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l∞ Fuzzy Filter Design for Nonlinear Systems with Missing Measurements:
Fuzzy Basis-dependent Lyapunov Function Approach
Sun Young Noh, Geun Bum Koo, Jin Bae Park*, and Young Hoon Joo

Abstract: In this paper, l∞ fuzzy filtering problem is dealt for nonlinear systems with both persistent bounded
disturbances and missing probabilistic sensor information. The Takagi–Sugeno (T–S) fuzzy model is adopted to
represent a nonlinear dynamic system. The measurement output is assumed to contain randomly missing data,
which is modeled by a Bernoulli distributed with a known conditional probability. To design the l∞ fuzzy filter and
guarantee tracking performance, the effect of the perturbation against persistent bounded disturbances is reduced
by using the minimum l∞ performance. By using the fuzzy basis-dependent Lyapunov function approach, a suffi-
cient condition is established that ensure the mean square exponential stability of the filtering error. The proposed
sufficient condition is represented as some linear matrix inequalities (LMIs), and the filter gain is obtained by the
solution to a set of LMIs. Finally, the effectiveness of the proposed design method is shown via an example.

Keywords: l∞ fuzzy filter, missing measurements, Takagi-Sugeno fuzzy model, fuzzy basis-dependent Lyapunov
function, linear matrix inequalities.

1. INTRODUCTION

The l2 – l∞ filtering has received considerable attention
for nonlinear dynamic systems, because The l2 – l∞ filter-
ing is more suitable than the traditional Kalman filtering
for such systems as hybrid systems, time-delay systems,
uncertain systems, and so on [1]. Especially, some lit-
eratures show that the l2–l∞ filtering problem of persistent
bounded disturbances can be formulated as a minimax op-
timization problem, which is to minimize the maximum
peak value amplitude of the estimation error for all pos-
sible bounded energy disturbances [2–5]. However, l2–l∞
filtering is very complicated and an inefficient algorithm
to solve the l∞ filtering problem for the nonlinear systems
[6, 7]. To conquer the limitation of the previous l2–l∞ fil-
tering approaches, fuzzy estimation approaches [8,9] have
motivated to robust H∞ fuzzy filtering approaches [9–14]
based on the Takagi–Sugeno (T–S) fuzzy system [15–21].
However, these algorithms are involved to eliminate the
effect of the external disturbance but they do not consider
to eliminate the persistent bounded disturbances. Unlike
the H∞ approach, the l∞ approach reduces the influence
of the energy of an external disturbance with persistent
bounded disturbance on the energy of the output signal as
small as possible [22–25].
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On the other hand, above all studies are based on the
implicit assumption that the communication between the
physical plant and filter is perfect. However, the signals
transmitted from the plant to the filter can not be arrived
at the filter simultaneously and perfectly in real-world ap-
plications. Because of clear engineering insights, [28] and
[29] considered the filtering problem for stochastic sys-
tems with missing measurements, and [30] investigated
the performance problem of the Kalman filtering with in-
termittent observations, while [14], [31], and [13] discussed
it for stochastic systems with time delays. In [9], only the
persistent bounded disturbances was considered without
missing measurements. Up until now, to the best of the
author’s knowledge, there has not been investigated the l∞
filter design for the T–S fuzzy systems in the presence of
intermittent measurements and persistent bounded distur-
bances simultaneously yet, which still remains open and
challenging.

In this paper, we study the problem of l∞ fuzzy filtering
for nonlinear systems with both persistent bounded distur-
bances and missing probabilistic sensor information. The
purpose of this paper is to design the optimal l∞ fuzzy filter
for missing measurements, which is to attenuate the peak
of the estimation error of persistent bounded disturbance.
To design the fuzzy filter, the nonlinear plant system is
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represented by the T–S fuzzy model. The measurement
output is assumed to contain randomly missing data, which
is modeled by a Bernoulli distributed with a known con-
ditional probability. In order to design the l∞ fuzzy fil-
ter and guarantee the tracking performance of the fuzzy
system, the effect of the perturbation against persistent
bounded disturbances is reduced by using the minimum
l∞ performance, its stability condition is established by
using the fuzzy basis-dependent Lyapunov function (FB-
DLF) [33, 37]. By using some lemmas, sufficient condi-
tions are established to ensure the exponential meansquare
stability of the filtering error in the LMI format. Based on
the proposed LMIs [40–46], the filter l∞ gain is obtained
by the solution to a set of LMIs. Finally, the effectiveness
of the proposed design methods on the FBDLF are shown
via an example.

2. PROBLEM STATEMENT

A traget dynamics can be modeled based on nonlinear
systems. It can be approximated as locally linear systems
in much the same way that a fuzzy linear dynamic mod-
els have been proposed by the T–S fuzzy model to rep-
resent local linear systems of nonlinear systems. This is
described by the following IF-THEN rules and will be em-
ployed here to deal with a filter error system. The ith rule
of the fuzzy linear model for the nonlinear systems is of
the following form:

Plant Rule Ri :

IF z1(k) is Γi1 and · · · and zp(k) is Γip,

THEN
{

x(k+1) = Aix(k)+Biw(k)
y(k) = γ(k)Cix(k)+Div(k),

(1)

where Ai ∈ Rn×n, Bi ∈ Rn×l , Ci ∈ Rm×n, Di ∈ Rm×s are
assumed known for i ∈ Ir, Ri denotes the ith fuzzy rule;
zp(k) is the pth premise variable for p ∈ Iq, Γip is the
fuzzy set of zp(k) in Ri, x(k)∈Rn denotes the vector of the
state, y(k) ∈ Rm denotes the vector of the output, w(k) ∈
Rl denotes the vector of the bounded external disturbance,
v(k) ∈ Rg denotes the vector of the bounded measure-
ment disturbance, and γ(k) denotes data loss phenomenon,
which is assumed to satisfy the Bernoulli distributed white
sequence taking values on 0 and 1. Also, the stochastic
variable γ(k) has the following probability.

Prob{γ(k) = 1}= E{γ(k)} := γ̄

where γ̄ is a known positive constant, and γ(k) is assumed
to be independent of w(k), v(k), and x(k). Therefore, we

σ 2 = E
{
(γ(k)− γ̄)2

}
= (1− γ̄) γ̄

where σ is a scalar zero mean stochastic sequence with
variance.

Using the center-average defuzzifier, product inference,
and singleton fuzzifier, the fuzzy rule (1) is inferred as
follows:

x(k+1) =
r

∑
i=1

hi(z(k))(Aix(k)+Biw(k)),

y(k) =
r

∑
i=1

hi(z(k))(γ(k)Cix(k)+Div(k)),

where

hi(z(k)) = µi(z(k))

/
r

∑
i=1

µi(z(k)),

µi(z(k)) =
q

∏
p=1

Γip(zp(k))

in which Γip(zp(k)) is the fuzzy membership grade of zp(k)
in Γip. Because 0 ≤ µi(z(k))≤ 1 for all k, we get

hi(z(k))≥ 0,
r

∑
i=1

hi(z(k)) = 1 (2)

for i = 1,2, . . . ,r.
For notational convenience in the following discussions,

we will denote that

Ã(k) =
r

∑
i=1

hi(z(k))Ai, B̃(k) =
r

∑
i=1

hi(z(k))Bi,

C̃(k) =
r

∑
i=1

hi(z(k))Ci, D̃(k) =
r

∑
i=1

hi(z(k))Di.

Then fuzzy system model can berewritten as the following
form:

x(k+1) = Ã(k)x(k)+ B̃(k)w(k),

y(k) = γ(k)C̃(k)x(k)+ D̃(k)v(k).
(3)

Based on the fuzzy system model (3), the following l∞
fuzzy filter with missing measurements is proposed to deal
with the state estimation error:

Filter Rule Ri :

IF z1(k) is Γi1 and · · · and zp(k) is Γip,

THEN x̂(k+1) = A f ix̂(k)+L f i (y f (k)− ŷ(k)) (4)

where x̂(k) is an estimate of x(k), A f i is a filter parame-
ter to be determined as Ai, L f i is the filter gain with ith
rule, and ŷ(k) = ∑r

i=1 h(z(k))C f i(k)x̂(k). Using the center-
average defuzzification, product inference, and singleton
fuzzifier, the defuzzified output is given by

x̂(k+1) =
r

∑
i=1

r

∑
j=1

hi(z(k))h j(z(k))(γ(k)L f iC jx(k)

+(A f i −L f iC f j)x̂(k)+L f iD jv(k)) .

(5)
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For notational convenience in the following discussions,
we will denote that

Ã f (k) =
r

∑
i=1

hi(z(k))A f i, C̃ f (k) =
r

∑
i=1

hi(z(k))C f i,

L̃ f (k) =
r

∑
i=1

hi(z(k))L f i.

In this paper, we will parameterize all desired l∞ filter gain
to reduce the influence of the peak of external disturbance
on the peak of the estimated error signal as small as pos-
sible.

3. ROBUST FUZZY FILTER DESIGN USING
FBDLF

In this section, we will parameterize all desired l∞ fil-
tergain to reduce the influence of the peak of external dis-
turbance on the peak of the estimated error signal as small
as possible. The following closed-loop system with fuzzy
filter containing missing measurements will be proposed
to deal with the state estimation error.

η(k+1) = Am(k)η(k)+Bm(k)d(k)

=

[
Ã(k) 0

γ(k)L̃ f (k)C̃(k) Ã f (k)− L̃ f (k)C̃ f (k)

][
x(k)
x̂(k)

]
+

[
B̃(k) 0

0 L̃ f (k)D̃(k)

][
w(k)
v(k)

]
,

(6)

where

η(k+1) :=
[

x(k+1)T x̂(k+1)T
]T

,

d(k) :=
[

w(k)T v(k)T
]T

,

Am :=
[

Ã(k) 0
γ(k)L̃ f (k)C̃(k) Ã f (k)− L̃ f (k)C̃ f (k)

]
,

Bm :=
[

B̃(k) 0
0 L̃ f (k)D̃(k)

]
.

The augmented system (6) can be expressed as the fuzzy
filter error system:

η(k+1) = Am1(k)η(k)+ γ̃(k)Am2(k)η(k)+Bm(k)d(k), (7)
where

Am1(k) :=
[

Ã(k) 0
γ̄L̃ f (k)C̃(k) Ã f (k)− L̃ f (k)C̃ f (k)

]
,

Am2(k) :=
[

0 0
L̃ f (k)C̃(k) 0

]
,

and γ̃(k) = γ(k)− γ̄ .
The estimation error is defined as

e(k) := x(k)− x̂(k) =
[

I −I
][ x(k)

x̂(k)

]
= Imη(k), (8)

where Im =
[

I −I
]
.

The objective of this paper is to design an optimal l∞
fuzzy filter for all possible missing measurements. First,

we consider the stability properties by using the FBDLF.
Let Pi be a symmetric positive definite matrix for 1 ≤ i ≤ r
and be defined as

P̃(k) :=
r

∑
i=1

hi(z(k))Pi =
r

∑
i=1

hi(z(k))
[

P1i 0
0 P2i

]
,

P̃+(k) : =
r

∑
j=1

h j(z(k+1))Pj

=
r

∑
j=1

h j(z(k+1))
[

P1 j 0
0 P2 j

] (9)

for all k ≥ 0.
The following Lemmas 1 and 2 are used to construct

the LMI condition in proof of Theorem 2 and to define
a parameter-dependent Lyapunov function in the stability
analysis of a T–S fuzzy system, respectively.

Lemma 1 [32]: Given any matrices X and P = PT ≻ 0,
we have

−XT P−1X ≤ P−XT −X .

Lemma 2: Let P1i and P2i are symmetric positive def-
inite matrices, if there exist the matrices P1i, P2i, Ω1, Ω2,
Mi, such that the following LMIs hold −λPi ∗ ∗

Φi j Pg −Ω−ΩT ∗
σΨi j 0 Pg −Ω−ΩT

≺ 0, (10)

where

Φi j =

[
Ω1Ai 0
γ̄MiC j Ω2A f i −MiC j

]
,

Ψi j =

[
0 0

MiC j 0

]
, Ω =

[
Ω1 0
0 Ω2

]
,

Mi = Ω2L f i

and ∗ is the transposed element in symmetric positions for
1 ≤ g, i, j ≤ r, then so does the following inequality:

Am1(k)T P̃+(k)Am1(k)+
Am2(k)T σ 2P̃+(k)Am2(k)−λ P̃(k)≺ 0.

for all k ≥ Z≥0, where λ is any positive real number.
Proof: Lemma 2 can be easily proved by [33], [34], and

[35], hence the proof is omitted. □

We will study the condition under which the filter error
system (7) is stochastically stable in the mean square with
a given l∞ performance α . The following theorems show
that the l∞ performance of the filter error system can be
guaranteed if there exist some fuzzy basis dependent ma-
trices satisfying the LMIs.

Theorem 1: If there exist symmetric positive definite
matrices P1i and P2i, and some matrices Ω1, Ω2 and Mi,
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such that the LMI (10) holds for 1≤ i≤ r and some λ with
0 < λ < 1, then the filter error system (7) with d(k) = 0 is
mean square exponential stable with

E
{∥∥η(k)2

∥∥}≤ λmax(P̃(k))
λmin(P̃(k))

λ k−k0E
{∥∥η(0)2

∥∥} (11)

for all k ≥ Z≥0, where k0 is an arbitrary initial time, η(k0)
is an arbitrary initial condition, and the positive constants
λmin(P̃(k)) and λmax(P̃(k)) are defined as λmin(P̃(k)) =
min1≤i≤r(λmin(Pi)) andλmax(P̃(k)) = max1≤i≤r(λmax(Pi)),
respectively.

Proof: Define a parameter-dependent Lyapunov func-
tion as

V (η(k),z(k))≜ η(k)T

{
r

∑
i=1

hi(z(k))Pi

}
η(k)

= η(k)T P̃(k)η(k),

(12)

where the matrix Pi satisfies a positive-definite for 1 ≤ i ≤
r. By using the properties of the membership function
in (2), it is obvious that V (η(k),z(k)) is positive-definite.
Also, from (12), It can be shown that

λmin(P̃(k))∥η(k)∥2 ≤V (η(k),z(k))

≤ λmax(P̃(k))∥η(k)∥2 .
(13)

With the definition of V (η(k),z(k)) it follows that

V (η(k+1),z(k+1))

= η(k)T (Am1(k)+ γ̃(k)Am1(k))
T P̃+(k)

× (Am1(k)+ γ̃(k)Am2(k))η(k)

(14)

We apply the conditional mean operator E{·|Fk−1} to the
both side of (14).

E{V (η(k+1),z(k+1))|Fk}

= E
{

η(k)T (Am1(k)+ γ̃(k)Am2(k))
T P̃+(k)

×(Am1(k)+ γ̃(k)Am2(k))η(k)}
= η(k)T Am1(k)T P̃+(k)Am1(k)η(k)

+η(k)T Am2(k)T σ 2P̃+(k)Am2(k)η(k).

Thus, if the LMI (10) is satisfied, then the following in-
equality is satisfied by Lemma 2.

E{V(η(k+1),z(k+1))|Fk} ≤ λη(k)T P̃(k)η(k)

=V (η(k),z(k))
(15)

Using the smoothing property of the conditional mean [36],
{η(k),z(k)} are Fk−1-measurable and {η(k+1),z(k+1)}
are also Fk-measurable. Tacking the conditional expecta-
tion operator E{·|Fk−1} again to the both sides of (15), we
have

E{V (η(k+1),z(k+1))|Fk−1}
≤ λ 2V (η(k−1),z(k−1)).

By continuing this procedure by sequentially applying
E{·|Fk−2} ,E{·|Fk−3} , . . . ,E{·|Fk0}, we can obtain almost
surely.

E{V (η(k+1),z(k+1))|Fk−1}
≤ λ k+1−k0V (η(k0),z(k0)).

(16)

And then, taking the expectation of the last inequality, we
can rearrange (16) as follows:

E{V (η(k),z(k))} ≤ λ k−k0E{V (η(k0),z(k0))} .

Finally, using the fact of (13), inequality (11) is obtained.
The proof is completed.

Second, the optimal l∞ filtering problem is almost con-
verged to find a filter gain L f i in (4) and to minimize the
peak value ∥e(k)∥∞ of the estimation error e(k) over all
bounded energy disturbances d(k), that is

min
L f i

sup
d(k)∈l∞

∥e(k)∥∞
∥d(k)∥∞

≤ α.

Remark 1: There is ∥e(k)∥∞ ≜ supk |e(k)| for e(k) ∈
Rn, where |e(k)|≜

√
e(k)T e(k) and e(k)∈ l∞ if ∥e(k)∥∞ <

∞.

The optimal l∞ filter minimizes the energy-to-peak gain
of the system from the disturbance d(k) to the estimation
error [26, 39]. However, it is very difficult to solve the
minimax problem for nonlinear systems directly. So, the
α-suboptimal L f i filtering problem is considered to mini-
mize the upper bound of the l∞ norm. Given a disturbance
attenuation level α the l∞ fuzzy filter is said to be solvable
if there exists the filter gain L f i with zero initial conditions.

sup
d(k)∈l∞

E{∥e(k)∥∞} ≤ αE{∥d(k)∥∞}

for all d(k) ∈ l∞, where we define

E{∥e(k)∥∞}≜ E
{√

e(k)T e(k)
}
,

E{∥d(k)∥∞}≜ E
{√

d(k)T d(k)
}
.

Then, under the effect of the persistently bounded distur-
bance signal d(k), the peak of the estimation error e(k)
can be attenuated by a level α .

Next, the l∞ performance criteria for the filter error sys-
tem (7) will be established. The following theorem shows
that the l∞ performance of the filter error system can be
guaranteed if there exists the attenuation level α which
can be minimized to satisfy the certain LMIs.

Theorem 2: If there exist a symmetric matrix P1i and
P2i, some matrices Ω1, Ω2 and Mi, and some scalar τ , such
that the LMI (10) and the following optimization problem
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are satisfied, then the filter error system (7) is stochasti-
cally stable with a given minimum l∞ performance α .

min τ subject to
−P̃2i ∗ ∗ ∗ ∗

0 −ρ−1τI ∗ ∗ ∗
Φ̃i j Λi j Pg ∗ ∗

σΨ̃i j 0 0 Pg ∗
Im 0 0 0 −ρI

≤ 0 (17)

where

Pg = P2g −Ω2 −ΩT
2 , P̃2i =

[
P2i −P2i

−P2i P2i

]
,

Φ̃i j =
[

Ω2Ai − γ̄MiC j −Ω2A f i +MiC j
]
,

Λi j =
[

Ω2Bi −MiD j
]
, Ψ̃i j =

[
−MiC j 0

]
for 1 ≤ g, i, j ≤ r. Here, the minimum l∞ performance α
and the fuzzy gain L f i are obtained by

√
τ and Ω−1

2 Mi,
respectively.

Proof: We first establish the l∞ performance criteria for
the filter error systems (7).

J = E{V (k+1)}−E{V (k)}+E
{
∥e(k)∥2

}
−α2E

{
∥d(k)∥2

}
,

where α > 0, and V (k) ≥ 0 is a family of positive real
valued function. If J ≤ 0, then the filter error system
has l∞-gain. Choosing a Lyapunov function as V (k) =
e(k)T ∑r

i=1 hi(z(k))ρP2ie(k) where ρ is a given constant,
the l∞ performance criteria J can be rewritten as

J = ∆V (k)+ e(k)T e(k)−α2d(k)T d(k). (18)

First, we have

∆V (k) = E{V (k+1)|Fk}−V (k)

= E
{
(Imη(k+1))T ρP̃+

2 (k)(Imη(k+1))|Fk
}

−η(k)T IT
mρP̃2(k)Imη(k)

= E
{
((Am1(k)+ γ̄(k)Am2(k))η(k)+Bm(k)d(k))

T IT
m

×ρP̃2(k)Im ((Am1(k)+ γ̄(k)Am2(k))η(k)

+Bm(k)d(k)) |Fk}
−η(k)T IT

mρP̃2(k)Imη(k)

= E
{

ξ (k)T
[ (

Am1(k)T + γ̄(k)Am2(k)T
)

IT
m

Bm(k)T IT
m

]
ρP̃+

2 (k)

×
[

Im(Am1(k)+ γ̄(k)Am2(k)) ImBm(k)
]

ξ (k)
}

−η(k)T IT
mρP̃2(k)Imη(k)

= ξ (k)T
[
Am1(k)T IT

m
Bm(k)T IT

m

]
ρP̃+

2 (k)
[
ImAm1(k) ImBm(k)

]
ξ (k)

+ξ (k)T σ 2
[
Am2(k)T IT

m
0

]
ρP̃+

2 (k)
[
ImAm1(k) 0

]
ξ (k)

−η(k)T IT
mρP̃1(k)Imη(k), (19)

where P̃2(k)=∑r
i=1 hi(z(k))P2i, P̃+

2 (k)=∑r
i=1 hi(z(k +1))P2i

and ξ (k) =
[

η(k)T d(k)T
]T . Considering the persis-

tent bounded disturbances, the following holds:

e(k)T e(k)−α2d(k)T d(k)

= ξ (k)T
[

IT
mIm 0
0 −α2I

]
ξ (k).

(20)

From (19), (20) and Schur complement, if the following
inequality is satisfied[

Am1(k)T IT
m σAm2(k)T IT

m
Bm(k)T IT

m 0

][
P̃+

2 (k) 0
0 P̃+

2 (k)

]
×
[

ImAm1(k) ImBm(k)
σ ImAm2(k) 0

]
−
[

IT
mP2(k)Im −ρ−1IT

mIm 0
0 ρ−1α2I

]
≤ 0 (21)

then J ≤ 0. Also, the inequality (21) is rearranged as the
follows:

[
Am1(k)T IT

m σAm2(k)T IT
m IT

m
Bm(k)T IT

m 0 0

]P̃+
2 (k) 0 0
0 P̃+

2 (k) 0
0 0 ρ−1


×

 ImAm1(k) ImBm(k)
σ ImAm2(k) 0

Im 0

−
[
IT
mP2(k)Im 0

0 α2ρ−1I

]
≤ 0.

(22)

By using the Schur complement to (22), we obtain the fol-
lowing inequality:
−IT

mP2(k)Im ∗ ∗ ∗ ∗
0 −α2ρ−1I ∗ ∗ ∗

ImAm1(k) ImBm(k) −Q+(k) ∗ ∗
σ ImAm2(k) 0 0 −Q+(k) ∗

Im 0 0 0 ρI

≤ 0,

(23)

where Q+(k) = (P̃+
2 (k))−1.

Then, employing the congruence transformation with
diag{I, I,Ω2,Ω2, I} to (23), applying Lemma 1, and us-
ing the fuzzy property, the LMI (17) can be obtained. The
proof is completed.

Remark 2: Theorem 1 and 2 are based on the fuzzy
system (3) with data loss phenomenon of the measurement
output. If the measurement output of the fuzzy system has
not data loss phenomenon or is perfectly measured, the
LMIs in Theorem 1 and 2 are simplified as follows:

(10)⇒
[

−λPi ∗
Φ̂i j Pg −Ω−ΩT

]
≺ 0 (24)
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(17)⇒


−P̃2i ∗ ∗ ∗

0 −ρ−1τI ∗ ∗
Φ̄i j Λi j P2g −Ω2 −ΩT

2 ∗
Im 0 0 −ρI

≺ 0

(25)
where

Φ̂i j =

[
Ω1Ai 0
MiC j Ω1A f i −MiC j

]
,

Φ̄i j =
[

Ω2Ai −MiC j −Ω2A f i +MiC j
]
.

4. SIMULATION EXAMPLE

In this section, we demonstrate a discretized chaotic
Lorenz system with both persistent bounded disturbances
and missing measurements, which can be represented a
T–S fuzzy system [27] as follows:

x(k+1) =
2

∑
i=1

hi(x1(k))(Aix(k)+Biu(k)+Giw(k)),

y(k) =
2

∑
i=1

hi(x1(k))(Cix(k)+ v(k)),

where

A1 =

 1−σTs σTs 0
cTs 1−Ts −M1Ts

0 M1Ts 1−bTs

 ,

A2 =

 1−σTs σTs 0
cTs 1−Ts −M2Ts

0 M2Ts 1−bTs

 ,

B1 = B2 =

 1 0 0
0 1 0
0 0 1

 ,

C1 =C2 =
[

1 0 0
]
, G1 = G2 =

 1
0
0

 ,

h1(x1(k)) =
−x1(k)+M2

M2 −M1
, h2(x1(k)) =

x1(k)−M1

M2 −M1
.

To simulate the above system, we use the following sys-
tem parameters:

σ = 10, b = 28, c = 8
/

3,
Ts = 0.1, M1 =−20, M2 = 30

and an exogenous disturbance w(k) and the measurement
disturbance v(k) are assumed as 5cos(0.5k) and 0.5sin(0.5k),
which are the persistent and bounded sinusoidal functions.

Now, by following the design procedure in the previ-
ous section, the discretized chaotic Lorenz system has to
be stochastically stable with a guaranteed l∞ norm bound
α . To stabilization of the discretized chaotic Lorenz sys-
tem, the control input u(k) is obtained by using the fuzzy

control technique described in [38]. Supposing ρ = 1.8
and solving LMIs in (17), we obtain the filter gains L f i for
γ̄ = 0.8 and γ̄ = 0.5 cases respectively as follows:

γ̄ = 0.8 : L f 1 =

−0.1371
0.1342
−0.0095

 , L f 2 =

−0.1312
0.1332
−0.0115

 ,

γ̄ = 0.5 : L f 1 =

−0.1374
0.1344
−0.0095

 , L f 2 =

−0.1310
0.1331
−0.0114

 .

In the simulation, the data losses are generated randomly
according to γ̄ = 0.8 and γ̄ = 0.5, and Figs. 1 and 2 shows
when the data loss phenomenon is occurred for each case.
With zero initial condition, Figs. 3, 4 and 5 show each
state variable for both γ̄ = 0.8 and γ̄ = 0.5 cases. As shown
the graphs, the filtering performance of the state variable
x1(k) is insufficient, but the outstanding filtering perfor-
mances are represented in the case of the state variable
x2(k) and x3(k). In Figs. 6, 7 and 8, the estimation er-
rors of each state variable are respectively shown for both
γ̄ = 0.8 and γ̄ = 0.5 cases, and we show that the case of
γ̄ = 0.8 has better performance than the case of γ̄ = 0.5 in
the proposed fuzzy filter.

5. CONCLUSIONS

In this paper, we have investigated the problem of l∞
fuzzy filtering with both the persistent bounded distur-
bances and missing probabilistic sensor information. The
T–S fuzzy model was adopted to represent a nonlinear sys-
tem. The measurement output is assumed to contain ran-
domly missing data that has been modeled by the Bernoulli
distributed with a known conditional probability. We
have reduced the effect of the perturbation against persis-
tent bounded disturbances by using the minimum l∞ per-
formance based on the LMI. The LMI was obtained based
on a relaxed approach in the FBDLF concept. By using
FBDLF, the sufficient conditions have been established
that ensure the exponential mean square stability of
the filtering error, and the filter gain was obtained by the
solution to a set of LMI. Finally, the effectiveness of the
proposed design methods on the FBDLF have been shown
via an example.
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