the controlled output which 

belongs to 
2
[0 ).l ,∞  

 

Definition 4 [65]: Consider system (16) with 

( 0)
t
tη , ≥  are satisfied (1). We are concerned with de-

signing a state feedback controller (15), such that, for all 

nonzero 
2

( ) [0, )w t l∈ ∞  

2 2
( ) ( ) ,

E
z t w tγ<� � � �  (17) 

where 0γ >  is a prescribed level of disturbance attenu-

ation to be achieved and 

{ }2

1 2

0
( ) ( ) ( )d

T
T

E
z t z t z t t

/

= .∫E� �  

When (17) is satisfied, the system (16) with controller 

(15) is said to have H∞ performance (17) over the hori-

zon [0, T]. 
 

Both the cases of continuous-time and discrete-time 

dynamical linear and nonlinear systems have been 

intensively studied. H∞ control for MJSs has been 

investigated in [19,21,60,65,66,71,72], while robust H∞ 

control for MJSs with unknown nonlinearities has been 

studied in [65]. H∞ control has been designed in [60] for 

discrete-time MJSs with bounded transition probabilities; 

the robust H∞ control problem has been considered in 

[19] for uncertain MJSs with time delay; and the delay-

dependent H∞ control problem have been discussed in 

[66,72] for singular Markovian jump systems with time-

varying delays. 
 

Remark 7: Note that H∞ performance analysis plays a 

vital role in controller design of Markovian jump sys-

tems. Apart from this approach, other methods for per-

formance analysis have also yielded important results. 

For instance, H2 performance [64], L1 gain performance 

[73]. In addition, the L2 – L∞ performance, which is also 

referred to as the energy-to-peak performance [74] and 

H2 extended performance, is an important index and has 

received considerable attention. 
 

As is well known, filtering technique has been playing 

an important role in a variety of application areas includ-

ing signal processing, target tracking, and image 

processing ([75,76]). Up to now, many important devel-

opments on the filtering problem have been made for 

MJSs. The designed filters can be classified into two 

types: mode-dependent filters ([48,67,68,77-80]) and 

mode-independent filters ([69, 76, 81-83]). 

Consider the following Markovian jump control 

system in probability space ( , ,Pr) :Ω F  

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ),

t t

t t

t

x t A x t B w t

y t C x t D w t

z t L x t

η η

η η

η

= +

= +

=

�

 (18) 

where ( 0)
t
tη , ≥  is a finite Markov process satisfying 

(1); ( ) n

x t ∈�  is the state; ( ) m

w t ∈�  is the noise 

signal (including process and measurement noises), 

which is assumed to be an arbitrary signal in 
2
[0 );l ,∞  

( ) l
y t ∈�  is the measurement; and ( ) s

z t ∈�  is the 

signal to be estimated. 

The filtering problem to be addressed is to obtain an 

estimate ˆ( )z t  of ( )z t  via a causal mode-dependent 

linear filter which provides a uniformly small estimation 
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error, ˆ( ) ( ) ( ),z t z t z t−
� �  for all 

2
( ) [0, ).w t l∈ ∞  Attention 

is focused on the design of a linear time-invariant, 

asymptotically stable, filter with state space-realization 

ˆ ˆ( ) ( ) ( ) ( ) ( ),

ˆ( ) ( ) ( ),

f t f t

f t

x t A x t B y t

z t C x t

η η

η

= +

=

�

 (19) 

where the matrices ( ) ,n n
f tA η

×

∈� ( ) n l
f tB η

×

∈�  and 

( ) s n
f tC η

×

∈�  are to be designed. 

It follows from (18)-(19) that the dynamics of the 

estimation error ( )z t�  can be described by the following 

state-space model: 

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ),

t t

t

t A t B w t

z t C t

ξ η ξ η

η ξ

= +

=

� � �

�

�

 (20) 

where 

( ) 0
( ) ,

( ) ( ) ( )

t

t
f t t f t

A
A

B C A

η
η

η η η

⎡ ⎤
⎢ ⎥
⎣ ⎦

� �   

( )
( ) ,

( ) ( )

t

t
f t t

B
B

B D

η
η

η η

⎡ ⎤
⎢ ⎥
⎣ ⎦

� �  ( ) ( ) ( ) ,ˆ
T

T T
t x t txξ ⎡ ⎤

⎣ ⎦�  

( ) ( ) ( ) .
t t f t

C L Cη η η⎡ ⎤−⎣ ⎦
� �  

Then, the robust H∞ filtering problem addressed is 

formulated as follows: given MJSs (18), determine a 

filter system (19) such that the filtering error system (20) 

is stochastically stability (exponential mean-square 

stability), and satisfies a prescribed H∞ performance 

index. The problem of H∞ filter for Markov jump 

systems has been investigated in [48], where a method 

for designing a mode-independent filter has been 

proposed. The results reported in [48] have been further 

improved in [84]. The problem of mode-independent H∞ 

filtering has been discussed in [85] for singular Markov 

jump systems, and the full-order and reduced-order 

filters have been designed in a unified framework. In 

[86], the problem of mode-independent H∞ filter has 

been addressed for discrete-time Markov jump systems, 

and a design procedure has been proposed. It is noted 

that the mode-independent filter is very useful when the 

system mode information is completely unaccessible. 

However, it should be pointed out that the mode-

independent filters cannot deal with the complex 

asynchronous phenomenon between filter modes and 

system modes, all the available modes information are 

neglected, which inevitably leads to conservatism to 

some extent. On the other hand, Kalman filtering for 

continuous-time uncertain MJSs has been considered in 

[78]; the H∞ filter problem for continuous- and discrete-

time MJSs have been studied in [67,68], respectively. In 

the mean time, Wu et al. have extended the H∞ filtering 

problem to 2-D Markovian jump systems; and the 

quantized H∞ filtering for Markovian jump linear 

parameter varying systems has been studied with 

intermittent measurements [83]. 

In addition of filtering design, the fault detection 

problem for MJSs has been investigated in [87-93]. 

Specifically, Meskin and Khorasani considered the fault 

detection and isolation problems in [87] for discrete-time 

MJSs with application to a network of multi-agent 

systems with imperfect communication channels; while 

Nader et al. proposed a geometric approach to fault 

detection and isolation for continuous-time MJSs in [88]. 

The work in [89] studied the problem of generalized H2 

fault detection for Markovian jumping two-dimensional 

systems; while the work in [90] developed fault detection 

filter design for Markovian jump singular systems with 

intermittent measurements. The problems of robust fault 

detection were addressed in [91,92] respectively. 

Apart from the above-mentioned synthesis problems 

for MJSs, the model reduction problem for such systems 

has also been investigated, see for example, [94,95]. in 

[94], the model reduction problem was considered for 

discrete-time MJSs; and Zhang et al. considered H∞ 

model reduction for both continuous- and discrete-time 

MJSs [95]. 

 

3.2. Sliding mode control for Markovian jump systems 

Sliding-mode control (SMC) has received noticeable 

attention since it has various attractive features such as 

fast response, good transient performance, order 

reduction and so on. In particular, SMC laws are robust 

with respect to the so-called matched uncertainty, see for 

example, [96-98]. Recently, sliding mode control is 

proposed to stabilize MJSs with matched uncertainties 

and disturbances [99]. However, due to the system is 

switching stochastically between different subsystems, 

the dynamics of the jump systems can not stay on each 

sliding surface of subsystems forever, therefore, it can 

not be determined whether the closed-loop system is 

stochastically stable or not. 

Consider the following Markovian jump systems in 

probability space ( , , Pr)Ω F  

( ) ( ) ( ) ( )[ ( ) ( ) ( )],
t t t

x t A x t B u t F tη η η ω= + +�  (21) 

where ( ) n

x t ∈�  is the system state vector; ( ) m

u t ∈�  

is the control input; ( ) l
tω ∈�  is the disturbance, and 

{ , 0}
t
tη ≥  is a time homogeneous Markov process 

satisfying (1). 

We will design a sliding surface 

( , , ) 0,
t

s x tη =  

where ( )
t

s x tη, ,  is the switching function, and its order 

is usually equivalent to that of the control input. 

Following the switching function, a sliding mode con-

troller 

1 2
( ) [ ( ) ( ) ( )] ,T

m
u t u t u t u t= �  

is designed in the form of 

( ) when ( , , ) 0,
( ) 1,2, , ,

( ) when ( , , ) 0,

i i t

i

i i t

u t s x t
u t i m

u t s x t

η

η

+

−

⎧ , >⎪
= =⎨

, <⎪⎩
�  

where ( ) ( ),
i i
u t u t
+ −

≠  such that the following two condi-

tions hold: 

i) The sliding mode is reached in a finite time and 

subsequently maintained, that is to say, the system 
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state trajectories can be driven onto the specified 

sliding surface ( , , ) 0
t

s x tη =  by the sliding mode 

controller in a finite time and maintained there for 

all subsequent time; and 

ii) The dynamics in sliding surface ( , , ) 0,
t

s x tη =  

that is, the sliding mode dynamics, is stable with 

some specified performances. 
 

Next step, a sliding mode controller will be designed 

such that the system state trajectories can be driven onto 

the specified sliding surface in a finite time and 

maintained there for all subsequent time. Some 

commonly used methods to the sliding mode controller 

design include 1) equivalent control design; 2) reaching 

condition approach; 3) Lyapunov function approach; and 

4) reaching law approach. 
 

Remark 8: It should be noted that under Markov 

switching, all modes of systems (13) are not independent, 

but dependent of each other via Markov process ηt. This 

implies that the sliding function corresponding to every 

mode is also not independent, but dependent of each oth-

er. On the other hand, the proposed SMC law still de-

pends on the transition rates πij that reflects the effect of 

Markovian switching from one mode to another. Finally, 

the connections among sliding surfaces is also reflected 

in the proposed SMC law. Hence, the present SMC me-

thod can effectively deal with the effect of Markovian 

switching, and achieves the desired dynamic perfor-

mance of SMC systems. 
 

SMC design problem has been addressed for MJSs in 

[73,75,76,99-104]. SMC of MJSs with actuator nonlin-

earities was considered in [100]; Ma and Boukas 

proposed a singular system approach to robust SMC for 

uncertain MJSs [102]; SMC problem for Markovian 

jump singular stochastic hybrid systems was solved in 

[76]; the problems of state estimation and SMC of 

Markovian jump singular systems were discussed in 

[75]; and also SMC design with bounded l2 gain 

performance for Markovian jump singular time-delay 

systems in [73]. Recently, Shi et al. designed the sliding-

mode control of Markovian jump systems [99]. 

Motivated by the work in [99], Wu et al. further studied 

the sliding-mode control problem for Markovian jump 

singular systems where the main difficulties come from 

the sliding surface function design and the stochastic 

admissibility analysis for the resulting sliding-mode 

dynamics [75]. 

 

3.3. Networked control systems with Markovian delay 

and/or Markovian packet losses 

Networked control systems (NCSs) are a type of 

distributed control systems, where the information of 

control system components is exchanged via communi-

cation networks. The introduction of networks also 

presents some constraints such as time delays and packet 

dropouts which bring difficulties for analysis and design 

of NCSs. Nowadays, various methodologies have been 

proposed for modeling, stability analysis, and controller 

design for NCSs in the presence of network-induced time 

delays and packet dropouts. The Markov chain, a dis-

crete-time stochastic process with the Markov property, 

can be effectively used to model the network-induced 

delays in NCSs. In [105,106], the time delays in NCSs 

are modeled by using the Markov chains, and further an 

linear quadratic Gaussian optimal controller design 

method is proposed. Xiao et al. developed two types of 

controller design methods for NCSs modeled as finite 

dimensional [107], discrete-time jump linear systems: 

One is the state feedback controller that only depends on 

delays from sensor to controller (S-C delays), and is 

called the one-mode-dependent controller; the other is 

the output feedback controller that does not depend on 

either the S-C delays or the C-A delays (delays from 

controller to actuator), and called the mode-independent 

controller. 

Zhang et al. extended the idea and used two Markov 

chains to model the delays in both feedback and forward 

channels [108]. It is assumed that at each sampling 

instant, the current S-C delay ( )k

sc
τ  and previous C-A 

delay ( )k

ca
τ  can be obtained by the time-stamping 

technique. However, practically the previous C-A delay 

is not always available because the information about C-

A delays needs to be transmitted through the S-C 

communication link before reaching the controller. More 

precisely, the discretized controlled plant is considered as 

( 1) ( ) ( ),x k Ax k Bu k+ = +  (22) 

( ) ( ),x k kφ=  [ , 1, ,0].k d dτ τ∈ − − − − + …  (23) 

The control input can be obtained as 

1( ) ( ) ( )k k k k

sc ca sc ca
u k K x kτ τ τ τ

−

= , − − ,  

where the delays k

ca
τ  and k

ca
τ  are subject to Markov 

chain with 

1ˆ Pr( | ),k k
sc scij

j iτ τλ
+

= = =  

1
Pr( )

k k

rs ca ca
s rτ τλ

+
= = | = ,  

where 
0

ˆ ˆ0, 0, 1,
r

ij rs ijj
λλ λ

=

≥ ≥ =∑  and 
0

1,
d

rss
λ

=

=∑  

, , , .i j r s∀ ∈M  

 

Remark 9: Note that in [108], the designed controller 

gain 1( ( , ))k k

sc ca
K τ τ

−  depends on the current feedback 

channel delay and the previous forward channel delay. 

Yet, the property of NCSs listed above enables a set of 

control commands to be sent from the controller site, by 

which the control command can be selected at the smart 

actuator according to the current forward channel delay. 

In addition to the stochastic description of delay varia-

tions, nondeterministic descriptions can be considered 

within the framework, i.e., assuming the transitions 

probabilities are completely unknown and the variations 

of the time delays are state dependent or time dependent. 

 

The work for network-induced delays issue is classi-

fied whether the methodology is dependent on the delay 
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information online or not. Similar thought is also 

applicable to the context of packet losses problem in 

NCSs. 

Consider system (22). Let 
1 2

{ , , },i i …�J  a subse-

quence of {1,2,3, },…  denote the sequence of time 

points of successful data transmissions from the sampler 

to the zero-order hold, and 
1

max ( )
ki k k

s i i
∈ +

−J�  be 

the maximum packet-loss upper bound. Then the follow-

ing concept and mathematical models are introduced to 

capture the nature of packet losses. 
 

Definition 5 [109]: Packet-loss process is defined as 

1
{ ( ) : },

k k k k
i i i iη

+
− ∈� L  (24) 

which takes values in the finite state space =M  

{1, , }.M�  

Definition 6 [109]: Packet-loss process (24) is said to 

be Markovian if it is a discrete-time homogeneous Mar-

kov chain on a complete probability space ( Pr),Ω, ,F  

and takes values in M  with known transition probabil-

ity matrix ( ) ,M M
ijλ

×

Λ ∈� �  where  

1
Pr( ( ) ( ) )

ij k k
i j i iλ η η
+

= = | = ,  (25) 

for any ,i j, ∈M  and 
1

1
M

ijj
λ

=

=∑ . 

From the viewpoint of the zero-order hold, the control 

input is 

( ) ( ) ( )
k k

u l u i Kx i= ,�  (26) 

for 
1

1.
k k
i l i

+
≤ ≤ −  The initial inputs are set to zeros: 

( ) 0,u l =
1

0 1.l i≤ ≤ −  Hence the closed-loop system 

becomes 

( 1) ( ) ( )
k

x l Ax l BKx i+ = + ,  (27) 

for 
1

1,
k k
i l i

+
≤ ≤ − .

k
i ∈M  The objective of analysis 

and design of NCSs with packet losses is to construct 

controller (26) such that NCSs (27) is stable. 

Next, sufficient conditions for stochastic stability of 

the closed-loop NCSs are obtained via Markovian 

theories and the packet-loss-dependent Lyapunov 

function approach. 
 

Theorem 6 [109]: The closed-loop system (27) with a 

Markovian packet-loss process defined as in (25) is sto-

chastically stable, if there exist positive symmetry ma-

trices 0,
i
P > ,i∈M  such that 

1

( ) ( ) 0
M

T
ij j i

j

A BK P A BK Pλ

=

⎛ ⎞
+ + − < ,⎜ ⎟

⎜ ⎟
⎝ ⎠
∑  i∀ ∈ .M  

One framework for the analysis and design of NCSs 

with packet losses is the offline framework, where the 

controller is designed despite any situation of real packet 

losses[109-111]. However, there exist the effects of the 

current packet cases (dropped and received successfully) 

on the future packet cases. A Markov process is able to 

represent such effect [109,112]. In [109], the time 

interval between packet successful transmissions is used 

as a state in a Markov chain. The relations among the 

amount of consecutive packet dropouts are employed to 

establish the transition probability matrix. In [113], a 

Markov process is used to describe the quantity of packet 

dropouts between the current time instant and the latest 

successful transmission. 

 

3.4. Control and filtering for MJSs with incomplete tran-

sition descriptions 

The ideal knowledge on the transition probabilities are 

definitely expected to simplify the system analysis and 

design. However, the likelihood of obtaining such avail-

able knowledge is actually questionable, and the cost is 

probably expensive. Therefore, rather than having a large 

complexity to measure or estimate all the transition 

probabilities, it is significant and necessary, from control 

perspectives, to further study more general jump systems 

with partially unknown transition probabilities. 

The work in [28] and [82], the uncertainties in TPs 

were represented by norm-bounded or polytopic descrip-

tion. Then, robust control and filtering methods are 

utilized to deal with the uncertainties presumed in the 

TPs. Considering a more realistic situation that some 

parts of the elements in the desired TPs matrix are hard 

to obtain, Zhang studied the stability, stabilization, and 

H∞ filtering problems for MJSs with partially known TPs 

in [50-52]. The significance of this hypothesis lies in that 

rather than having a large complexity to measure all the 

TPs, it is more meaningful to directly study MJSs with 

partially unknown TPs. The transient and steady 

performance for MJSs with partially known TPs were 

considered in [114,115] in time domain. 

On the other hand, there is a general lack of online 

sensors in many fields, such as pharmacy industry, fer-

mentation process, and petrochemical industry. There-

fore, state estimation problem is an important research 

issue in control discipline. Meanwhile, considering the 

practical applications that TPs are generally determined 

by physical experiments or numerical simulations that 

lead to the TPs with stochastic features, H∞ filtering 

problem for MJSs, viewed from the stochastic standpoint, 

is studied in [115]. It assumes that the exact value of TPs 

is unknown, but the distribution can be approximated by 

Gaussian process. To obtain the expectation of unknown 

TPs from Gaussian probability density function (PDF), a 

discretization method is developed. On this basis, a H∞ 

filter is designed such that the worst-case induced l2 gain 

from process noise to estimation error is minimized. 

Different from the existing results in literatures, a 

Gaussian PDF is utilized to characterize the relative 

likelihood for unknown TPs to occur at a given constant. 

With the Gaussian distribution of TPs, we can obtain the 

expectation of unknown TPs. Moreover, the considered 

systems are more general than the systems with 

completely known and partially known TPs, which can 

be viewed as two special cases of the ones tackled here. 

 

3.5. Control of Semi-Markovian jump systems 

Markovian jump systems, although important in 

theory and useful to describe many practical systems, 
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have many limitations in applications, since the jump 

time of a Markov chain is, in general, exponentially 

distributed, and the results obtained for the MJSs are 

intrinsically conservative due to constant transition rates. 

Different from the MJSs, semi-Markovian jump systems 

(S-MJS) are characterized by a fixed matrix of transition 

probabilities and a matrix of sojourn time probability 

density functions. Due to their relaxed conditions on the 

probability distributions, S-MJS have much broader 

applications than the conventional MJS. Indeed, most of 

the modeling, analysis, and design results for MJS would 

be special cases of S-MJS. Thus, this area of research is 

significant not only in theory, but also in practice. 
 

Definition 7 [116,117]: The evolution of the semi-

Markov process { , 0}
t
r t ≥  is governed by the following 

probability transitions: 

( ) ( )
Pr( )

1 ( ) ( )

ij

t h t

ij

h h o h i j

r j r i
h h o h i j

π

π
+

+ , ≠ ,⎧⎪
= | = = ⎨

+ + , = ,⎪⎩
 (28) 

where 0,h >
0

lim ( ) 0
h

o h h
→

/ =  and 0
ij

π ≥  is the 

transition rate from mode i  at time t  to mode j  at 

time ,t h+  and 
1

( ) ( ).
M

ii ijj j i
h hπ π

= , ≠

= −∑  
 

Remark 10: In [116,117], probability distributions of 

sojourn-time on Markovian processes, from an exponen-

tial distribution to a Weibull one, are discussed. There-

fore, the transition rate is time-varying instead of con-

stant. It has been moved one step further towards the 

numerically solvable conditions by making use of the 

upper and lower bounds of the transition rate. However, 

the main proposition in [117] to partition the sojourn-

time into M sections in each working mode is relatively 

conservative and practically infeasible. Stochastic stabili-

ty of systems with semi-Markovian jump parameters is 

studied in [38,118,119]. 
 

In [118,120], by a supplementary variable technique 

and a novel transformation, a finite phase-type (PH) 

semi-Markov process has been transformed into a finite 

Markov chain, which is called its associated Markov 

chain. Consequently, a PH semi-Markovian jump system 

can be equivalently expressed as its associated Marko-

vian system. Having the density property of PH 

distributions allows us to choose a PH distribution that 

approximates the original distribution to any accuracy. 

So, the new design methods presented in [118,120] are 

less conservative and bear a more practical value. 
 

Remark 11: The definition of phase-type semi-

Markov chain, readers may refer to [38,118,120] for 

more details. It is worth noting that the phase-type distri-

bution is a generalization of the exponential distribution 

while still preserving much of its analytic tractability, 

and has been used in a wide range of stochastic modeling 

applications in areas as diverse as reliability theory, 

queuing theory and biostatistics. Furthermore, the family 

of PH distribution is dense in all the families of distribu-

tions on [0 ).,+∞  So, for every probability distribution 

on [0 ),,+∞  we may choose a PH distribution to ap-

proximate the original distribution in any accuracy. 
 

Consider a class of stochastic differential equations 

with semi-Markovian jump parameters in the probability 

space ( Pr)Ω, ,F  for 0t >  

0

ˆ ˆd ( ) ( ( ) )d ( ( ) )d ( )ˆ ˆ

(0) ,

t t
x t f x t t t g x t t tr r

x x

ω= , , + , , ,

=

 (29) 

where ( )tω  be an m-dimensional Brownian motion 

defined on the probability space, and we assume that the 

semi-Markov chain { , 0}ˆt tr ≥  is independent of the 

Brownian motion ( ).tω  The initial state 
0

n

x ∈�  is a 

fixed constant vector. ( ) n nf ⋅ : × × →� � �M  and 

( ) .n n m

g
×

⋅ : × × →� � �M  

In the following, using a supplementary variable tech-

nique and a plant transformation, a finite phase-type 

semi-Markov process has been transformed into a finite 

Markov chain, which is called its associated Markov 

chain. As a result, phase-type semi-Markovian jump 

systems can be equivalently expressed as its associated 

Markovian jump systems. For the proof, the reader may 

refer to [38]. 

 

Theorem 7 [38]: System (29) is equivalent to the fol-

lowing system for 0t >  

0

d ( ) ( ( ) )d ( ( ) )d ( )

(0)

t t
x t f x t t r t g x t t r t

x x

ω= , , + , , ,

= ,

 

where { , 0}
t
r t ≥  is the associated Markov chain of PH 

semi-Markovian chain { , 0}.ˆt tr ≥  

 

Remark 12: It is worth to mention that the advantages 

of Theorem 7 is that when we study stochastic stability 

and control problems, we can replace Markovian jump 

systems with semi-Markovian jump systems, and achieve 

the same results, while semi-Markovian jump systems 

are much less restrictive and it can be widely found and 

used in many real system applications [38]. Furthermore, 

more importantly, almost all the nice results obtained so 

far on Markovian jump systems, for example, [38,61, 

121-123] are also true in semi-Markovian jump systems. 

 

Moreover, a sliding surface is then constructed in 

[118] and a sliding mode controller is synthesized to 

ensure that the associated Markovian jump systems 

satisfy the reaching condition. A sufficient condition for 

associated Markovian jump systems is developed in 

[120]. This condition guarantees that the corresponding 

closed-loop system is stochastically stable and has a 

prescribed H∞ performance. The existence conditions for 

full- and reduced-order dynamic output feedback 

controllers are proposed, and the cone complementarity 

linearization procedure is employed to cast the controller 

design problem into a sequential minimization one, 

which can be solved efficiently with available 

optimization techniques. Stochastic stability of linear 

systems with PH semi-Markovian jump parameters is 
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studied in [38]. 

The application of semi-Markov process in fault-

tolerant control systems has been discussed in [124], and 

it was shown that when a practical system does not 

satisfy the so-called memoryless restriction, the widely 

used Markov switching scheme would not be applicable. 

A typical transition rate in the bathtub shape in the 

reliability analysis has been reported in [125]. Also, the 

work in [126] considered the control problem of 

singularly perturbed Markov and semi-Markov jump 

linear systems, as well as a particular control problem in 

accelerator physics known as the bunch-train cavity 

interaction (BTCI). It is shown that the BTCI is in fact a 

physical model example of a semi-Markov jump linear 

system. 

 

4. CONCLUSION AND FUTURE WORKS 

 

In this paper, we have attempted to present a survey of 

some major problems, results and trends in the subject of 

modeling, analysis and design (control and filtering) on 

Markovian jump systems. The aim is to present the 

background and new developments in the fields. Clearly 

it is difficult, if not impossible, to cover all the 

contributions in the area; therefore, our emphasis is 

placed on the categorizations of the advancements in 

literature as much as we possible could. The applicability 

or the limitations of the developed approaches have not 

thoroughly been commented on, and we believe readers 

can figure out these by their own interests, and make 

further improvements.  

Despite diverse results, there are still numerous points 

that should be further considered in future works. We 

highlight some of them as follows.  

i) For state-delayed Markovian jump systems, the 

results on stability have some conservativeness. 

Some recently developed methods such as delay-

partitioning method, small gain based input-output 

method, and reciprocally convex method can be 

utilized to further reduce the conservativeness 

caused by time-delay.  

ii) The work has studied an NCSs architecture where 

a predictive controller uses an unreliable network 

affected by Markovian packet-dropouts to control 

a nonlinear plant with unbounded disturbances. It 

has been shown that, provided that the plant and 

network satisfy suitable conditions, stochastic 

stability of the closed-loop can be ensured by 

appropriate choice of tuning parameters. Future 

research could include the study of more general 

NCSs, including where the controller does not 

have access to the plant state.  

iii) Chattering problem is one of the most common 

handicaps for applying SMC to real applications. 

The chattering in SMC systems is usually caused 

by 1) the dynamics with small time constants, 

which are often neglected in the ideal model; and 

2) utilization of digital controllers with finite 

sampling rate, which causes so called ‘discreti-

zation chattering’. The discontinuity leads to 

control chattering in practice, and involves high 

frequency dynamics. How to reduce chattering will 

be a research topic in future studies.  

iv) Another future research direction is to investigate 

2-D semi-Markovian jump systems, which consist 

of a family of subsystems described by discrete-

time 2-D dynamical systems, and a rule specifying 

the switching among them. Some advanced 

techniques (such as quadratic Lyapunov functions 

and piecewise Lyapunov functions) used in 

analyzing and designing for 1-D Markovian jump 

systems can be extended to deal with 2-D semi-

Markovian jump systems. 
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