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Local Stabilization of Polynomial Fuzzy Model with Time Delay: SOS
Approach
Hamdi Gassara, Fatma Siala, Ahmed El Hajjaji*, and Mohamed Chaabane

Abstract: In this paper, a design method of control for Polynomial Fuzzy Models (PFM) with time delay is de-
veloped. By using a Polynomial Lyapunov Krasovskii Functional (PLKF) with double integral and by imposing
bounds on the derivatives of each state, less conservative sufficient conditions are established to ensure the local sta-
bility of the closed loop system. Furthermore, a Domain Of Attraction (DOA) in which the initial states are ensured
to converge asymptotically to the origin is estimated. The resulting conditions are formulated in terms of Sum-Of-
Squares (SOS) which can be numerically (partially symbolically) solved via the recently developed SOSTOOLS.
Some examples are provided to show the effectiveness and the merit of the design procedure.

Keywords: Domain Of Attraction (DOA), local stability, polynomial fuzzy systems, polynomial Lyapunov
Krasovskii functional, sum of squares (SOS), time delay.

1. INTRODUCTION

The Takagi Sugeno (TS) fuzzy model [1] has been rec-
ognized as a powerful tool in describing the dynamics of
a nonlinear system. A general TS fuzzy model combines
some local linear models according to the nonlinear mem-
bership functions. So far a flurry of research activities
have been presented for investigating TS fuzzy systems
based on Linear Matrix Inequalities (LMI). A feasible so-
lution to the LMI conditions can be found numerically us-
ing LMI toolbox of Matlab software [2].

Recently, Polynomial Fuzzy Models (PFM) have been
appearing [3] for modeling of nonlinear systems using
polynomials matrices in the consequence part. The analy-
sis and control design methods developed for PFM aim to
seek conditions in terms of sum of squares (SOS) condi-
tions, which can be symbolically and numerically solved
via SOSTOOLS [4]. It is well known that the SOS ap-
proach applied to polynomial fuzzy model provided more
relaxed results than the LMI approach applied to TS fuzzy
model. Different methodologies have been proposed for
investigation of PFM in wide research topics, e.g., global
stability analysis using Polynomial Lyapunov function
(PLF) [3], multiple PLF [5], switching PLF [6]; Robust
stability [7]; local stability analysis [8]; stabilization [9]-
[10]; observer-based control [11]; output regulation [12];
fault tolerant control [13].

All the results cited previously are proposed for time-
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delay free systems. In practice, time-delay phenomenon
appears commonly in many Engineering processes, such
as chemical processes and long transmission lines in pneu-
matic, hydraulic, or rolling mill systems. It is shown that
the presence of delays usually becomes the source of in-
stability and deteriorating performance of systems. In re-
cent years, PFM has been extended to tackle the analysis
and control problems of nonlinear systems with time de-
lay. Concerning the stabilization of PFM with time delay,
limited works have been reported in the literature. Thus,
in [14], the authors have provided a delay independent
method of guaranteed cost control design. The disadvan-
tage of this work is linked to the fact that the polynomial
Lyapunov matrix is composed only of states whose dy-
namics are not directly affected by the control input and
the delay.

Motivated by the aforementioned observation, in this
paper, we study the stabilization of PFM with time delay.
We aim to reduce the conservatism caused by the restric-
tion on the construction of PLKF. To achieve this objec-
tive, we use a PLKF in order to obtain delay dependent
SOS conditions. Moreover, we confine the state variation
within a bounded interval in order to obtain a PLKF in
which the Lyapunov matrix is not restricted to be depen-
dent only of the states corresponding to zero rows of input
polynomial matrices and delayed state polynomial matri-
ces. Consequently, local stabilization problem is reformu-
lated. The proposed stabilization conditions are given in
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terms of SOS.
The rest of the paper is structured as follows. Section 2.

gives the description of PFM with time delay and the Poly-
nomial Fuzzy Controller (PFC). We present also some def-
initions and lemmas to be used in this paper. In Section 3.
we propose a delay-dependent design method of a PFC
which ensures the stability of the closed loop system. The
stabilization conditions are given in terms of SOS. In sec-
tion 4., numerical examples are used to illustrate the relax-
ation and validity of the proposed local SOS stabilization
conditions. Finally, some conclusions are given.

Notations: Cn,τ denotes the Banach space of continu-
ous functions mapping [−τ,0], ∥.∥ refers to the Euclidean
vector norm or spectral matrix norm and
∥ψ∥c = sup−τ≤t≤0∥ψ(t)∥ stands for the norm of a func-
tion ψ(t) ∈ Cn,τ . A monomial in x(t) = [x1, ...,xnu ] is a
function of the form xd1

1 xd2
2 ...xdnu

nu where di, i = 1, ...,nu are
nonnegative integers. The degree of a monomial is defined

as d =
nu

∑
i=1

di. λmax(P) denotes the maximum eigenvalues

of the corresponding real symmetric matrices.

2. PROBLEM FORMULATION

2.1. Polynomial fuzzy model with state delay
Consider a nonlinear time-delay system which could be

represented by the following PFM with time delay:
Plant Rule i(i = 1,2, · · · ,r):
If θ1 is µi1 and · · · and θp is µip THEN

ẋ(t) = Ai(x(t))x̃(x(t))+Aτi(x(t))x̃(x(t − τ))
+Bi(x(t))u(t)

x(t) = ψ(t), t ∈ [−τ,0],
(1)

where θ j(x(t)) and µi j(i = 1, ...,r, j = 1, ..., p) are the
premise variable and the fuzzy sets respectively; ψ(t) is
the initial conditions; x(t) ∈ ℜnx is the state; u(t) ∈ ℜnu

is the control input; r is the number of IF-THEN rules;
Ai(x(t)), Bi(x(t)), Aτi(x(t)) are polynomial matrices in
x(t); x̃(x(t)) and x̃(x(t−τ)) are column vectors whose en-
tries are all monomials in x(t) and x(t−τ(t)) respectively;
τ is a real positive constant representing the time delay.

By using singleton fuzzifier, the common used center-
average defuzzifier and product interference, fuzzy model
(1) can be represented as :

ẋ(t) =
r

∑
i=1

hi(θ(x(t))){Ai(x(t))x̃(x(t))

+Aτi(x(t))x̃(x(t − τ(t)))+Bi(x(t))u(t)}
x(t) = ψ(t), t ∈ [−τ,0],

(2)

The Polynomial Fuzzy Controller (PFC) that mirrors
the structure of the PFM is presented as follows

Controller Rule i(i = 1,2, ..,r):

If θ1 is µi1 and · · · and θp is µip THEN

u(t) = Ki(x(t))x̃(x(t)). (3)

The PFC is inferred as

u(t) =
r

∑
i=1

hi(θ(x(t)))Ki(x(t))x̃(x(t)). (4)

In the sequel, for brevity we use hi, x̃(t), P(t) and Ai(t)
to denote respectively hi(θ(x(t))), a monomial x̃(x(t)), a
polynomial matrix P(x(t)) and a matrix Ai(x(t)).

Combining (2) and (4), the closed-loop fuzzy system
can be expressed as follows:

ẋ(t) =
r

∑
i=1

r

∑
j=1

hih j[Ai j(t)x̃(t)+Aτi(t)x̃(t − τ)] (5)

with

Ai j(t) := Ai(t)+Bi(t)K j(t). (6)

2.2. Domain of attraction
Denoting the state trajectory of system (5) with initial

condition x0 = ψ ∈ C[−τ,0] by x(t,ψ). Then the domain
of attraction of the origin is set

A= {ψ ∈ Cn,τ : lim
t→∞

x(t,ψ) = 0}.

The determination of the exact domain of attraction is
practically impossible [15]. An estimate χδ ⊂ A of the
domain of attraction is given by

χδ = {ψ ∈ Cn,τ̄ : max[−τ,0]|ψ| ≤ δ1,max[−τ,0]|ψ̇| ≤ δ2},

where δ1 > 0 and δ2 > 0 are scalars.

Definition 1: Define the following subsets of IRnx .

ε(X−1(t),1) = {x(t) ∈ IRnx ; x̃T (t)X−1(t)x̃(t)≤ 1}, (7)

where X(t) is a symmetric positive polynomial matrix.
Note that the symmetric positive polynomial matrix X(t)
is not constant but state-dependent. Therefore the result-
ing domains of attraction are not necessarily standard el-
lipsoids but could be more general to facilitate exploiting
stability region of nonlinear systems.

L(v) = {x ∈ IRnx ; |ẋk| ≤ vk, k = 1, . . . ,nx}, (8)

where ẋk is the kth row of ẋ(t).

2.3. Sum of squares
A multivariate polynomial f (x(t)) (where x(t) ∈ ℜnx )

is an SOS, if there exist polynomials f1(x(t)),. . ., fm(x(t))

such that f (x(t)) =
m

∑
i=1

f 2
i (x(t)). It is clear that f (x(t)) be-

ing an SOS implies f (x(t))> 0 for all x(t)∈ℜnx . This can
be shown equivalent to the existence of a special quadratic
form stated in the following lemma.
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Lemma 1 [3]: Let f (x(t)) be a polynomial in x(t) ∈
ℜn of degree 2d and x̃(t) be a column vector whose entries
are all monomials in x(t) with degree no greater than d.
Then, f (x(t)) is an SOS if there exists a positive semi-
definite matrix P(t) such that

f (x(t)) = x̃(x(t))T P(t)x̃(x(t)).

Hence, it is clear that f (x(t)) being an SOS implies that
f (x(t))> 0.

Lemma 2 [10]: Let F(x(t)) be an N ×N symmetric
polynomial matrix of degree 2d in x(t). x̃(x(t)) is as de-
fined in the above definition. Consider the following con-
ditions.

1. F(x(t))≥ 0 for all x(t) ∈ ℜn.
2. wT (t)F(x(t))w(t) is a sum of squares, where w(t) ∈

ℜN .
3. There exists a positive semi-definite matrix Q such

that wT (t)F(x(t))w(t) = (w(t) ⊗ x̃(x(t)))T Q(v ⊗
x̃(x(t))), where ⊗ denotes the Kronecker product.

Then (1)⇐= (2) and (2)⇐⇒ (3).

Lemma 3 [10]: For a symmetric polynomial matrix
P(t) which is nonsingular for all x(t), then

∂P(t)
∂xk

=−P(t)
∂P(t)−1

∂xk
P(t).

Lemma 4: Let us consider a negative-definite matrix
Π. Given a polynomial matrix X(t) of appropriate dimen-
sion, the two following inequalities are equivalent:

(X(t)+Π−1)T Π(X(t)+Π−1)≤ 0, (9)

X(t)T ΠX(t)≤−(XT (t)+X(t))−Π−1. (10)

3. MAIN RESULTS

In the following theorem we present the conditions for
which closed loop system (5) is locally asymptotically sta-
ble.

Theorem 1: Closed loop system (5) is locally asymp-
totically stable within set ε(X−1(t),1) if, for given posi-
tive scalar τ , there exist symmetric polynomial matrices
X−1(t), S−1 and Z−1 satisfying the following conditions:

wT
1 (X

−1(t)− ε1(t)I)w1 is SOS, (11)

wT
1 (S

−1 − ε2(t)I)w1 is SOS, (12)

wT
1 (Z

−1 − ε3(t)I)w1 is SOS, (13)

Φi j(t)+Φ ji(t)< 0, i ≤ j (14)

(λmax(X−1(0))+ τλmax(S−1))δ 2
1

+
1
2

τ2λmax(Z−1)δ 2
2 ≤ 1, (15)

ε(X−1(t),1)⊂ L(v), (16)

where:
w1 is arbitrary vector.
T (t) is a polynomial matrix whose (i, j)-th entry is given
by T i j(t) = ∂ x̃i

∂x j
(t), εl(x) are nonnegative polynomials, for

l = 1,2,3.

Φi j(t) =

 Φ11
i j (t) Φ12

i j (t) Φ13
i j (t)

∗ −S−1 Φ23
i j (t)

∗ ∗ − 1
τ Z−1

< 0 (17)

in which

Φ11
i j (t) = X−1(t)T (t)Ai j(t)+AT

i j(t)T
T (t)X−1(t)

+S−1 ±
n

∑
k=1

∂X−1(t)
∂xk

vk,

Φ12
i j (t) = X−1(t)T (t)Aτi(t),

Φ13
i j (t) = Ai j(t)T T T (t)Z−1,

Φ23
i j (t) = Aτi(t)T T T (t)Z−1.

Proof : Choose the LKF as

V (t) = x̃T (t)X−1(t)x̃(t)+
∫ t

t−τ x̃T (α)S−1x̃(α)dα
+
∫ 0
−τ

∫ t
t+σ

˙̃xT (α)Z−1 ˙̃x(α)dαdσ .
(18)

The time derivative of this LKF (18) along the trajectory
of system (1) is obtained as

V̇ (t) = ˙̃xT (t)X−1(t)x̃(t)

+ x̃T (t)X−1(t) ˙̃x(t)+ x̃T (t)Ẋ−1(t)x̃(t)

+ x̃T (t)S−1x̃(t)− x̃T (t − τ)S−1x̃(t − τ)

+ τ ˙̃xT (t)Z−1x̃(t)−
∫ t

t−τ
˙̃xT (s)Z−1 ˙̃x(s)ds

=ẋT (t)T T (t)X−1(t)x̃(t)+ x̃T (t)X−1(t)T (t)ẋ(t)

+ x̃T (t)(
n

∑
k=1

∂X−1(t)
∂xk

ẋk)x̃(t)

+ x̃T (t)S−1x̃(t)− x̃T (t − τ)S−1x̃(t − τ)

+ τ ẋT (t)T T (t)Z−1T (t)ẋ(t)−
∫ t

t−τ
˙̃xT (s)Z−1 ˙̃x(s)ds.

As it is shown in [16]- [17]

ẋT (t)T T (t)Z−1T (t)ẋ(t)≤
r

∑
i=1

r

∑
j=1

hih jη̃(t)T

×
[

ϒ11
i j (t) ϒ12

i j (t)
∗ ϒ22

i j (t)

]
η̃(t),

where

ηT (t) = [x̃T (t), x̃T (t − τ(t))T ],

ϒ11
i j (t) =

∆i j(t)T

2
T T (t)Z−1T (t)

∆i j(t)
2

,

ϒ12
i j (t) =

∆i j(t)T

2
T T (t)Z−1T (t)

∆τi j(t)
2

,
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ϒ22
i j (t) =

∆τi j(t))T

2
T T (t)Z−1T (t)

∆τi j(t)
2

in which:

∆i j(t) = Ai j(t)+A ji(t),

∆τi j(t) = Aτi(t)+Aτ j(t).

Therefore, we get

V̇ (t)≤
r

∑
i=1

r

∑
j=1

hih jη̃T (t)Φ̃i j(t)η̃(t), (19)

where:

Φ̃i j(t) =
[

Φ̃11
i j (t) Φ̃12

i j (t)
∗ Φ̃22

i j (t)

]
(20)

in which

Φ̃11
i j (t) = X−1(t)T (t)Ai j(t)+AT

i j(t)T
T (t)X−1(t)

+S+
n

∑
k=1

∂X−1(t)
∂xk

ẋk + τϒ11
i j (t),

Φ̃12
i j (t) = X−1(t)T (t)Aτi(t)+ τϒ12

i j (t),

Φ̃22
i j (t) =−S+ τϒ22

i j (t).

By applying schur complement
r

∑
i=1

r

∑
j=1

hih jΦ̃i j(t) < 0 is

equivalent to

r

∑
i=1

r

∑
j=1

hih jΦ̂i j =
1
2

r

∑
i=1

r

∑
j=1

hih j(Φ̂i j + Φ̂ ji)

= 1
2

r

∑
i=1

r

∑
j=1

hih j(Φ̄i j + Φ̄ ji)< 0,
(21)

where

Φ̂i j(t) =

 Φ̂11
i j (t) Φ12

i j (t) Φ̂13
i j (t)

∗ −S−1 Φ̂23
i j (t)

∗ ∗ − 1
τ Z−1

< 0 (22)

in which

Φ̂11
i j (t) = X−1(t)T (t)Ai j(t)+AT

i j(t)T
T (t)X−1(t)

+S+
n

∑
k=1

∂X−1(t)
∂xk

ẋk,

Φ̂13
i j (t) =

∆i j(t)T

2
T T (t)Z−1, (23)

Φ̂23
i j (t) =

∆τi j(t)T

2
T T (t)Z−1,

and

Φ̄i j(t) =

 Φ̂11
i j (t) Φ12

i j (t) Φ13
i j (t)

∗ −S−1 Φ23
i j (t)

∗ ∗ − 1
τ Z−1

< 0. (24)

To avoid the construction of a restrictive Polynomial
Lyapunov Matrix (PLM) depending only of states whose
dynamics are not directly affected by the control input
and delayed state, we will specify the bound of the state
derivative x(t) ∈ L(v). Then, (14) implies that V̇(t)≤ 0.

From V̇(t)≤ 0 it follows that V(t)≤V(0) and therefore

x̃T (t)X−1(t)x̃(t)≤V (t)≤V (0)≤

(λmax(X−1(0))+ τλmax(S−1))δ 2
1 +

1
2

τ2λmax(Z)δ 2
2 .

Inequality (15) then guarantees that for all initial functions
ψ̃(t), the trajectories of x(t) remain within ε(X−1(t),1).
In the following Theorem, we transform the matrix in-
equalities in Theorem 1 into SOS.

Theorem 2: Closed loop system (5) is locally asymp-
totically stable within the set ε(X−1(t),1) if, for given
positive scalar τ , there exist a symmetric polynomial ma-
trix X(t), symmetric matrices S, Z and polynomial ma-
trices Mi(x) satisfying (15) and the following SOS condi-
tions:

wT
1 (X(t)− ε̃1(t)I)w1 is SOS, (25)

wT
1 (S− ε̃2(t)I)w1 is SOS, (26)

wT
1 (Z − ε̃3(t)I)w1 is SOS, (27)

wT
2 (−Ωi j(t)−Ω ji(t)− ε̃4i j(t)I)w2 is SOS, (28)

wT
3 (Ξ

k
i j(t)− ε̃k

5i j(t)I)w3 is SOS, (29)

wT
4 (

[
X(t) X(t)
∗ 1

τ S

]
− ε̃6(t)I)w4 is SOS, (30)

where:
w1, w2, w3 and w4 are arbitrary vectors.
ε̃l(x), ε̃4i j(t), ε̃k

5i j and ε̃6(t) are nonnegative polynomials,
for l = 1,2,3, i, j = 1, ...,r, k = 1, ....,nx

Ωi j(t) =


Ω11

i j (t) Ω12
i j (t) Ω13(t) X(t)

∗ Ω22
i j (t) X(t)Aτi(t)T 0

∗ ∗ − 1
τ Z 0

∗ ∗ ∗ −S


(31)

in which

Ω11
i j (t) = T (t)Ai(t)X(t)+T (t)Bi(t)M j(t)

+X(t)Ai(t)T T T (t)+M j(t)T Bi(t)T T T (t)

∓
n

∑
k=1

∂X(t)
∂xk

vk,

Ω12
i j (t) = T (t)Aτi(t)X(t),

Ω13
i j (t) = X(t)Ai(t)T T T (t)+M j(t)T Bi(t)T T T (t),

Ω22
i j (t) =−2X(t)+S,
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and

Ξk
i j(t) =

 v2
k

2 Ak
i (t)X(t)+Bk

i (t)M j(t) Ak
τi(t)S

∗ X(t) 0
∗ ∗ τS

 .

(32)

In this case, stabilizing feedback gains Ki(t) can be ob-
tained from X(t) and Mi(t) as Ki(t) = Mi(t)X(t)−1.

Proof :
Multiplying both sides of Φi j(t) by

diag
(

X(t),X(t),X(t)
)

and pre-and-post multiplying the

obtained matrix with diag[I, I,ZX−1(t)] and its transpose,
we get:

Θi j(t) =

 Θ11
i j (t) Θ12

i j (t) Θ13
i j (t)

∗ −X(t)S−1X(t) Θ23
i j (t)

∗ ∗ − 1
τ Z

 ,

(33)

where:

Θ11
i j (t) = T (t)Ai j(t)X(t)+X(t)AT

i j(t)T
T (t)

+X(t)S−1X(t)∓
n

∑
k=1

∂X(t)
∂xk

vk,

Θ12
i j (t) = T (t)Aτi(t)X(t),

Θ13
i j (t) = X(t)AT

i j(t)T
T (t),

Θ23
i j (t) = X(t)AT

τi(t)T
T (t).

By applying Schur complement and lemma 3, condition
(28) implies that Φi j(t)+Φ ji(t)< 0.

In the next, we prove that SOS (29)-(30) guarantee that
|ẋk| ≤ vk, ∀x(t) ∈ ε(X−1(t),1).
On one hand, by applying Schur complement, SOS (30) is
equivalent to

τ x̃(t)T S−1x̃(t)≤ x̃T (t)X−1(t)x̃(t).

Then, the following inequalities hold ∀x(t) ∈ ε(X−1(t),1)

x̃T (t)X−1(t)x̃(t)≤ 1, (34)

and

τ x̃(t)T S−1x̃(t)≤ 1. (35)

Furthermore, for all initial functions ψ̃(t) satisfying (15),
it follows that:

τψ(t)T S−1ψ(t)≤ τλmax(S−1)δ 2
1 ≤ 1. (36)

By considering (35) and (36), we can verify that the fol-
lowing inequality holds :

τ x̃(t − τ)T S−1x̃(t − τ)≤ 1.

Therefore

2vk ≥vk(1+
1
2

x̃T (t)X−1(t)x̃(t)

+
1
2

τ x̃(t − τ)T S−1x̃(t − τ)). (37)

On the other hand, Pre- and post-multiplying both sides
of Ξk

i j(t) by diag(
√

2
vk
,
√ vk

2 X−1(t),
√ vk

2 S−1) and its trans-
pose, we obtainvk Ak

i (t)+Bk
i (t)K j(t) Ak

τi(t)
∗ vk

2 X−1(t) 0
∗ ∗ vk

2 τS−1

≥ 0,

which implies that

ϑ T (t)

vk Ak
i (t)+Bk

i (t)K j(t) Ak
τi(t)

∗ vk
2 X−1(t) 0

∗ ∗ vk
2 vkτS−1

ϑ(t)≥ 0,

(38)

where:

ϑ T (t) = [1,±x̃T (t),±x̃(t − τ)T ].

The last inequality can be rewritten as

vk(1+
1
2

x̃T (t)X−1(t)x̃(t)+
1
2

τ x̃(t − τ)T S−1x̃(t − τ))

≥ 2|(Ak
i (t)+Bk

i (t)K j(t))x̃(t)|+2|Ak
τi(t)x̃(t − τ)|.

(39)

By considering (37) and (39), we get

2vk ≥ 2|(Ak
i (t)+Bk

i (t)K j(t))x̃(t)|+2|Ak
τi(t)x̃(t − τ)|

≥ 2|(Ak
i (t)+Bk

i (t)K j(t))x̃(t)+Ak
τi(t)x̃(t − τ)|

since hi ≥ 0 and
r

∑
i=1

hi = 1, then |ẋk| ≤ vk. This complete

the proof of Theorem 2.

Remark 1: There are two approaches proposed in the
literature to measure the largeness of the attraction set.
The first one is given in [18] where a largeness of a set is
measured by its volume. The second one takes the shape
of the attraction set into consideration [19]. In what fol-
lows, we will measure the size of ε(X−1(t),1) with re-
spect to a shape reference set XR by the largest γ such that
γXR ⊂ ε(X−1(t),1). Thus, the determination of largest
ε(X−1(t),1) can be formulated into the following opti-
mization problem:
Sup γ
s.t. {

γXR ⊂ ε(X−1(t),1)

(44)− (26)− (27)− (28)− (29)− (30)
(40)
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If XR = {x(t) ∈ IRnx ; x̃T (t)Rx̃(t) ≤ 1}, then constraint
γXR ⊂ ε(X−1(t),1) is converted to γ2X−1(t) ≤ R. Note
that this inequality holds if and only if[ 1

γ2 R I
I X(t)

]
≥ 0. (41)

Let µ = 1
γ2 . Then the optimization problem (40), with XR

being an ellipsoid, can be formulated as
min µ
s.t. 

[
µR I
I X(t)

]
≥ 0

(44)− (26)− (27)− (28)− (29)− (30)
(42)

Now, we consider a simple case, i.e., delay free case.
We rewrite the overall polynomial fuzzy model without
delay terms as:

ẋ(t) =
r

∑
i=1

r

∑
j=1

hih jAi j(t)x̃(t). (43)

In this case, we have the following result which is a direct
corollary of Theorem 2.

Corollary 1: Closed loop system (43) is locally
asymptotically stable within set ε(X−1(t),1) if, for given
positive scalar τ , there exists a symmetric polynomial
matrix X(t) and polynomial matrices Mi(x) satisfying the
following conditions:

wT
1 (X(t)− ε̃1(t)I)w1 is SOS, (44)

wT
2 (−Ω11

i j (t)−Ω ji(t)− ε̃4i j(t)I)w2 is SOS, (45)

wT
3 (Γ

k
i j(t)− ε̃k

5i j(t)I)w3 is SOS, (46)

(λmax(X−1(0)))δ 2
1 ≤ 1, (47)

where

Γk
i j(t) =

[
v2

k
2 Ak

i (t)X(t)+Bk
i (t)M j(t)

∗ X(t)

]
. (48)

In this case, a stabilizing feedback gain Ki(t) can be ob-
tained from X(t) and Mi(t) as Ki(t) = Mi(t)X(t)−1.

Remark 2: Tanaka et al. [10] proposed a stabilizing
criterion in terms of SOS conditions by using a polyno-
mial Lyapunov function in the form of:

V (t) =x̃T (t)X−1(x̄(t))x̃(t), (49)

where x̄(t) is composed of states whose dynamics is not
directly affected by the control input.

The disadvantage of this result is linked to the fact
that the Lyapunov polynomial matrix X−1(x̄(t)) is com-
posed only of the states corresponding to the zeros rows
of Bi(t). For example, if the input matrices Bi(t) not have

zero rows, the matrix X−1(x̄(t)) can only be a constant.
Corollary 1 allows to overcome this restriction by employ-
ing polynomial Lyapunov matrix X−1(t) depending on all
states.

Remark 3: In this paper, the SOS conditions are
solved via SeDuMi in addition to SOSTOOLS. For more
details of how to solve the SDPs using SeDuMi, see [4].

Remark 4: Li et al. have presented in [14] a guaran-
teed cost controller design for PFM with time delay. The
restrictions of this approach are: 1) the result is delay in-
dependent, 2) The PLM X(t) depends on states whose cor-
responding rows in Bi(t) and Aτi(t) are zeros. In our ap-
proach, we have overcome these great disadvantages by
presenting delay dependent SOS and using a PLM X(t)
depends on all states.

4. ILLUSTRATIVE EXAMPLES

4.1. Example 1
Consider a delay free polynomial fuzzy model with two

IF-THEN rules where:

A1(t) =
[

−1+ x1 + x2
1 + x1x2 − x2

2 1
−1 −1

]
, (50)

A2(t) =
[

−1+ x1 + x2
1 + x1x2 − x2

2 1
0.2172 −1

]
, (51)

B1(t) =
[

x1

0.1

]
, B2(t) =

[
x1

0.1

]
. (52)

The SOS conditions presented in Theorem 2 of [10]
cannot produce a feasible solution. Using our corollary,
we obtain a feasible solution by setting v1 = v2 = 2 and a
polynomial Lyapunov matrix X(t) of fourth order.

X(t) =
[

X11(t) X12(t)
∗ X22(t)

]
,

X11(t) = 1e−8
(
−0.21675x4

1 −0.72733x3
1x2

−0.59966x3
1 +0.58987x2

1x2
2 +0.33633x2

1x2

−76x2
1 −0.66798x1x3

2 −0.15007x1x2
2

+94.18x1x2 +280.11x1 +0.60487x4
2

−0.26575x3
2 −19.135x2

2 +14.351x2 +143660
)
,

X12(t) = 1e−8
(
−0.085763x4

1 +0.10917x3
1x2 −0.023221x3

1

−0.26761x2
1x2

2 −0.5937x2
1x2 +37.998x2

1

+0.013204x1x3
2 −0.029219x1x2

2 −21.594x1x2

+374.51x1 −0.17099x4
2 +0.15613x3

2

+81x2
2 −338x2 +23832

)
,

X22(t) = 1e−8
(

0.15156x4
1 −0.040076x3

1x2 −0.83706x3
1

+0.76376x2
1x2

2 +0.35619x2
1x2 +34201.0x2

1
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+0.10201x1x3
2 −1.2254x1x2

2 −1274x1x2

+4169x1 +0.16226x4
2 −0.73012x3

2

+33953x2
2 +2941x2 +452370

)
,

M1(t) =
[

M11
1 (t) M12

1 (t)
]
,

M11
1 (t) =−0.16883e−5x2

1 −0.22668e−5x1x2

−0.19061e−2x1 +0.1562e−5x2
2

−0.14156e−2x2 −0.14166e−2,

M12
1 (t) =−0.25988e−5x2

1 −0.15016e−5x1x2

−0.64972e−3x1 +0.14235e−4x2
2

−0.29607e−3x2 −0.19206e−3,

M2(t) =
[

M11
2 (t) M12

2 (t)
]
,

M11
2 (t) =−0.1622e−5x2

1 −0.22268e−5x1x2

−0.19166e−2x1 +0.1635e−5x2
2

−0.14138e−2x2 −0.14214e−2,

M12
2 (t) =−0.26041e−5x2

1 −0.15019e−5x1x2

−0.67318e−3x1 +0.14134e−4x2
2

−0.31722e−3x2 −0.19275e−3,

where 1e−n = 10−n,n ≥ 0.

4.2. Example 2
Consider the following polynomial fuzzy model with

time delay:

ẋ(t) =
2

∑
i=1

hi[Ai(t)x(t)+Aτi(t − τ)x(t − τ)+Biu(t)],

(53)

where:

A1(t) =
[

−1 1
−1 −1

]
, A2(t) =

[
−1 1

−0.2172 −1

]
,

(54)

Aτ1(t) = Aτ2(t) =
[

−0.1 0
0.1 0

]
, (55)

B1(t) = B2(t) =
[

x2

0.1

]
. (56)

For simulation, we consider second-order X(t) and we
set τ = 0.35 and v1 = v2 = 4. By solving the SOS condi-
tions in Theorem 2, we obtain the following feasible solu-
tion:

X(t) =
[

X11(t) X12(t)
∗ X22(t)

]
,

X11(t) = 1.398e−8x2
2 −8.2811e−6x2 +0.6014,

X12(t) =−0.26458e−8x2
2 +0.25824e−6x2 +2.2547e−2,

X22(t) = 1.2417e−8x2
2 −2.5611e−6x2 +0.54621,

x
1

x 2

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 1. Invariant set ε(X−1(t),1) and phase plot of x1(t)
and x2(t) with several different initial conditions.

S =

[
0.8805 0.04794

∗ 0.8140

]
, Z =

[
0.6233 −0.01238

∗ 0.6240

]
,

M1(t) =
[

M11
1 (t) M12

1 (t)
]
,

M11
1 (t) = 0.62312e−8x2 −0.47239e−5,

M12
1 (t) =−0.10563e−7x2 −0.46864e−5,

M2(t) =
[

M11
2 (t) M12

2 (t)
]
,

M11
2 (t) = 0.77e−8x2 −0.16935e−5,

M12
2 (t) =−0.10802e−7x2 −0.33171e−5.

Fig. 1 shows the invariant set ε(X−1(t),1) and the dynam-
ics of the closed-loop system with several different initial
conditions. The convergence of state trajectories for dif-
ferent initial conditions shows that the obtained controller
gains stabilize the system.

By solving the optimization problem (42) for XR =
ε(I,1), we obtain µ = 1.01

X(t) =
[

X11(t) X12(t)
∗ X22(t)

]
,

X11(t) = 0.2913e−6x2
2 +0.66571e−5x2 +0.99032,

X12(t) =−0.50213e−7x2
2 −0.37358e−6x2 +0.43092e−4,

X22(t) = 0.28448e−6x2
2 −0.2983e−5x2 +0.99034,

S =

[
0.6450 0.1674

∗ 1.5795

]
, Z =

[
1.7838 0.6625

∗ 1.7503

]
,

M1(t) =
[

M11
1 (t) M12

1 (t)
]
,

M11
1 (t) = 0.85536e−7x2 −0.19833e−3,

M12
1 (t) =−0.25056e−6x2 −0.19915e−3,

M2(t) =
[

M11
2 (t) M12

2 (t)
]
,

M11
2 (t) = 0.12887e−6x2 −0.20987e−4,

M12
2 (t) =−0.2852e−6x2 −0.2219e−4.
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Fig. 2. Invariant set ε(X−1(t),1) computed by the opti-
mization problem.

Fig. 2 depicts the resulting invariant ellipsoid. The
optimization problem maximizes the invariant set
ε(X−1(t),1).

5. CONCLUSION

In this paper, we have studied the delay dependent lo-
cally stabilization problem for PFM with time delay. The
sufficient conditions are given in terms of SOS which can
be symbolically and numerically solved via the SOSOPT
and the SeDuMi. The result for delay-free case is easy
corollary. The SOS conditions is obtained without impos-
ing any restrictions in the construction of the Lyapunov
Krasovskii functional. This improved result is obtained
by bounding the variation rates of each state. Several ex-
amples have been given to illustrate the effectiveness of
the established approach.
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