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Observer-based H∞ Guaranteed Cost Control for Uncertain Singular
Time-delay Systems with Input Saturation
Yuechao Ma and Yifang Yan*

Abstract: In this paper, the problem of observer-based H∞ guaranteed cost control for uncertain singular time-
delay systems with actuator saturation is concerned. A delay-dependent sufficient condition is proposed, which
guarantees that the closed-loop system is admissible via Lyapunov theory and linear matrix inequality (LMI) ap-
proach. Then, with this condition, the estimation of stability region, the upper bound of cost function and the design
method of observer-based H∞ guaranteed cost controller are given by solving linear matrix inequalities and convex
optimization problems. Finally, numerical examples are provided to demonstrate the effectiveness of the proposed
method.
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1. INTRODUCTION

It has been recognized that the state variables are of-
ten not measurable in most practical situations. Many ob-
server design problems, which are concerned with using
the available information on inputs and outputs to recon-
struct the unmeasured states, have been widely investi-
gated for many practical applications in [1, 2], whereas
only a few works have been carried out on singular sys-
tems [3, 4]. Singular systems (also known as descrip-
tor systems, generalized state-space systems, implicit sys-
tems, differential-algebraic systems) can describe many
practical systems more reasonably than regular ones [5,6].
It should be pointed out that the stability, stabilization
and H∞ control problem for singular systems are much
more complicated than the regular ones. During the past
decades, singular systems have received considerable in-
terest and many fundamental system theories have been
established, see [7, 8] and the references therein.

During the recent years, much attention has been de-
voted to the study of singular systems with time-delay.
The methods may be classified into two categories: delay-
independent cases [9] and delay-dependent cases [10].
Generally speaking, delay-independent cases are likely to
be conservative, especially when the delay is compara-
tively small. Therefore, more attention has been paid to
the study on delay-dependent stability of singular time-
delay system and several results are obtained, see [11,12].
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At present, H∞ control problem and robust control prob-
lem have made great progress [9–12]. Most aforemen-
tioned references are concerned with asymptotic stability,
but the system can converge quickly is desired in practice.
Moreover, when controlling a real plant, it is also desir-
able to design a control system which is not only asymp-
totically stable but also guarantees an adequate level of
performance. Therefore, the problems of guaranteed cost
control for the singular systems have received consider-
able attention in recent years [13–15].

In addition, nearly all physical systems are subject to
saturation constraints. If the controller is designed without
considering this kind of nonlinearity, the presence of ac-
tuator saturation can lead to the performance degradation.
Hence, additional constraints should be imposed on the
analysis of systems [16–19]. The control synthesis prob-
lem for a class of linear time-delay systems with actua-
tor saturation is investigated in [16]. Certainly, the prob-
lems of stability analysis and controller design for singu-
lar linear systems subject to actuator saturation are more
complex than those for normal systems. There have a few
but not many works dealing with the problem for singular
systems [17–19]. It established a set of conditions under
which an ellipsoid is contractively invariant with respect
to a singular linear system under a saturated linear feed-
back in [18, 19].

The novelty of our research is to design an observer-
based guaranteed cost controller such that the uncertain
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singular time-delay system is not only robustly stable, but
also satisfies a prescribed H∞ performance level. First,
a new delay-dependent LMI condition which guarantees
that the closed-loop systems are admissible with H∞ per-
formance γ is derived. Adding a free-weighting matrix
will play a significant role in the derivation of a less con-
servative delay-dependent result. Then, using the condi-
tions, the estimation of stability region, the observer and
the guaranteed cost controller are given by solving a con-
vex optimization problem. Finally, numerical examples
show the less conservativeness of the results and demon-
strate the validity and merit of the proposed approach.

Notations: XT denotes the transpose of X . X+ denotes
the pseudo-inverse matrix of X . Symmetric elements in
the matrix are denoted by ∗. sym(X) denotes X +XT. For
a matrix X , x j denotes j-th row of X .

2. PROBLEM DESCRIPTION AND
PRELIMINARIES

Consider the following uncertain singular time-delay
systems

Eẋ(t) = (A+∆A)x(t)+(Ad +∆Ad)x(t −d (t))
+ (B+∆B)sat(u(t))+(Bω +∆Bω)ω (t) ,

y(t) = C1x(t) ,
z(t) = (C+∆C)x(t) ,
x(t) = ϕ (t) , t ∈ [−d,0] ,

(1)

where x(t) ∈ Rn is the state, u(t) ∈ Rl is the control in-
put, ω(t) ∈ Rq is the disturbance input which belongs to
ω (t) ∈ L2 [0,∞), z(t) ∈ Rm is the control output, y(t) ∈
Rp is the measured output, ϕ(t) is the initial condition
of the system, d (t) is the time-varying delay satisfying
0 < d (t)≤ d and ḋ (t)≤ µ . The saturating term sat(u(t))
in (1) is a vector-valued function defined as follows:

sat(u(t)) = [sat(u1 (t)) , · · · ,sat(ul (t))]
T.

The matrix E ∈ Rn×n may be singular, and we assume
that rank(E) = r ≤ n. A, Ad , B, Bω , C and C1 are known
real constant matrices of appropriate dimensions, △A,
△Ad , △B, △Bω and △C are unknown matrices repre-
senting norm-bounded parametric uncertainties, and are
assumed to be of the following form

∆A = E1F1 (t)H1, ∆Ad = E2F2 (t)H2,

∆B = E3F3 (t)H3, ∆Bω = E4F4 (t)H4, (2)

∆C = E5F5 (t)H5,

where Ei, Hi (i = 1, · · · ,5) are known real constant matri-
ces with appropriate dimensions, and Fi (t)(i = 1, · · · ,5)
are unknown time-varying matrices satisfying

FT
i (t)Fi (t)≤ I, (i = 1, · · · ,5) , (3)

The parametric uncertainties △A, △Ad , △B, △Bω and
△C are said to be admissible if both (2) and (3) hold.

Remark 1: We assume that C1 is a known real con-
stant matrix with appropriate dimensions. However, C1 is
assumed to be a matrix of full-row rank in [11]. And, in
this paper, there is no restriction on the rank of C1. There-
fore, the condition that C1 is a non-singular matrix or a
matrix of full-row rank can be seen as a special case of
our article. Therefore, the method proposed by us has a
wider application.

Associated with the system (1) is the following cost
function

J =
∫ ∞

0

[
xT (t)Qx(t)+uT (t)Ru(t)

]
dt, (4)

where Q and R are given positive-definite symmetric ma-
trices of appropriate dimensions.

Now, we construct the following observer-based con-
troller

E ˙̄x(t) = Ax̄(t)+Ad x̄(t −d (t))
+Bu(t)+L(y(t)−C1x̄(t)) ,

u(t) = Kx̄(t) ,
(5)

where x̄(t) is the estimated state, K and L are controller
gain and observer gain to be designed, respectively. De-
fine the state estimated error e(t) = x(t)− x̄(t).

Definition 1 [5]: 1) The singular time-delay system{
Eẋ(t) = Ax(t)+Adx(t −d (t))

x(t) = ϕ (t) , t ∈ [−d,0]
(6)

is said to be regular and impulse free, if the pair (E,A)
is regular and impulse free.

2) The system (6) is said to be asymptotically stable, if
for any ε > 0, there exists a scalar δ (ε) > 0, such
that for any compatible initial condition ϕ (t) with

sup
−d<t≤0

∥ϕ (t)∥ < δ (t), the solution x(t) of (6) satis-

fies ∥x(t)∥< ε for t > 0 and lim
t→0

x(t) = 0.

3) The system (6) is said to be admissible, if it is regular,
impulse free and asymptotically stable.

Definition 2 [20]: For a matrix H ∈ Rl×n, let hi be the
i-th row of the matrix H and L(H) is defined as

L(H) = {x(t) ∈ Rn : |hix(t)| ≤ 1, i ∈ [1, l]} .

Definition 3 [20]: Let P∈Rn×n be a symmetric matrix
and satisfies ETPE ≥ 0, for a scalar η > 0, E

(
ETPE,η

)
is denoted as

E
(
ETPE,η

)
=
{

x(t) ∈ Rn : x(t)TETPEx(t)≤ η
}
.

Lemma 1 [20]: Let K,H ∈ Rl×n, then for any x(t) ∈
L(H), we have

sat(Kx(t))∈ co
{

D jKx(t)+D j
−Hx(t) , j = 1,2, · · · ,2l} ,
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or equivalently, sat(Kx(t)) =
2l

∑
j=1

α j

(
D jK +D−

j H
)

x(t) ,

where co stands for the convex hull, α j for j = 1,2, · · · ,2l

are some scalars which satisfy 0 ≤ α j ≤ 1 and
2l

∑
j=1

α j = 1.

Let D be the set of l× l diagonal matrices whose diago-
nal elements are either I or 0. Suppose each element of D
is labelled as D j, j = 1,2, · · · ,2l , and denote D−

j = I−D j.
Clearly, if D j ∈ D, we have D j

− ∈ D.
From Lemma 1, for any x̃(t)∈L

([
H −H

])
, x̄(t)∈

L(H), we have

sat(Kx̄(t)) = sat([K −K] x̃(t))

=
2l

∑
j=1

α j

((
D j [K −K]+D−

j [H −H]
)

x̃(t)
)
,

(7)

where x̃(t) =
[

xT (t) eT (t)
]T.

Consider the equation (7), we obtain the closed-loop
system as follows: Ẽ ˙̃x(t) =

2l

∑
j=1

α jÃ j x̃(t)+ Ãd x̃(t −d (t))+ B̃ω ω (t) ,

z(t) = (C+∆C)x(t) ,
(8)

where Ād = Ad +∆Ad , B̄ω = Bω +∆Bω ,

Ẽ =

[
E 0
0 E

]
, Ãd =

[
Ād 0

∆Ad Ad

]
, B̃ω =

[
B̄ω
B̄ω

]
,

Ã j =

[
Ā j −B̄ j

∆A−BK + B̄ j A−LC1 +BK − B̄ j

]
,

Ā j = A+∆A+(B+∆B)D jK +(B+∆B)D−
j H,

B̄ j = (B+∆B)D jK +(B+∆B)D−
j H.

The corresponding closed-loop cost function of subsys-
tem (8) is

J =
∫ ∞

0
x̃T (t)Q∗x̃(t)dt, (9)

where Q∗ =

[
Q+KTRK −KTRK
−KTRK KTRK

]
is a positive-

definite symmetric matrix of appropriate dimensions.
The set E

(
ẼTP̃Ẽ,γ2η

)
is defined as follows:

E
(
ẼTP̃Ẽ,γ2η

)
=
{

x̃(t) ∈ R2n : x̃(t)TẼTP̃Ẽx̃(t)≤ γ2η
}
.

The aim of this paper is to design an observer-based
guaranteed cost controller such that for any time-vary de-
lay 0 < d (t)≤ d, satisfies the following conditions:

1) The closed-loop system (8) is admissible.
2) The closed-loop value of the cost function (9), under

the condition of ω (t) = 0, satisfies J ≤ J∗, where J∗

is some specified constant.

3) The closed-loop system (8) satisfies H∞ performance
γ , which means, under the zero initial condition, sys-
tem (8) satisfies

Jω =
∫ ∞

0

(
zT (t)z(t)− γ2ωT (t)ω (t)

)
dt < 0, (10)

for any nonzero ω (t) ∈ L2 [0,∞) and all admissible
uncertainties.

Lemma 2 [21]: Given a set of suited dimension real
matrices T1, T2 and F (t) is a time-varying matrix with
F(t)TF (t)≤ I. Then, we have

1) For any scalar ε > 0,

T1F (t)T2 +T2
TF(t)TT1

T ≤ εT1T1
T + ε−1T2

TT2,

2) For any positive-definite matrix G,

T1T2 +T2
TT1

T ≤ T1GT1
T +T2

TG−1T2.

3. MAIN RESULTS

3.1. Delay-dependent stability analysis for singular
systems

In this section, we concentrate our attention on the prob-
lems of stability and H∞ performance analysis for system
(1) with cost function (4).

Theorem 1: For prescribed scalar d > 0, 0 ≤ µ < 1,
the system (8) with cost function (9) is admissible with
H∞ performance γ within the set E

(
ẼTP̃Ẽ,γ2η

)
, if there

exist matrices Ū , Ni, M j, (i, j = 1, · · · ,5), invertible matrix
W and positive-definite symmetric matrices P̃, Q1, R1, S,
such that the following matrix inequality holds

Σ =



θ11 θ12 θ13 ẼTMT
4

∗ −(1−µ)Q1 −M2Ẽ N2

∗ ∗ θ33 θ34

∗ ∗ ∗ θ44

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
θ15 dM1 −ÃT

j W 0
0 dM2 −ÃT

dW N2

−ẼTMT
5 dM3 0 N3

NT
5 dM4 0 N4

−γ2I dM5 −B̃T
ωW N5

∗ −dS 0 0
∗ ∗ −W 0
∗ ∗ ∗ −W


< 0,

(11)

where

θ11 = sym
(
ÃT

j W +M1Ẽ
)
+Q1 +R1 +Q∗+C̄TC̄,

θ12 =W TÃd + ẼTMT
2 , θ13 =−M1Ẽ + ẼTMT

3 ,

θ15 =W TB̃ω + ẼTMT
5 , θ33 =−R1 − sym

(
M3Ẽ

)
,
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θ34 = N3 − ẼTMT
4 , θ44 = dS+ sym(N4) ,

H̃ =
[

H −H
]
, C̄ =

[
C+∆C 0

]
,

W = P̃Ẽ + R̄ŪT = diag{W1 ,W1} ,

R̄ ∈ R2n×2(n−r) is any full-column rank matrix sat-
isfying ẼTR̄ = 0, rank(R̄) = 2(n− r). Moreover
E
(
ẼTP̃Ẽ,γ2η

)
⊂L

(
H̃
)

and the corresponding cost func-
tion satisfies

J ≤ J∗ =x̃T (0) ẼTP̃Ẽx̃(0)

+
∫ 0

0−d(0)
x̃T (s)Q1x̃(s)ds

+
∫ 0

0−d
x̃T (s)R1x̃(s)ds

+
∫ 0

−d

∫ 0

0+θ
˙̃xT
(s) ẼTSẼ ˙̃x(s)dsdθ .

Proof: From (11), it follows that θ11 < 0. We choose
two nonsingular matrices M and N, such that MẼN =[

I2r 0
0 0

]
, MÃ jN =

[
Ã j11 Ã j12

Ã j21 Ã j22

]
, M−TR̄ =

[
0

R̄2

]
,

NTŪ =
[

ŪT
1 ŪT

2

]T
. Then, pre- and post-multiplying

θ11 < 0 by NT and N, respectively, it is obtained that
Ū2R̄T

2 Ã j22 + ÃT
j22R̄2ŪT

2 < 0, which means Ã j22 is nonsin-
gular and the pair

(
Ẽ, Ã j

)
is regular and impulse free ac-

cording to [20]. By Definition 1, the closed-loop system
(8) is regular and impulse free within E

(
ẼTP̃Ẽ,γ2η

)
.

Next, we show the stability of system (8). Choose a
Lyapunov-Krasovskii function as follows:

V (x̃t) =x̃T (t) ẼTP̃Ẽx̃(t)

+
∫ t

t−d(t)
x̃T (s)Q1x̃(s)ds+

∫ t

t−d
x̃T (s)R1x̃(s)ds

+
∫ 0

−d

∫ t

t+θ
˙̃xT
(s) ẼTSẼ ˙̃x(s)dsdθ ,

where x̃t = x̃(t +α), −d ≤ α ≤ 0. Taking the time deriva-
tive of V (x̃t) along the trajectory of the system (8) yields

V̇ (x̃t)≤2x̃T (t) ẼTP̃Ẽ ˙̃x(t)+ ˙̃xT
(t) ẼTR̄ŪTx̃(t)

+x̃T (t)ŪR̄TẼ ˙̃x(t)+ x̃T (t)Q1x̃(t)

−(1−µ) x̃T (t −d (t))Q1x̃(t −d (t))

+d ˙̃xT
(t) ẼTSẼ ˙̃x(t)− x̃T (t −d)R1x̃(t −d)

+x̃T (t)R1x̃(t)−
∫ t

t−d
˙̃xT
(s) ẼTSẼ ˙̃x(s)ds. (12)

For any matrices Ni and M j of appropriate dimensions,
we can get that the following equations hold

2ς T (t) Ñ
(
Ẽ ˙̃x(t)− Ã j x̃(t)− Ãd x̃(t −d (t))

)
= 0,

(13)

2ς T (t)M̃
(

Ẽx̃(t)− Ẽx̃(t −d)−
∫ t

t−d
Ẽ ˙̃x(s)ds

)
= 0,

(14)

where

ς T (t) =
[

x̃T (t) x̃T (t −d (t)) x̃T (t −d)
(
Ẽ ˙̃x(t)

)T
]
,

M̃ =
[

MT
1 MT

2 MT
3 MT

4

]T
,

Ñ =
[

0 NT
2 NT

3 NT
4

]T
,

when ω (t) = 0, substituting the left side of (13) and (14)
into (12), by using the Schur complement and resulting
from the matrix inequality (11), it is easy to see that the
following inequality holds

V̇ (x̃t)≤−x̃T (t)Q∗x̃(t)≤−λmin (Q∗)∥x̃(t)∥2 < 0,

where λmin denotes the minimum eigenvalue of matrix (·).
According to Lyapunov’s stability theory, the closed-loop
system (8) is asymptotically stable. And the result from
the above inequality is that −V̇ (x̃t) ≥ x̃T (t)Q∗x̃(t) , inte-
grating both sides of the inequality from 0 to ∞, and ex-
ploit the stabilization of the systems show that

J ≤ J∗ =x̃T (0) ẼTP̃Ẽx̃(0)

+
∫ 0

0−d(0)
x̃T (s)Q1x̃(s)ds

+
∫ 0

0−d
x̃T (s)R1x̃(s)ds

+
∫ 0

−d

∫ 0

0+θ
˙̃xT
(s) ẼTSẼ ˙̃x(s)dsdθ .

When ω (t) ̸= 0, we show that for any nonzero ω (t) ∈
L2 [0,∞), the system (8) has H∞ performance γ . We con-
sider the index Jω =

∫ ∞
0

(
zT (t)z(t)− γ2ωT (t)ω (t)

)
dt.

Under the zero initial condition, it is obtained that

Jω ≤
∫ ∞

0

[
V̇ (xt)+ zT (t)z(t)− γ2ωT (t)ω (t)

]
dt.

It is easy to see that (11) is the sufficient condition to
ensure Jω < 0 for any nonzero ω (t) ∈ L2 [0,∞). □

Remark 2: By adding some free-weighting matrices
Ni, M j and using Lyapunov-Krasovskii function, while
not relying on the restriction of ETP = PTE, a delay-
dependent sufficient condition is derived in Theorem 1,
which guarantees that system (8) is admissible. We con-
sider Example 1 to compare our delay-dependent stability
condition. Example 1 shows that the obtained admissible
upper bound of time-delay using Theorem 1 in this paper
is better than some previous articles. Hence, the condition
of Theorem 1 is less conservative.

3.2. Observer-based H∞ guaranteed cost controller de-
sign

In the following, the problem that we are dealing with is
observer-based H∞ guaranteed cost controller design for
singular system (1). We shall give sufficient condition for
the existence of controller and present the corresponding
observer-based guaranteed cost controller design method.
Now, we give the following theorem.
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Theorem 2: For prescribed scalars d > 0, 0 ≤ µ < 1
and the cost function (9), the considered observer-based
H∞ guaranteed cost controlling problem of the closed-loop
system (8) within E

(
ẼTP̃Ẽ,γ2η

)
is solvable for all per-

missible parametric uncertainties, if there exist positive-
definite symmetric matrices Q̃1, R̃1, S̃, invertible matrix
X , matrices Y , H̄, YL, N̄i (i = 2, · · · ,5), M̄ j ( j = 1, · · · ,5)
and scalar ε > 0, such that the following LMIs hold − 1

γ2η h̄ j −h̄ j

∗ −EX 0
∗ ∗ −EX

≤ 0, (15)

 Ψ18×18 Ō1 ŌT
3

∗ −ε−1I 0
∗ ∗ −εI

< 0, (16)

where

θ̄11 = sym
(
A jX̃ + M̄1ẼT)+ Q̃1 + R̃1,

θ̄12 = ADX̃ + ẼM̄T
2 , θ̄13 =−M̄1ẼT + ẼM̄T

3 ,

θ̄15 = BW + ẼM̄T
5 , θ̄33 =−R̃1 − sym

(
M̄3ẼT) ,

θ̄34 = N̄3 − ẼM̄T
4 , θ̄44 = dS̃+ sym(N̄4) ,

g21 = H3
(
D jY +D−

j H̄
)
, AD = diag

{
Ad Ad

}
,

A j =


A+B

(
D jK +D−

j H
)

−B
(

D jK +D−
j H

)
−BK+

B
(

D jK +D−
j H

) A−LC1 +BK−
B
(

D jK +D−
j H

)
 ,

A jX̃ =


AX +B

(
D jY +D−

j H̄
)

−BY+

B
(

D jY +D−
j H̄

)
−B

(
D jY +D−

j H̄
)

AX −YL +BY−
B
(

D jY +D−
j H̄

)
 ,

BW =

[
Bω
Bω

]
, Λ̄=

[
QX 0
RY −RY

]
, Λ=

[
Q 0
0 R

]
,

Ψ18×18 =



θ̄11 θ̄12 θ̄13 ẼM̄T
4 θ̄15

∗ (µ −1) Q̃1 −M̄2ẼT N̄2 0
∗ ∗ θ̄33 θ̄34 −ẼM̄T

5
∗ ∗ ∗ θ̄44 N̄T

5
∗ ∗ ∗ ∗ −γ2I
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

dM̄1 −X̃TAT
j 0 Λ̄T

[
C 0

]T

dM̄2 −X̃TAT
D N̄2 0 0

dM̄3 0 N̄3 0 0
dM̄4 0 N̄4 0 0
dM̄5 −BT

W N̄5 0 0
−dS̃ 0 0 0 0
∗ −X̃T 0 0 0
∗ ∗ −X̃T 0 0
∗ ∗ ∗ −Λ 0
∗ ∗ ∗ ∗ −I


< 0,

Ō1 =



E1 E3 E2 01×5 E4 01×8 0
E1 E3 E2 01×5 E4 01×8 0

09×1 09×1 09×1 09×5 09×1 09×8 09×1

−E1 −E3 −E2 01×5 −E4 01×8 0
−E1 −E3 −E2 01×5 −E4 01×8 0
04×1 04×1 04×1 04×5 04×1 04×8 04×1

0 0 0 01×5 0 01×8 E5


,

Ō3 =



H1X 0 0 01×5 0 01×9

g21 −g21 0 01×5 0 01×9

0 0 H2X 01×5 0 01×9

05×1 05×1 05×1 05×5 05×1 05×9

0 0 0 01×5 H4 01×9

08×1 08×1 08×1 08×5 08×1 08×9

H5 0 0 01×5 0 01×9


.

In addition, the feedback controller gain and the ob-
server gain in (8) are given by K = Y X−1 and L =
YLX−1C+

1 .

Proof: From E
(
ẼTP̃Ẽ,γ2η

)
⊂ L

(
H̃
)

and since the
system (8) is regular and impulse free, there exist two
other nonsingular matrices M̄ and N̄ such that

M̄ẼN̄ =

[
I2r 0
0 0

]
, M̄−TP̃M̄−1 =

[
P11 P12

∗ P22

]
,

with H̃N̄ =
[

H̃1 H̃2
]

and N̄−1x̃(t) =
[

x̃1 (t)
x̃2 (t)

]
, it

follows that H̃2 = 0. Otherwise, let x̃1 (t) = 0 and∣∣h̃2 j x̃2 (t)
∣∣> γη1/2, then x̃T (t) ẼTP̃Ẽx̃(t) = 0,

∣∣h̃2 j x̃2 (t)
∣∣>

γη1/2, it contradicts that E
(
ẼTP̃Ẽ,γ2η

)
⊂ L

(
H̃
)
. Then

the condition E
(
ẼTP̃Ẽ,γ2η

)
⊂ L

(
H̃
)

is equivalent to
h̃1 jP−1

11 h̃T
1 j ≤ 1

γ2η , ( j = 1,2, · · · , l) , which, by Schur com-
plement, is equivalent to[

− 1
γ2η

[
h̃1 j 0

][
h̃1 j 0

]T −Γ

]
≤ 0, j = 1,2, · · · , l, (17)

where

Γ =

[
I2r 0
0 0

][
P11 P12

∗ P22

][
I2r 0
0 0

]
.

Setting X̃ = W−1 =
(
P̃Ẽ + R̄ŪT

)−1, and together with
ẼT

(
P̃Ẽ + R̄ŪT

)
=
(
P̃Ẽ + R̄ŪT

)TẼ, we have

X̃TẼT (P̃Ẽ + R̄ŪT) X̃ = X̃T(P̃Ẽ + R̄ŪT)T
ẼX̃ ,

that is to say X̃TẼT = ẼX̃ .
Pre- and post-multiplying (17) by diag

{
1, N̄−TX̃T

}
and

its transpose, respectively, we obtain[
− 1

γ2η

[
h̄ j −h̄ j

]
∗ −ẼX̃

]
≤ 0.

According to Theorem 1 and Schur complement, pre-

and post-multiplying diag

X̃T · · · X̃T︸ ︷︷ ︸
4

, I, X̃T · · · X̃T︸ ︷︷ ︸
3

, I · · · I︸︷︷︸
3


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and its transpose. Setting Q̃1 = X̃TQ1X̃ , R̃1 = X̃TR1X̃ , S̃ =
X̃TSX̃ , N̄i = X̃TNiX̃ , (i = 2,3,4), N̄5 =N5X̃ , M̄ j = X̃TM jX̃ ,
( j = 1,2,3,4), M̄5 = M5X̃ , Y = KX , YL = LC1X , Theorem
2 holds. □

Remark 3: In this paper, C1 is a general matrix which
can be non-singular matrix or full-row rank matrix. There-
fore, when we deal with the problem of observer design,
we need to guarantee the condition that the matrix equa-
tion YL = LC1X is solvable. Then, we get the observer
gain L which is the LN (least-norm) solution of the matrix
equation. That is to say, the method of an observer design
in Theorem 2 is reasonable.

The guaranteed costs in Theorem 2 depend on the
choice of guaranteed cost controllers. The following con-
vex optimization problem will select the guaranteed cost
controller which minimizes the upper bound of the closed-
loop cost function.

Corollary 1: Consider the system (8) with cost func-
tion (9). If the optimization problem

min J∗

s.t. inequality(15)and(16)

has solution, then there exists an observer-based controller
which minimizes the upper bound of the closed-loop cost
function such that system (8) is admissible.

Now, we will give a LMI-based optimization algorithm
to obtain the largest invariant ellipsoid for the system (8).
With Theorem 2, an exact invariant set with least degree
of conservativeness can be formulated as

max v1

s.t.


(a) v1x̃0 ∈ E

(
ẼTP̃Ẽ,γ2η

)
,

(b) inequality(15) ,

(c) inequality(16) ,

(18)

where x̃0 =
[

xT
0 eT

0

]T. Applying Lemma 2 and Schur
complement, constraint (a) is equivalent to −v2 x̃T

0 ẼT x̃T
0

∗ −2I 0
∗ ∗ ϒ

≤ 0, (19)

where v2 =
γ2η
v2

1
, ϒ =−X̃T − X̃ + 1

2 I.
From the above discussion, (18) can be transformed to

the following LMI optimization problem

min v2

s.t. inequality (15) ,(16) and (19) . (20)

4. NUMERICAL EXAMPLE AND SIMULATION

In this section, we give the examples to illustrate the
effectiveness of the proposed conditions.

Table 1. Comparisons of the allowed upper bound d (t).

Methods [22] [23] [24] Theorem 1
d(t)max 1.1372 1.9841 2.4865 4.5027

Table 2. Comparisons of maximum value of d (t).

Methods [25] [26] Theorem 2
dmax 1.854 1.955 3.572

Example 1: Consider a singular time-varying delay
system (6) with

E =

[
9 3
6 2

]
, Ad =

[
−18.6 −10.4
−25.2 −16.8

]
,

A =

[
−13.1 −13.7
−15.4 −23.8

]
.

In this example, we choose µ = 0.5. By comparing the
stability criterion of Theorem 1 with those of [22–24], we
have Table 1. Hence, for this example, the stability crite-
rion we derived is less conservative than those reported in
the above-mentioned papers.

Example 2: Consider the linear system with actuator
saturation in [26] described by

ẋ(t) =
[

0.6 0.4
0 −0.5

]
x(t −d (t))

+

[
0.5 −1
0.5 −0.5

]
x(t)+

[
1
1

]
sat(u(t)) .

Table 2 shows the maximum value of d with µ = 0 which
guarantees stability of the system by applying Theorem
2 in this work. Hence, example 2 shows that the stabi-
lization criterion for time-delay systems with saturating
actuators obtained by the method in this paper is less con-
servative than those [25, 26].

Example 3: Consider the uncertain singular time-
delay system (1) with

A =

 −1 0.5 0
0 −1 0.5
0 −0.8 −1

 , B =

 −5 −1 0
0 −5 −1
0 −10 5

 ,

E = diag
{

1 1 0
}
, C = diag

{
0.1 0.1 0.1

}
,

Ad = diag
{

−0.5 −0.5 −0.3
}
,

Bω = diag
{

0.1 0.1 0.5
}
,C1 =

[
2 0 1
0 −1 0

]
,

Ei = diag
{

0.1 0.1 0.1
}
, i = 1, · · · ,5,

Hi = diag
{

0.1 0.1 0.1
}
, i = 1, · · · ,5.

Let ε = 0.5, γ = 3, µ = 0.01, d = 1.9. Solving the LMIs
got in Theorem 2 by using Toolbox in Matlab, the con-
troller gain matrix and observer gain matrix are obtained
as
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Fig. 1. Trajectories of states.

Fig. 2. The invariant ellipsoid and the trajectories of states
and error states.

K =

 −0.0018 0.0575 −0.0039
0.0009 −0.025 0.0011
−0.0074 0.0585 −0.0013

 ,

L =

 0.0038 −0.3324
0.0911 0.1214
0.0236 0.7003

 .

Choosing the function F (t) = 0.8 + 0.2sin(t), and
ω (t) = 0.1e0.051t cos(0.03t). The initial state is assumed
to be x0 =

[
0.3 0.3 0

]T, e0 =
[

0.1 0.1 0
]T.

The state dynamic system is shown in Fig. 1. From the
figure, our proposed method can guarantee that the singu-
lar system (8) is well stabilized.

Solving the LMI optimization problem (20), it is ob-
tained that vmin

2 = 0.3, then the corresponding upper bound
of the cost function is J∗ = 5.704. The larger invariant el-
lipsoid is shown in Fig. 2. Fig. 2 shows the states and the
error states trajectories of the system (8) which start from
the invariant ellipsoid will remain inside it.

5. CONCLUSIONS

In this paper, the problem of delay-dependent robust H∞
guaranteed cost stability and observer-based guaranteed
cost stabilization of uncertain singular time-delay systems
with saturating actuators is concerned. By choosing an
appropriate Lyapunov function and using free-weighting
matrix approach, a new criterion which guarantees that
the closed-loop systems are admissible with H∞ perfor-
mance is derived. Then, delay-dependent sufficient con-
ditions for the existence of the observer and the guaran-
teed cost controller are derived. Besides, convex optimiza-
tion problems have been formulated to choose a controller
minimizing the upper bound of the guaranteed cost and
the larger invariant ellipsoid. Finally, numerical examples
show the reduced conservativeness of the obtained stabil-
ity and demonstrate the validity of the proposed approach.

REFERENCES

[1] L. Dai, “Observers for Discrete Singular Systems,” IEEE
Transactions on Automatic Control, vol. 33, no. 2, pp. 187-
191, 1988. [click]

[2] H. Kheloufi, A. Zemouche, F. Bedouhene, and M.
Boutayeb, “On LMI conditions to design observer-based
controllers for linear systems with parameter uncertain-
ties,” Automatica, vol. 49, no. 12, pp. 3700-3704, Decem-
ber 2013. [click]

[3] Y. C. Ma, X. Z. Zhong, and Q. L. Zhang, “Design of
state observer for a class of nonlinear descriptor large-
scale composite systems,” International Journal of Inno-
vative Computing Information and Control, vol. 4, no. 8,
pp. 1967-1975, 2008.

[4] M. Kchaou, H. Gassara, and A. El-Hajjaji, “Robust
observer-based control design for uncertain singular sys-
tems with time-delay,” International Journal of Adaptive
Control and Signal Processing, vol. 28, no. 2, pp. 169-183,
2014.

[5] L. Dai, Singular Control Systems, Springer-Verlag, New
York, 1989.

[6] J. K. Hale and S. M. Verduvn Lunel, Introduction to Func-
tional Differential Equations, Springer Verlag, New York,
1993.

[7] Z. P. Du, Q. L. Zhang, and L. L. Liu, “Delay-dependent ro-
bust stabilization for uncertain singular systems with mul-
tiple input delays,” Acta Automatica Sinica, Vol. 35, no. 2,
pp. 162-167, February 2009. [click]

[8] R. Q. Lu and H. Y. Su, Robust Stability Theory of Singular
Systems, Science Publishers, China, 2008.

[9] M. Fang, “Delay-dependent robust H∞ control for uncertain
singular systems with state delay,” Acta Automatica Sinica,
vol. 35, no. 1, pp. 65-70, 2009. [click]

[10] S. Y. Xu, J. Lam, and C. W. Yang, “Robust H∞ control for
uncertain singular systems with state delay,” International
Journal of Robust and Nonlinear Control, vol. 13, no. 13,
pp. 1213-1223, December 2003.

http://dx.doi.org/10.1109/9.387
http://dx.doi.org/10.1016/j.automatica.2013.09.046
http://dx.doi.org/10.1016/j.proeng.2012.06.160
http://dx.doi.org/10.1016/j.automatica.2003.07.004


Observer-based H∞ Guaranteed Cost Control for Uncertain Singular Time-delay Systems with Input Saturation 1261

[11] L. Li and Y. Jia, “Observer-based resilient L2 −L∞ control
for singular time-delay systems,” IET Control Theory and
Applications, vol. 3, no. 10, pp. 1351-1362, 2009. [click]

[12] Y. C. Ma, N. N. Gu, and Q. L. Zhang, “Non-fragile ro-
bust H∞ control for uncertain discrete-time singular sys-
tems with time-varying delays,” Journal of the Franklin
Institute, vol. 351, no. 6, pp. 3163-3181, 2014. [click]

[13] Y. C. Ma, L. F. Huang, and Q. L. Zhang, “Robust guaran-
teed cost H∞ control for uncertain time-varying delay sys-
tem,” Acta Physica Sinica, vol. 56, no. 7, pp. 3744-3752,
2007.

[14] G. D. Shi, S. L. Wo, and Y. Zou, “Guaranteed cost control
for singular systems with time-delay and parameter uncer-
tainty,” Journal of Systems Engineering and Electronics,
vol. 28, no. 2, pp. 266-270, 2006.

[15] X. Z. Xiao and Z. Z. Mao, “Decentralized guaranteed cost
stabilization of time-delay large-scale systems based on
reduced-order observers,” Journal of the Franklin Institute,
vol. 348, no. 9, pp. 2689-2700, 2011. [click]

[16] J. Chen, X. P. Wang, and R. F. Ding, “Gradient based es-
timation algorithm for Hammerstein systems with satura-
tion and dead-zone nonlinearities,” Applied Mathematical
Modelling, vol. 36, no. 1, pp. 238-243, 2012. [click]

[17] Y. C. Ma, L. Fu, and Y. H. Cao, “Robust guaranteed cost
H∞ control for singular systems with multiple time delays
subject to input saturation,” Proceedings of the Institution
of Mechanical Engineers, Part I: Journal of Systems and
Control Engineering, DOI: 10.1177/0959651814554276,
2014.

[18] Z. Q. Zuo, D. W. C. Ho, and W. J. Wang, “Fault toler-
ant control for singular systems with actuator saturation
and nonlinear perturbation,” Automatica, vol. 46, no. 3, pp.
569-576, 2010.

[19] Y. J. Wang, W. L. Yang, and Z. Q. Zuo, “L∞ adaptive fault
tolerant control for singular lipschitz systems subject to ac-
tuator saturation,” Proceedings of the 31st IEEE Chinese
Control Conference, Hefei, China, pp. 1050-1055, July
2012.

[20] L. Lv and Z. L. Lin, “Analysis and design of singular linear
systems under actuator saturation and L2/L∞ disturbances,”
System and Control Letters, vol. 57, no. 11, pp. 904-912,
2008. [click]

[21] V. Singh, “Robust stability of cell neural networks with de-
lay: linear matrix inequality approach,” IEE Proceedings-
Control Theory and Applications, vol. 151, no. 1, pp. 125-
129, 2004. [click]

[22] Z. G. Wu, H. Y. Su, and J. Chu, “H∞ filtering for singular
systems with time-varying delay,” International Journal of
Robust and Nonlinear Control , vol. 20, no. 11, pp. 1269-
1284, 2010. [click]

[23] X. L. Zhu, Y. Y. Wang, and Y. Gan, “H∞ filtering for
continuous-time singular systems with time-varying de-
lay,” International Journal of Adaptive Control and Signal
Processing, vol. 25, no. 2, pp. 137-154, 2011. [click]

[24] Z. G. Wu, J. H. Park, H. Y. Su, and J. Chu, “Reliable pas-
sive control for singular systems with time-varying delays,”
Journal of Process Control, vol. 23, no. 8, pp. 1217-1228,
2013. [click]

[25] E. Fridman, A. Pila, and U. Shaked, “Regional stabiliza-
tion and H∞ control of time-delay systems with saturating
actuators,” International Journal of Robust and Nonlinear
Control, vol. 13, no. 9, pp. 885-907, 2003.

[26] R. Dey, A. Rakshit, G. Ray, and S. Ghosh, “New delay-
dependent stabilization result for linear time-delay sys-
tem with actuator saturation,” Power, Signals, Controls
and Computation (EPSCICON), 2012 International Con-
ference, pp. 1-6, 2012. [click]

Yuechao Ma was born in 1963. He re-
ceived his Ph.D. degree in Northeast Uni-
versity, Shenyang, China, in 2006. He is
currently a full professor in the School of
College of Science, Yanshan University,
China. His current research interests in-
clude linear and nonlinear control, neural
networks, robust control and time-delay
system theory.

Yifang Yan was born in 1990. She re-
ceived her B.S. degree in Hebei Nor-
mal University of Science and technol-
ogy, Qinhuangdao, China, in 2013. She
is currently pursuing the M.S. degree in
the School of College of Science, Yanshan
University, China. Her research interests
include stability and control theory of the
singular systems.

http://dx.doi.org/10.1049/iet-cta.2008.0361
http://dx.doi.org/10.1016/j.jfranklin.2014.01.014
http://dx.doi.org/10.1016/j.jfranklin.2011.08.012
http://dx.doi.org/10.1016/j.apm.2011.05.049
http://dx.doi.org/10.1016/j.sysconle.2008.04.004
http://dx.doi.org/10.1049/ip-cta:20040091
http://dx.doi.org/10.1002/rnc.1509
http://dx.doi.org/10.1002/acs.1191
http://dx.doi.org/10.1016/j.jprocont.2013.07.009
http://dx.doi.org/10.1109/EPSCICON.2012.6175267

