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Fuzzy Fault Tolerant Predictive Control for a Diesel Engine Air Path
Lamia Ben Hamouda*, Mounir Ayadi, and Nicolas Langlois

Abstract: This paper proposes a Fuzzy Fault Tolerant Predictive Control (FFTPC) with integral action method for
a class of nonlinear systems. The Takagi-Sugeno (T-S) fuzzy approach is introduced as a modelling technique in
order to consider the active control methods adapted to linear models. The proposed control strategy is based on a
combination between Parallel Distributed Compensation (PDC) control law and Model Predictive Control (MPC)
where the T-S fuzzy aspect uses the Unmeasurable Premise Variables (UPV). A T-S fuzzy observer provides an L2

norm estimation of system state vector and faults. The controller and observer gains are obtained by solving Linear
Matrix Inequalities (LMIs) derived from the Lyapunov theory. The validity of the proposed Fault Tolerant Control
(FTC) strategy is illustrated through an application to a Diesel Engine Air Path (DEAP) system.
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1. INTRODUCTION

In the last decades, diesel engine has been considered
as the most popular thermal engine due to its low fuel
consumption and improved reliability. However, it has
negative impacts on the environment because of particles
and nitrogen oxides (NOx) emissions. The industries used
Diesel particulate filter to remove these polluting emis-
sions from the exhaust gaz of DEAP system. Neverthe-
less, for economical reasons, it becomes more interest-
ing to reduce the production of these pollutants during the
combustion. The air path control problem represents an
active research area. The target of most studies in the lit-
erature, is to control both of the intake pressure and the air
flow using Exhaust Gas Recirculation (EGR) valve and
Variable Geometry Turbocharger (VGT).

Firstly in [1], a constructive Lyapunov control design
for turbocharged diesel engine based on nonlinear con-
trol is studied. In [2], the authors proposed an explicit
approach of MPC to take into account DEAP system con-
straints. Moreover, Layerle et al applied in [3], the design
of reconfigurable predictive control to DEAP system. By
the same token, in [4], an FTC design scheme based on
a T-S fuzzy model of DEAP system has been extended
to the state estimation, the leakage identification and the
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state feedback control law to guaranty the stabilization of
the faulty DEAP system. In [5], Abidi et al developed con-
trol strategy based on fuzzy logic where fuzzy systems are
used to describe different engine speed of DEAP system,
which leads to an improvement of the process representa-
tion. In [6], authors proposed a nonlinear observer design
of diesel engine selective catalytic reduction systems. In
this work, the proposed FTC strategy is initiated by a mod-
elling phase. The modelling phase aims to obtain a faith-
ful behaviour description of the healthy nonlinear system.
Above all, in [7] and [8], the stability and stabilization of
T-S fuzzy model have been widely studied. Among all the
proposed approaches, Lyapunov theory and formulation
of the stability conditions in terms of LMIs are used to
obtain the PDC control gains. In [9], authors investigated
H∞ the filtering problem of discrete-time T-S fuzzy sys-
tems in a network environment. In [10] and [11], a fault
tolerant Fuzzy-Model-Predictive Control (FMPC) with in-
tegral action method for a Simple Input Simple Output
(SISO) nonlinear systems is proposed. In [13], a robust
FMPC for a SISO nonlinear systems is proposed. In [14]
a Fuzzy Predictive Control algorithm (FPCA) for DEAP
system subject to a leakage is proposed. In this paper,
new sufficient conditions for the existence of the robust
FTC are developed in terms of LMIs constraints. A
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Fig. 1. A schema of a diesel engine airpath system.

T-S fuzzy observer based on UPV is designed for the ad-
vanced strategy, in order to estimate DEAP system state
variables, the leakage and the sensor fault. When the leak-
age or the sensor fault occurs, the objective is to conserve
the stability and the performances of DEAP system. The
layout of this paper is as follows: in Section 2, the T-S
fuzzy DEAP system modelling is presented. Then, the
FFTPC with integral action is proposed in Section 3. The
Section 4 shows the simulation results. Conclusion is pre-
sented in the last section.

2. DEAP SYSTEM

2.1. The Jankovic DEAP system modelling
The air goes through the compressor in the intake man-

ifold and then flows into the cylinders where fuel is in-
jected and burned, producing torque on the crank shaft.
Part of the hot exhaust gas is pumped out from the exhaust
manifold through the turbine. The other part is recircu-
lated back into the intake manifold through the EGR valve.
The turbine takes the energy from the exhaust gas to sup-
ply power the compressor. To reduce the intake manifold
temperature, an intercooler and an EGR cooler are used.
There are four sensors in DEAP system measuring both
the intake and the exhaust manifold of temperature and
pressure. The engine is also equipped with the Air/Fuel
Ratio sensor. In the following, the control outputs are the
VGT and the EGR valve positions both of them have lower
and upper bounds. The considered DEAP system is a two-
input-two-output system. The system inputs are u1 =Wegr

and u2 = Wvgt as considered in [1]. The following state
space model is considered:

ṗ1(t) =−k1ke p1(t)+ k1kc
p1(t)α−1 Pc(t)+ k1Wegr(t),

ṗ2(t) = k2ke p1(t)− k2Wegr(t)− k2Wvgt(t),
Ṗc(t) =

−Pc(t)
τ +K0(1− p2(t)−α)Wvgt(t).

(1)

A descriptive scheme of DEAP system is shown in Fig. 1
and the nomenclature of variables are given in Table 1.

Table 1. Nomenclature of DEAP system variables.

Variable Name Units
p1 intake manifold pressure Bar
p2 exhaust manifold pressure Bar
Pc compressor power Watt
Wc compressor mass flow Kg/s

Wvgt turbine mass flow Kg/s
Wegr gaz flow through the EGR Kg/s

The compressor mass flow rate is related to the compres-
sor power as follows:

Wc(t) = Pc(t)
kc

p1(t)α −1
(2)

with kc =
ηc

cpTa
, kt = ηtcpT2 and K0 =

ηm
τ kt .

The turbine isentropic efficiency ηt , the compressor isen-
tropic efficiency ηc, the time constant τ and the tur-
bocharger mechanical efficiency ηm are assumed to be
constant. The model (1) can be expressed under the fol-
lowing control-affine form:

ẋ(t) = h(x(t))+g1(x(t))u1(t)+g2(x(t))u2(t) (3)

with x(t) = (p1(t), p2(t),Pc(t))T ,

h(x(t)) =

 −k1kex1(t)+ k1kcθ1(x1(t))x3(t)
−k2kex1(t)

−x3(t)
τ

 , (4)

g1(x(t)) =

 k1

−k2

0

 ,g2(x(t)) =

 0
−k2

K0θ2(x2(t))

 ,
(5)

where the nonlinear functions are given by:

θ1(p1(t)) =
1

pα
1 (t)−1

; θ2(p2(t)) = 1− p−α
2 (t). (6)

In [1], DEAP model parameters (k1, k2, kc, ke, kt , ηm, τ)
are identified under steady state conditions.{

ΩDEAP = x = (p1, p2,Pc)
T : 1 < p1(t)< pmax

1 ,
1 < p2(t)< pmax

2 ,0 < Pc(t)< Pmax
c

}
where for all conditions x(t0) ∈ ΩDEAP, then x(t) ∈
ΩDEAP, ∀t ≥ t0.

2.2. T-S fuzzy model
The T-S fuzzy model is given by the following relation

as introduced in [12]:
ẋ(t) =

N

∑
i=1

µi(θ)(Aix(t)+Biu(t)),

y(t) =
N

∑
i=1

µi(θ)Cix(t),

(7)
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where x ∈ ℜn stands for the state vector, u ∈ ℜm denotes
the control input vector and y ∈ ℜp represents the output
vector. Ai ∈ ℜn×n, Bi ∈ ℜn×m and Ci ∈ ℜp×n are constant
matrices and θ represents the premise variables vector de-
pending on system states and input. {Ai,Bi} are the sub-
models asymptotically stable matrices and the activation
functions µi satisfy ∀ i ≥ 0 the following:

N

∑
i=1

µi(x(t),u(t)) = 1 and 0 ≤ µi(x(t),u(t))≤ 1. (8)

Polytope is obtained with N = 2r peaks, where r is the
number of premise variables. In [7], Wang and Tanaka ob-
tain this convex polytopic representation by a direct trans-
form of an affine model in the state called sector nonlinear-
ity approach. This method does not generate an approx-
imation error and has an advantage of reducing the local
model number. Infact, the number n of the local models
depends on the desired representativeness, the nonlinear
system complexity and the choice of the activation func-
tions structure. The fuzzy model obtained is constituted
by two sets of sub-linear Time Invariant (LTI) represent-
ing the lower and upper bounds (θ− , θ̄). The considered
model is given by (3). The premise variables are assumed
to have lower and upper bounds such that:

∀i ∈ {1,2} ,θi−
≤ θi ≤ θ̄i. (9)

The T-S fuzzy model (7) is obtained using the sector non-
linearity approach, where the constant matrices are given
below:

Ai={1,2} =

 −k1ke 0 k1kcθ̄1

k2ke 0 0
0 0 −1

τ

 ,
Ai={3,4} =

 −k1ke 0 k1kcθ1−

k2ke 0 0
0 0 −1

τ

 ,
Bi={1,3} =

 k1 0
−k2 −k2

0 K0θ̄2

 ;Bi={2,4} =

 k1 0
−k2 −k2

0 K0θ2−

 ,
Ci={1,2} =

[
0 0 kcθ̄1

0 1 0

]
;Ci={3,4} =

[
0 0 kcθ1−

0 1 0

]
.

In the next section, a T-S fuzzy controller with integral ac-
tion and based on UPV for DEAP system subject to faults
is proposed.

3. PROPOSED FFTPC

3.1. Remind on MPC
In practice all physical systems have some forms of

constraints due to physical, economic, safety or perfor-
mance requirements on control inputs and on system

states. The ability to handle input and states constraints
systematically in the control algorithm represents one of
the primary advantages. Moreover, the MPC structure al-
lows FTC to be embedded: constraints can be redefined,
internal model and the control objectives can be changed.
In [15], advantages of MPC are exposed. For a dynamic
system, the control law based on prediction has two main
objectives: the tracking of desired trajectories over time
and the stabilization around these trajectories with pertur-
bation rejection. In [16], formulations and experimental
evaluations of various constrained MPC schemes applied
to a realistic full envelope non-linear model of a fighter
aircraft are presented. Investigations are carried out by
exploring a variety of scenarios of fault and disturbance
combinations. Recently in [18], the problem of predic-
tive output feedback control for networked control sys-
tems with random communication delays is studied. The
aim of MPC is to minimize the cost function J given in an
instant k by:

J(k) =
Hp

∑
l=1

∥ y(k+ l)− yd(k+ l |k ) ∥2
Q +

Hu−1

∑
l=0

∥ ∆u(k+ l |k ) ∥2
R

(10)

to compute the optimal control for the ith sub-model, sub-
ject to the following constraints:

xmin ⩽ xl ⩽ xmax, where k+1 ⩽ l ⩽ k+Hp.

umin ⩽ ul ⩽ umax, ∆u(k) = u(k)−u(k−1),

∆umin ⩽ ∆ul ⩽ ∆umax, where k ⩽ l ⩽ k+Hu −1,

where y is the predicted response and yd is the output de-
sired trajectory. The matrices Q and R are used to weight
the corresponding control errors and control actions. The
R matrix helps to keep the control inputs within bounds,
making sure that smooth control actions result. Hp and
Hu are output and control prediction horizons, respec-
tively. The computing time depends on the value cho-
sen of Hp. Hence, the choice of the value of Hp affects
the system dynamic. In general, a short control horizon
makes the system more robust to uncertainties such as pa-
rameter variations. Only the first control increment ∆u(k)
is implemented and the optimization is re-solved at each
step. It is also assumed that the dynamic system defined
by the model (Ai,Bi) is controllable. The controllability
condition is required to ensure that the MPC optimization
solved at each step is feasible. This optimization can be
formulated as a quadratic programming (QP) problem. In
[15], stability proofs of such formulation are given. Pre-
dictive control formulations can be designed with nomi-
nal asymptotic stability guarantees, provided that the as-
sociated optimization problem is feasible at each sampling
time. However, model-plant mismatches, external pertur-
bations or faults may cause the optimization to become
infeasible. In [17], Afonso and Galvao considered the
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development of techniques aimed at recovering feasibil-
ity without violating hard physical constraints imposed by
the nature of the model. The validity of their proposed
control strategy is illustrated through an application to an
helicopter with three degrees of freedom in the presence
of actuator faults.

In the next sub-section, an FTC strategy is proposed to
recover feasibility, in the presence of faults, without vi-
olating constraints imposed on control inputs and system
states.

3.2. Proposed FTC strategy
The proposed FTC schema is given by Fig. 2. The main

contribution of this work with respect to other works is
about an active FTC based on a combination between a
PDC control law and a prediction algorithm where the
T-S fuzzy aspect uses the UPV. The method uses a T-S
fuzzy observer to estimate DEAP system state variables
and faults. The aims of the proposed FFTPC approach
with integral action are to maintain system output close
to the desired trajectories obtained by the reference model
and to preserve stability conditions even when faults oc-
cur. For example, in [16], Kale and Chipperfield intro-
duced a straightforward strategy by assuming state feed-
back as a baseline controller to which predictive control
signals are added. Using MPC with the pre-stabilization
provides an effective tool to guarantee closed-loop stabil-
ity in the nominal operation and even in the presence of
actuator faults. In previous work [10] and [11], it is shown
that the feedback aims to provide further robustness and
accuracy. The integral action helps to drive the tracking
error to zero. The proposed ith control law signal gener-
ated in the nominal operating is given by the following:


ui(k+ l |k ) =−ki

x (x̂(k+ l |k )− x(k+ l |k ))
−ki

I xI(k+ l |k )+qi,

l = 0, . . . ,Hu −1 and i = 1, . . . ,N

(11)

where ẋI = yd −y, k1
I = k2

I = k3
I = k4

I are the integral action
gain, x̂ represents the estimated state. ku1,ku2, . . . ,
kuN are the N state feedback gains and qi the ith predicted
control input. Beyond the control horizon, the MPC con-
trol qi is set to zero and the control law becomes when
l ⩾ Hu:

ui(k+ l |k ) =− ki
x (x̂(k+ l |k )− x(k+ l |k ))

− ki
I xI(k+ l |k ).

(12)

In the faulty case, the nonlinear system described by (7)
becomes:

ẋ f (t) =
N

∑
i=1

µi(θ f )
(
Aix f (t)+Biu f (t)+E i

a f (t)
)
,

y f (t) =
N

∑
i=1

µi(θ f )
(
Cix f (t)+E i

s f (t)
)
,

(13)
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Fig. 2. Proposed structure.

where f ∈ ℜ f is the fault signal and Ea and Es represent
the fault matrices with appropriate dimensions. The struc-
ture given by Fig. 2 is proposed to determine the control
inputs u f (t) such that:

• the closed-loop system is stable,
• x f (t) converges asymptotically to the reference state

vector even in the presence of faults.

In this case, the T-S fuzzy control law is based on the es-
timated premise variables because UPV depend on the es-
timated faulty state vector. The following control strategy
is then used:

u f (t)=
N

∑
i=1

µi(θ̂ f )
(
− f̂ (t)− ki

x (x̂ f (t)− x(t))+u(t)
)
, (14)

where f̂ is the fault estimate vector and u(t) is the nominal
control input given by (11) and (10):

u(t) =
N

∑
i=1

µi(θ̂(t))ui(t).

The activation functions µ1 and µ2 are defined by:

µ1(θ̂ f ) =
θ̂ f (x̂ f )−θ−

θ̄ −θ−
and µ2(θ̂ f ) = 1−µ1(θ̂ f ). (15)

3.3. T-S fuzzy observer
In [19], Bouattour et al proposed the design of a ro-

bust fault detection observer for a T-S fuzzy model af-
fected by sensor and actuator faults and unknown bounded
disturbances simultaneously with H∞ performances. The
paper [20] represents two approaches of observer for T-
S systems with UPV in continuous time case. To illus-
trate the effectiveness of these proposed approaches sim-
ulations results of a two-link robot system are presented
and discussed. A recent paper by Sami and Patton [21] de-
scribed a fault tolerant tracking control strategy. A robust
L2 norm fault estimation and compensation are developed.
The advanced strategy is illustrated using a nonlinear in-
verted pendulum in the presence of simultaneous actuator
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and sensor faults. In this article, the contribution is about
a new FTC structure based on a combination between a
PDC control law with the MPC where to estimate simul-
taneously x f (t) and f (t), a T-S fuzzy observer is used for
system (13):

˙̂x f (t) =
N
∑

i=1
µi(θ̂ f )

(
Aix̂ f (t)+Biu f (t)+Ei f̂ (t)
+Li (y f − ŷ f )

)
,

f̂ (t) =
N
∑

i=1
µi(θ̂ f )(GiCi (x f (t)− x̂ f (t))).

(16)
The extended error system, containing the two error dy-
namics ẋ f (t)− ˙̂x f (t) and ḟ (t)− ˙̂f (t) is given by:

(
ẋ f (t)− ˙̂x f (t)
ḟ (t)− ˙̂f (t)

)
=

N

∑
i=1

µi(θ̂ f )

(
Ai −LiCi E i

a −LiE i
s

−GiCi −GiE i
s

)
(

x f (t)− x̂ f (t)
f (t)− f̂ (t)

)
.

(17)

The tracking error e(t) = x(t)− x f (t) is given by:

ė(t) =
N
∑
i=1

N
∑
j=1

µi(θ)µ j(θ f )

 (Ai −BiK j
x )e(t)

−E i
a( f (t)− f̂ (t))

−BiK j
x (x f (t)− x̂ f (t))


+In×n∆1(t),

(18)

where ∆1(t) =
N
∑

i=1
(µi(θ)−µi(θ f ))(Aix(t)+Biu(t)).

An extended error system ẽ(t), containing the tracking
error e(t), the state estimation error x f (t)− x̂ f (t) and the
fault estimation error f (t)− f̂ (t), can be expressed as:

˙̃e(t) =
N

∑
i=1

N

∑
j=1

µi(θ̂ f )µ j(θ f )Ãi j ẽ(t)+Γ∆(t), (19)

where

ẽ(t) =

 x(t)− x f (t)
x f (t)− x̂ f (t)
f (t)− f̂ (t)

 ,Γ =

 In×n 0
0 In×n

0 0

 ,

∆ =

(
∆1(t)
∆2(t)

)
,

Ãi j =

(
Ai −BiK j

x −BiK j
x −E i

a
0 Ai −LiC j E i

a −LiE j
s

0 −GiC j −GiE j
s

)
,

∆2(t) =
N

∑
i=1

(
µi(θ f )−µi(θ̂ f )

)( Aix f (t)+Biu f (t)
+E i

a f (t)

)
.

Hypothesis 1: It is assumed that the following condi-
tions are satisfied:

• The term ∆(t) have lower and upper bounds.
• The open-loop system is stable.

The stability analysis of system (20), guarantying the
tracking performance under the L2-gain, allows to intro-
duce the Theorem 1.

Theorem 1: The tracking error e(t), the state esti-
mation error x f (t)− x̂ f (t) and the fault estimation error
f (t)− f̂ (t) converge asymptotically to zero, if there ex-
ists symmetric positive definite matrices X1 and P2, P3 = I,
gain matrices K j

x , L̄i and Gi and a positive scalar γ̄ solu-
tions of the following optimization problem:

min
X1,P2,K

j
x ,L̄i,Gi

γ̄ ,

such that the following LMIs are verified:

Ωi −BiK
j

x −E i
a −BiK

j
x X1 X1 0

∗ Ξi j Ψi j 0 0 0 P2
∗ ∗ Zi j 0 0 0 0
∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −γ̄I 0
∗ ∗ ∗ ∗ ∗ ∗ −γ̄I


< 0,

(20)

Ωi = AiX1+X1AT
i

Ξi j = P2Ai +AT
i P2 − L̄iC j −CT

j L̄T
i

Ψi j = P2E i
a − L̄iE

j
s −CT

j ḠT
i

Zi j =−ḠiE
j

s −E j
s

T
GT

i
i, j = 1, . . . ,N.

The gains of the controller are K j
x and the gains of the

observer are given by Li = P−1
2 L̄i and Gi. The attenuation

rate is obtained by γ =
√

γ̄ .

Proof: The proof is given in the appendix.

4. SIMULATIONS RESULTS

The diesel engine is assumed to run at 1800 rpm. Con-
sidered DEAP system parameters in the numerical simu-
lations are given by Table 2. These numerical values are
taken from identification results exposed in [1] and [5].
For this engine, 1.2≤ x1(t)≤ 2 and 1.3≤ x2(t)≤ 4. There
are two premise variables, so there are four sub-models.
The tuning parameters used in the MPC are given in Table
3. The performance of the proposed FFTPC strategy has
been evaluated by numerical simulations considering two
fault scenarios. The first fault scenario is given by Fig. 3,
which represents the leakage mass flow as considered in
[4]. In the presence of the air leakage, DEAP model de-
scribed by (1) becomes:

ẋ1(t) =−k1kex1(t)+ k1kc
xα

1 (t)−1 x3(t)+ k1u1(t)−β f (t),
ẋ2(t) = k2kex1(t)− k2u1(t)− k2u2(t),
ẋ3(t) =

−x3(t)
τ +K0(1− x−α

2 (t))u2(t).

(21)
The intake manifold leakage signal is given by:

f (t) =
{

0, t < 25 s
0.05 kg/s, t ≥ 25 s
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Table 2. Numerical values of DEAP system parameters.

Parameter Value
k1 31.2500
k2 333.2000
kc 0.0026
kt 388.9474
ke 0.0945
τ 0.300

ηm 0.95
α 0.2850
K0 1.2317 e+03

Table 3. MPC tuning parameters.

Prediction horizon Hp 4

Control horizon Hu 3

Input constraints
−8 ⩽ u1(k)⩽ 8
−8 ⩽ u2(k)⩽ 8

Output constraints
−0.05 ⩽y1(k)⩽ 0.25

1.3 ⩽y2(k)⩽ 4

Input weights R
[

1 1
]

Output weights Q
[

10 10
]

with ḟ (t) = 0, where fault matrices E i
a =
[
−β 0 0

]T
for i = 1, ...,4. The second scenario given by figure 6 rep-
resents a sensor fault, where fault matrices E i

s =
[

0 α
]

for i= 1, ...,4. Solutions satisfying stability conditions un-
der LMIs in Theorem 1 are found with the attenuation rate
value: γ = 0.861. The designed controller and observer
gains are:

K1 = K2 = 10−4
[

−0.0040 0.0000 0.1271
−0.0013 −0.0007 −0.1271

]
;

K3 = K4 = 10−4
[

−0.0040 0.0000 0.4071
−0.0013 −0.0007 −0.4071

]
;

L1 =

 0.3216 6.6288
0.1880 34.9487
−0.2026 0.5442

 ;

L2 =

 0.3216 6.6288
0.1880 34.9485
−0.2027 0.5442

 ;

L3 =

 −0.0298 6.6439
−0.0437 34.8189
−0.0271 −0.3532

 ;

L4 =

 −0.0298 6.6440
−0.0437 34.8186
−0.0271 −0.3533

 .
The system responses obtained by FTC strategy and by
a classical predictive control from initial conditions x0 =
(1.3229,1.3596,5.6095)T are shown in Figs. 4 and 7. The
obtained performances in terms of tracking, confirm the
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Fig. 3. Intake manifold leakage signal with its estimation
vs. time.
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Fig. 4. Output signals vs. time in the presence of the leak-
age.

effectiveness of the introduced control strategy. Faults are
estimated with a high accuracy and are given by Figs. 3
and 6. Fig. 5 shows the FTC signals in the presence of the
leakage. Fig. 8 illustrates the evolution of the activation
functions in the faulty cases. When the leakage occurs, the
compressor mass flow Wc decreases. As a result, the pres-
sure is reduced in the intake manifold and the pressure p2

also goes down. Consequently, the solution is to close par-
tially the EGR valve (Wegr decreases) and the VGT valve
(Wvgt increases). From the simulation results, it is con-
cluded that the performances of the FFTPC strategy are
very satisfactory. Furthermore, the advanced idea to com-
bine a PDC control law with the MPC represents an inter-
esting approach. The proposed controller accommodates
faults properly and ensures the stability of DEAP system.
In this respect, the chosen Lyapunov polytopic function
is set out as an optimisation convex problem in terms of
LMIs to reduce the pessimism of the method, consider-
ing that this approach heed informations contained in the
activations functions.
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Fig. 5. Control signals vs. time in the faulty case.
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Fig. 6. Sensor Fault with its estimate signals vs. time.

5. CONCLUSION

The development of a new FTC strategy called FFTPC
with integral action for DEAP system is proposed in this
paper. The aims are to tolerate faults and to allow the
system to operate properly. The contributions and nov-
elties with respect to other works are to combine a PDC
control law with the MPC where the T-S fuzzy aspect is
considered. Actually, the use of the sector nonlinearity ap-
proach has reduced the conservatism related to the num-
ber of LMIs to solve. On top of that, the chosen form of
the function V (x(t)) and the T-S fuzzy structure have sig-
nificantly decreased the pessimism of sufficient stability
conditions derived from Lyapunov theories.

APPENDIX A

Lemma 1: Let us consider two matrices X and Y of
appropriate dimensions. The following inequality is veri-
fied for each matrix Q:

XTY +XY T ≤ XT Q−1X +Y QY T .

Lemma 2 (Schur complement): The following two in-
equalities are equivalent:
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Fig. 7. Output signals vs. time in the sensor faulty case.
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Fig. 8. Activation functions with UPV signals vs. time in
the presence of the leakage (top) and in the sensor
faulty case (bottom).

1)
[

Q S
ST R

]
> 0 where Q = QT and R = RT

2) R > 0, Q−SR−1ST > 0.

Proof: The proof of the Theorem 1 is established using
the following Lyapunov’s function:

V (ẽ(t)) = ẽ(t)T Pẽ(t), P = PT > 0, (A.1)

where the matrix P is defined as follows:(
P1 0 0
0 P2 0
0 0 P3

)
.
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The derivative of V (ẽ(t)) is written as:

V̇ (ẽ(t)) =
N

∑
i=1

N

∑
j=1

µi(θ̂ f )µ j(θ f )
(
ẽ(t)T ϒi j ẽ(t)

)
(A.2)

with

ϒi j = Λ
((

P1Ai −P1BiK j
x −P1BiK j

x −P1Ei
a

0 P2Ai −P2LiC j P2Ei
a −P2LiE j

s
0 −P3GiC j −P3GiE j

s

))
,

where Λ(X) denote the Hermitian of the matrix X :

Λ(X) = XT +X .

The derivative of the Lyapunov function is negative if the
following inequalities are satisfied

ϒi j < 0, i, j = 1, . . . ,N (A.3)

using the lemma of congruence as follows:

ϒi j < 0⇔

 P−1
1 0 0
0 I 0
0 0 I

ϒi j

 P−1
1 0 0
0 I 0
0 0 I

 . (A.4)

The following inequalities are obtained: ξ 1
i j −BiK

j
x −E i

a

∗ ξ 2
i j P2E i

a −P2LiE
j

s −CT
j GT

i P3

∗ ∗ −P3GiE
j

s −E j
s

T
GT

i P3

< 0, (A.5)

where

ξ 1
i j = AiX1+X1AT

i −BiK
j

x X1−X1K j
x

T
BT

i .
ξ 2

i j = P2Ai +AT
i P2 − L̄iC j −CT

j L̄T
i

with X1 = P−1
1 . The inequalities (A.5) can be written as:

 AiX1+X1AT
i −BiK j

x −E i
a

∗ ξ 2
i j P2E i

a −P2LiE j
s −CT

j GT
i P3

∗ ∗ −P3GiE j
s −E j

s
T GT

i P3



+

( −BiK j
x

0
0

)(
X1
0
0

)T

+

(
X1
0
0

)( −BiK j
x

0
0

)T

< 0.

(A.6)

Using Lemma 1, the inequalities (A.6) becomes: AiX1+X1AT
i −BiK j

x −E i
a

∗ ξ 2
i j P2E i

a −P2LiE j
s −CT

j GT
i P3

∗ ∗ −P3GiE j
s −E j

s
T GT

i P3

+

( −BiK j
x

0
0

)
Θ−1

( −BiK j
x

0
0

)T

+

(
X1
0
0

)
Θ

(
X1
0
0

)T

< 0,

(A.7)

where Θ is a symmetric definite positive matrix. Us-
ing Lemma 2, we obtain the LMIs of Theorem 1, with

L̄i = P2Li, Ḡi = P3Gi and Θ = I.
The objective is to minimize the L2-gain of the perturba-
tion transfer from ∆(t) to the errors ẽ(t), this is formulated
by:

∥ẽ(t)∥2

∥∆(t)∥2
< γ, ∥∆(t)∥2 ̸= 0. (A.8)

Then, the problem can be formulated as follows:

V̇ (ẽ(t))+ ẽ(t)T ẽ(t)− γ∆(t)T ∆(t)< 0. (A.9)

□
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