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Discontinuous H∞ Control of Underactuated Mechanical Systems with
Friction and Backlash
Raúl Rascón*, Joaquin Alvarez, and Luis T. Aguilar

Abstract: Nonlinear H∞-control is extended to discontinuous mechanical systems with degree of underactuation
one, where nonlinear phenomena such as Coulomb friction and backlash are considered. The problem in question
is to design a feedback controller via output measurements so as to obtain the closed-loop system in which all
trajectories are locally ultimate bounded, and the underactuated link is regulated to a desired position while also
attenuating the influence of external perturbations and nonlinear phenomena. It is considered that positions are the
only measurements available for feedback in the system. Performance issues of the discontinuous H∞-regulation
controller are illustrated in an experimental study made for a rectilinear plant with friction modified to have a gap
in the point of contact between bodies.
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1. INTRODUCTION

The design of a robust feedback control which asymp-
totically stabilizes a nominal plant while also attenuates
the influence of parameter variations and external per-
turbations is a major problem in control engineering.
This problem was intensely studied and research efforts
have resulted in the development of a systematic design
methodology for nonlinear systems. A survey of the meth-
ods, which are fundamental in this respect, is given in [1].

On the other hand, backlash is one of the most impor-
tant non-linearities that limit the performance of speed
and position control in industrial robotics, automotive, au-
tomation and other applications [2].

According to [3], backlash is clearance or lost motion in
a mechanism caused by gaps between the parts. It can be
defined as the maximum distance or angle through which
any part of a mechanical system may be moved in one
direction without applying appreciable force or motion to
the next part in mechanical sequence.

Backlash is a common non-linearity in mechanical sys-
tems. Depending on the mechanical surrounding of the
backlash, and the operating conditions, different mathe-
matical models must be utilized to model the behavior.
In the present document, it is used a dead zone model of
backlash proposed in [4].

The dead zone model of backlash is non differentiable
at the moment of impact, because of this, in our case of
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study: an underactuated rectilinear plant, it is proposed
the usage of a monotonic approximation of a dead zone
model in order to fit the model with the requirements of
the nonlinear H∞ control design.

Control of mechanical systems with backlash has been
attempted with a wide range of methodologies such as
switched control [5], predictive control [6], fuzzy control
[7], and optimal control [8] among others.

The nonlinear H∞ control was considered, which is ca-
pable of handling the above-mentioned factors, thereby
yielding good performance in real systems. The main ad-
vantage of using H∞-control technique is that it can min-
imize the external perturbations and model uncertainties
of the plant, also, it can attenuate the influence of the er-
ror when the system measurements are corrupted. On the
other side, a disadvantage of H∞ technique include the
need for a reasonably good model of the system to be con-
trolled. A previous work of H∞ control can be found in
[9] where a controller design is developed for mechanical
systems with friction, which was derived via the nonlin-
ear H∞ control approach coupled to a feedback lineariza-
tion technique. Although the proposed controller is rather
attractive due to their robustness and simple implementa-
tion, the backlash and discontinuous friction have not been
considered. In [10], an output regulation problem for a
servomechanism with backlash in the absence of friction
was solved by applying nonlinear H∞ control synthesis. In
[11] a nonlinear H∞-controller synthesis was developed
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for discontinuous time-varying systems via measurement
feedback, without considering the nonlinear phenomena
and addressing fully actuated mechanical systems.

An application of H∞ control to a frictionless and un-
perturbed constrained system can be found in [12], where
a simulation example was provided to validate the effec-
tiveness of the proposed approach. Recently in [13], the
problem of output-feedback H∞ control for a class of ac-
tive quarter-car suspension systems with control delay was
addressed, considering also that the maximum actuator
control force is constrained. As well in [14] is designed
a robust linear control H∞ and µ-synthesis for a linear
model approximation of an active suspension on a quar-
ter car test-rig.

A previous works of mechanical systems with backlash,
considering viscous friction only, can be found in [15] and
[16], where are proposed sliding mode controllers which
included an H∞ control on its sliding surface to reduce
unmatched perturbations on the unactuated link of the me-
chanical system. Moreover, in [17] is addressed the regu-
lation problem of the force exerted by a spring on a wall
of a one degree-of-freedom mechanical system with a po-
sition constraint, affected by Coulomb friction and an ex-
ternal perturbation, using a sliding mode controller.

Furthermore, [9] extended the nonlinear H∞-output
feedback approach to a class of nonsmooth systems to ac-
count for nonsmooth dynamic friction models such as the
Dahl [18] and LuGre models [19]. These dynamic mod-
els were brought into play to accurately describe observed
frictional effects (the stiction behavior and the stribeck ef-
fect).

A drawback of the use of the afore-mentioned dynamic
friction models for control purposes is in the need of aug-
menting the state vector dimension to account for the dy-
namics of the friction model, thus incrementing the con-
troller computational cost. This motivates the use of a
static friction model such as the Coulomb model so that
the system dimension remains the same. The cost one
should pay is to deal with discontinuous systems to be ro-
bustly controlled.

Recent works about H∞-control encompass a wide
range of applications: in [20] are addressed nonlinear sys-
tems with parameter uncertainty, in which a sensor fault
detection observer is proposed. Moreover, H∞-control for
linear and nonlinear systems with unknown system model
can be found in [21, 22], respectively.

Since dead zone model of backlash is non differentiable
at the moment of impact, it is proposed the usage of a
monotonic approximation of a dead zone model in order
to fit the model with the requirements of the nonlinear H∞
control design.

The nonlinear H∞-regulator approach for nonsmooth
systems was addressed for mechanical systems with de-
gree of underactuation one, where is considered nonlinear
phenomena such Coulomb friction and backlash. Due to

the nature of the local approach, the resulting controller
is additionally expected to yield desired robustness prop-
erties in spite of the discrepancy between the dead zone
model of backlash and their monotonic approximation.
Experiments confirmed the validity of the theoretical anal-
ysis. The proposed H∞ synthesis procedure considering
discontinuous friction, external perturbations and back-
lash in an underactuated mechanical system constitutes
the main contribution of the present work, which to the
best of our knowledge had never been addressed before as
a whole.

The study is organized as follows. The H∞-control
problem for mechanical systems with degree of underac-
tuation one considering friction and backlash is presented
in Section 2. To facilitate exposition, the friction model
chosen for treatment was confined to the discontinuous
static Coulomb model augmented with viscous friction. In
Section 3 is addressed the nonlinear H∞-control synthe-
sis, since the position was assumed to be the only avail-
able measurement in the system, the resulting nonlinear
H∞-controller design necessarily includes a filter to have
access to the remaining states. Section 4 presents the H∞
controller design in order to stabilize the experimental rec-
tilinear plant configured to have backlash. Finally, Section
5 presents conclusions.

2. H∞-REGULATION CONTROL OF
UNDERACTUATED MECHANICAL

MANIPULATORS WITH FRICTION AND
BACKLASH

A mathematical model for such a manipulator is given
by

M(q)q̈+C(q, q̇)q̇+G(q)+F(q̇) = τ +w1+DT (q). (1)

In the above equation, q(t) ∈ Rn is the joint position vec-
tor, τ(t) ∈ Rn is the input torque, q̇ and q̈ are the velocity
and acceleration vectors, w1(t) ∈ Rn is an external per-
turbation, F(q̇), G(q), M(q), and C(q, q̇) are matrix func-
tions of appropriate dimensions. From the physical point
of view, q is the vector of generalized coordinates, τ is
the vector of external torques, M(q) is the inertia matrix,
symmetric and positive definite for all q ∈ Rn, C(q, q̇)q̇ is
the vector of Coriolis and centrifugal torques, G(q) is the
vector of gravitational torques affecting only the actuated
link, the components Fj(q̇ j), j = 1, . . . ,n of F(q̇) are fric-
tion forces acting independently in each joint. Through-
out, The functions M(q), C(q, q̇), G(q) are twice continu-
ously differentiable.

Moreover, D ∈ Rn is the matrix that maps T (q) ∈ R to
the joint coordinates space, T (q) is the vector of trans-
mitted torque or force through a backlash, where the dead
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Fig. 1. Schematic of backlash.

zone model of backlash is modelled by

T (q) =


k (∆q− c/2) , if ∆q ≥ c/2;
0, if − c/2 < ∆q < c/2;
k(∆q+ c/2), if ∆q ≤−c/2;

(2)

where ∆q = qi −Nqo + c/2. The expression (2) can be
rewritten as

T (q) =
k
2
[2∆q+ |∆q− c/2|− |−∆q− c/2|] , (3)

where k ∈R is the stiffness of the spring, c ∈R is the size
of the clearance, qi is the actuated link, q0 is the unac-
tuated link, and N is the reducer ratio. Since the action
of two mating gears can be represented by the action of
one pair of teeth, backlash is commonly represented by
the schematic shown in Fig. 1.

In order to fulfill the requirements of control design for
a local solution of the H∞-position regulation problem is
replaced the dead zone model of backlash (3), with its
strictly monotonic approximation, this approximation en-
sures that (1) is at least twice continuously differentiable
according to the aforementioned,

T (q) = k∆q+ kη(∆q), (4)

where

η =−c
1− e−(∆q/0.5c)

1+ e−(∆q/0.5c) . (5)

Hereinafter this approximation of T (q) will be used, the
present backlash approximation is inspired from [23].
Coupled to the drive system (1) subject to position mea-
surements of the links, it is subsequently shown to consti-
tute a smooth approximation of the underlying mechani-
cal system, operating under uncertainty w1(t) to be atten-
uated. As a matter of fact, this uncertainty involve dis-
crepancies between the physical backlash model (3) and
its approximation (4)–(5).

The friction model chosen for the treatment is the static
Coulomb model augmented with viscous friction:

Fj = σ0 jq̇ j +Fc jsign(q̇ j), j = 1, . . . ,n, (6)

where σ0 j > 0 and Fc j > 0 are the viscous friction coef-
ficient and the Coulomb friction level respectively, corre-
sponding to the j-th manipulator joint. Moreover, the sign
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Fig. 2. (a) The dead zone model of backlash and (b) the
monotonic approximation of the dead zone model.

is the signum function, defined by

sign(q̇) =


1 q̇ > 0

0 q̇ = 0

−1 q̇ < 0.

(7)

The relation (6) can be rewritten in the vector form

F = σ0q̇+Fcsign(q̇), (8)

where F = col{Fj}, σ0 = diag{σ0 j}, q̇ = col{q̇ j} ,Fc =
diag{Fc j} and sign(q̇) = col{sign(q̇ j)}, the notations diag
and col are used to denote a diagonal matrix and a column
vector, respectively.

Since the right hand side of the equation (1) has discon-
tinuous terms due to Coulomb friction, the solutions of
system (1) are understood in the Filippov sense (see [24]).

To manage the model discontinuities while controlling
the plant, let us consider the dynamical model counterpart
of the static Coulomb model, which is given by the Dahl
model represented by the following equations:

F = σ0q̇+Fd , (9)

Ḟd = σ1q̇−σ1diag{|q̇i|}F−1
c Fd , (10)

where F = col{Fj}, is the cumulative friction force, af-
fecting the manipulator, Fd = col{Fd j} is the Dahl fric-
tion component, σ1 = diag{σ1 j} is the stiffness, σ0 =
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diag{σ0 j} and Fc = diag{Fc j} are as before the viscous
friction coefficient and the Coulomb friction level, respec-
tively. The dynamical friction model (9) and (10) approx-
imates the static Coulomb friction plus viscous friction as
in (8) when the parameter σ1 tends to infinity. In this
case, friction model (9) degenerates into (8), which fol-
lows the fact that the Coulomb friction model is a limit
case of the Dahl friction model when its internal dynam-
ics approaches zero.

Hereafter the friction model (8) will be used in the rest
of the document. An advantage of using the static fric-
tion model (8) instead of the dynamic friction model (9)
is that reduces the number of states in the system model
(1) and the parameter σ1 does not need to be character-
ized. Now, let qd = col{qd j} be the desired position.
Then if there were no initial and external perturbations
the following feedback compensator τd will impose on
the disturbance-free manipulator motion, desired stability
properties around qd enforced by the external torque/force

τd = G(q)−Bθ
(∫ T

t0
(q(t)−qd)dt,q−qd , q̇

)
, (11)

where θ
(∫ T

t0 (q(t)−qd)dt,q−qd , q̇
)
∈Rm being m< n is

a control input, subject to the initial condition t0 = 0 ∈ R
(the absence of initial and external perturbations means
that q(0) = 0, q̇(0) = 0, and w1 = 0), and B ∈ Rn×m is the
input matrix that maps the control input θ of dimension m
to the joint coordinates space of dimension n.

Since it is used only position measurements, the veloc-
ity term q̇ used in the compensation, is estimated from the
expression q̇ = ξ2, where ξ2 is the velocity estimated by
the controller’s filter (26), that will be presented later in
this document.

Our objective is to design a controller of the form

τ = τd +u (12)

that imposes on the perturbation-free manipulator motion
desired stability properties around the desired position,
otherwise it will locally attenuate the effect of the pertur-
bations. Thus, the controller to be constructed consists
of the regulation compensator (11) and a perturbation at-
tenuator u(t), internally stabilizing the closed-loop system
around the desired position.

For certainty, let confine our investigation to the posi-
tion regulation control problem were (i) the output to be
controlled is given by

z = ρ
[

0m×1
qo −qdo

]
+

[
Im

01×m

]
u (13)

where qdo is the desired position of the underactuated link
qo, with a positive weight coefficient ρ , and (ii) the posi-
tion measurements

y = q+w0, (14)

corrupted by the error vector w0(t) ∈ Rn, are only avail-
able.

3. NONLINEAR H∞-CONTROL SYNTHESIS

The H∞ control problem for position regulation in robot
manipulators with discontinuous friction and backlash can
formally be stated as follows. Given a mechanical system
(1), (6)–(14) is thus to design a nonlinear H∞ controller
so as to obtain the closed-loop system in which all these
trajectories are bounded and the output of the underactu-
ated link qo(t) asymptotically decays to a desired position
qdo as t → ∞ while also attenuating the influence of the
external perturbations w0(t) and w1(t).

To begin with, let us introduce the state deviation vec-
tor x = (x1,x2)

T where x1(t) = q(t)− qd is the position
deviation from the desired position, and x2(t) = q̇(t) is the
velocity. After that, let us rewrite the state equations (1),
(6)–(14) in terms of the state vector x

ẋ1 =x2

ẋ2 =M−1(x1 +qd)[−C(x1 +qd ,x2)x2

−σ0x2 −Fcsign(x2)+DT (∆x)−Bθ +u+w1]
(15)

considering ∆x = xi + qdi −N(x0 + qdo)+ c/2 and qdi =
Nqdo −c/2, then the expression of ∆x can be simplified to
∆x = xi − x0. It should be pointed out, that the H∞ regula-
tion problem for the discontinuous mechanical system can
be specified in a similar manner as in [9] which is given as
follows:

ẋ = f1(x)+ f2(x)+g1(x)w+g2(x)u

z = h1(x)+ k12(x)u

y = h2(x)+ k21(x)w

(16)

when equations are specified with

f1(x) =

 x2

M−1(x1 +qd) [−C(x1 +qd ,x2)x2

−σ0x2 +DT (∆x)−Bθ ]

 , (17)

f2(x) =
[

0n×1
−M−1(x1 +qd)Fcsign(x2)

]
, (18)

g1(x) =
[

0n×n 0n×n
0n×n M−1(x1 +qd)

]
, (19)

g2(x) =
[

0n×n

M−1(x1 +qd)

]
,

h1(x) = ρ
[

0m×1
x1o

]
, h2(x) = x1 +qd ,

k12(x) =
[

Im
01×m

]
, k21(x) =

[
In 0n×n

]
, (20)

where x1o ∈ R is the position error of the underactuated
link and the perturbations w = [w0,w1]

T ∈R2n. From sys-
tem (15) let us derive a local solution of the H∞ regulation
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problem. Therefore the local solution of the H∞-position
regulation problem subject to (17)–(20) has the following
output feedback

ẋ = Ax+B1w+B2u,

z =C1x+D12u, (21)

y =C2x+D21w,

where

A =
∂ f1

∂x
(0), B1 = g1(0), B2 = g2(0),

C1 =
∂h1

∂x
(0), D12 = k12(0), C2 =

∂h2

∂x
(0),

D21 = k21(0)

(22)

with matrices A, B1, C1, C2, D12, D21 of appropriate di-
mensions. The general state-space representation with
nonzero feedthrough terms D11 and D22 can be treated
as in [25] by constructing an equivalent problem with
D11 = 0 and D22 = 0. In addition, the simplifying assump-
tions

(A1) (A,B1) is stabilizable and (C1,A) is detectable,
(A2) (A,B2) is stabilizable and (C2,A) is detectable,
(A3) DT

12C1 = 0 and DT
12D12 = I,

(A4) B1DT
21 = 0 y D21DT

21 = I,

presented in [26], are made throughout.
A local solution is then derived by means of the per-

turbed Riccati equations (see [9]), given by

0 = Pε A+AT Pε +CT
1 C1

+Pε

[
1
γ2 B1BT

1 −B2BT
2

]
Pε + εI, (23)

0 = Aε Zε +Zε AT
ε +B1BT

1

+Zε

[
1
γ2 Pε B2BT

2 Pε −CT
2 C2

]
Zε + εI. (24)

There exists a positive constant ε0 such that the system
of the perturbed algebraic Riccati equations has a unique
positive definite symmetric solution (Pε ,Zε) for each ε ∈
(0,ε0) where Aε = A + (1/γ2)B1BT

1 Pε . Equations (23)
and (24) are utilized to derive a local solution of the H∞-
control problem for a mechanical system with friction and
backlash (17)-(20).

Let (Pε ,Zε) be a positive definite solution of (23), (24)
under some ε > 0. Then the output feedback is given by

u =−gT
2 (ξ )Pε ξ , (25)

which is a local solution of the H∞-control problem. A
filter to have access to the remaining states is

ξ̇ = f1(ξ )+ f2(ξ )

+

[
1
γ2 g1(ξ )gT

1 (ξ )−g2(ξ )gT
2 (ξ )

]
Pε ξ

+ZεCT
2 [y−h2(ξ )]. (26)

The purpose of the control is twofold: to achieve closed-
loop stability and to attenuate the influence of the exter-
nal input w on the penalty variable z. A controller which
locally asymptotically stabilizes the equilibrium (x,ξ ) =
(0,0) of the closed-loop system is said to be an admissible
controller. The perturbation attenuation depends on the
specific class of external signals to be considered and/or
the performance criteria chosen to evaluate the penalty
variable. Given a real number γ > 0, it is said that sys-
tem (16), (25), (26) has L2 gain less than γ if the response
z, resulting from w for initial state x(0) = 0, ξ (0) = 0,
satisfies∫ T

0
zT (t)z(t)dt ≤ γ2

∫ T

0
wT (t)w(t)dt (27)

for all T > 0 and all piecewise continuous functions w(t),
for which the corresponding state trajectory of the closed-
loop system, initialized at the origin, remains in some
neighborhood of this point.

4. CASE OF STUDY: RECTILINEAR PLANT
WITH BACKLASH

Let us now apply the H∞ control design developed in
the previous Sections to a rectilinear plant with backlash
(see Fig. 3). The mathematical model of the laboratory
prototype of the rectilinear plant, in the joint coordinates
space, is given by

m1q̈i +F1(q̇i)+T (q) = τ +w1,1,

m2q̈o +F2(q̇o) = T (q)+w1,2.
(28)

In the above equations, qi(t), q̇i(t), q̈i(t) ∈ R represent
the displacement, velocity, and acceleration of the actu-
ated mass m1 ∈R, respectively; and qo(t), q̇o(t), q̈o(t)∈R
represent the displacement, velocity, and acceleration of
the underactuated mass m2 ∈ R, respectively; τ ∈ R is the
input torque, and w1 ∈ R2 is an external perturbations, a,

Fig. 3. Mechanical system with backlash.



1218 Raúl Rascón, Joaquin Alvarez, and Luis T. Aguilar

b, and c ∈ R are distances greater than zero. The fric-
tion forces Fj(q̇), j = 1,2 are specified as in (6). Fi-
nally, T (q) is the dead zone model of backlash between
the masses is modelled as in (2) and (3) but considering
now ∆q = qi +a+b−qo + c/2.

Provided the actuated mass position qi(t) and underac-
tuated mass position qo(t) are the only available measure-
ments on the system. The above unforced system (28)
possesses a set of equilibria (qi,qo) with qi ∈ [ζ −a−b−
c,ζ −a−b] where ζ is any constant and qo = ζ .

In order to fulfill the requirements of control design for
a local solution of the H∞-position regulation problem is
replaced the dead zone model of backlash (3), with its
strictly monotonic approximation (4)-(5).

Let us propose the following regulator

τd = −λ1
∫ T

0 (qo −qdo)dt −λ2(qo −qdo)−λ3q̇o

(29)

that imposes on the perturbation-free system motion de-
sired stability properties around qd ∈ R.

Throughout, the output to be controlled is given by

z = ρ
[

0
qo −qdo

]
+

[
1
0

]
u (30)

with a positive weight coefficient ρ , and the position mea-
surements

y =
[

qi

qo

]
+

[
w0,1

w0,2

]
, (31)

corrupted by the error vectors w0,1(t), w0,2(t)∈R, are only
available.

4.1. Control objective
The objective of the H∞-output regulation of the nonlin-

ear drive system (28) with friction (6) and backlash model
(4)-(5) is thus to design a nonlinear H∞ controller so as to
obtain the closed-loop system in which all these trajecto-
ries are bounded and the output qo(t) asymptotically de-
cays to a desired position qdo as t → ∞ in the perturbation-
free case w = 0 otherwise the nonlinear H∞ controller is
going to attenuate the influence of the external perturba-
tions w= [w0,1,w0,2,w1,1,w1,2]

T . Now let us shift the equi-
librium point of (28) to the origin by introducing the state
transformation based on the position error including also
the integral value of the position error introduced for con-
trol purposes,

x1 = qi −qdi, x2 = q̇i,

x3 =
∫ T

0
x4(t)dt, x4 = qo −qdo, x5 = q̇o,

(32)

where qdi = qdo −a−b−c/2. After that let us rewrite the
state equations (28)–(31) in terms of the state vector x

ẋ1 = x2,

ẋ2 = m−1
1 (−σ0,1x2 −Fc1sign(x2)

−T (x)+ τ +w1,1),

ẋ3 = x4, (33)

ẋ4 = x5,

ẋ5 = m−1
2 (−σ0,2x5 −Fc2sign(x5)+T (x)+w1,2) ,

where

T (x) = k∆x+ kη(∆x) (34)

with ∆x = x1 + qdi − x4 − qdo + a+ b+ c/2 which can be
simplified to ∆x = x1 − x4 where

η =−c
1− e−(∆x/0.5c)

1+ e−(∆x/0.5c) . (35)

and

τd = −λ1x3 −λ2x4 −λ3x5 (36)

that imposes on the perturbation-free system motion de-
sired stability properties around x4 = 0.

4.2. H∞ control design
The control objective is to determine a feedback con-

troller to solve the following regulation problem, such that
the closed-loop response satisfies in the absence of pertur-
bations

limt→∞ ∥x4∥= 0. (37)

The representation of (33) applying (36) according to (16)
is as follows

f1(x) =


x2

m−1
1 (−σ0,1x2 −T (x)−λ1x3 −λ2x4 −λ3x5)

x4

x5

m−1
2 (−σ0,2x5 +T (x))

 ,

(38)

f2(x) =


0

−m−1
1 Fc1sign(x2)

0
0

−m−1
2 Fc2sign(x5)

 , (39)

g1(x) =


0 0 0 0
0 0 m−1

1 0
0 0 0 0
0 0 0 0
0 0 0 m−1

2

 , (40)

g2(x) =

01×1

m−1
1

03×1

 , (41)

h1(x) = ρ
[

0
x4

]
, h2(x) =

[
x1 +q∗d
x4 +qd

]
, (42)
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Fig. 4. Experimental platform ECP-210 configured to
have gear play.

k12(x) =
[

1
0

]
, k21(x) =

[
1 0 0 0
0 1 0 0

]
. (43)

Then the output feedback (25)-(26) subject to (38)-(43) is
a local solution of the H∞-position regulation problem for
the system with backlash (33). Thus, the controller τ to be
constructed consists of the regulation compensator τd (36)
and a perturbation attenuator u (25), internally stabilizing
the closed-loop system (33) around the desired position,
as follows

τ =−λ1x3 −λ2x4 −λ3x5 −gT
2 (ξ )Pε ξ . (44)

4.3. Experimental Study
Performance issues and robustness properties of the

proposed compensator (36) and the perturbation attenua-
tor u(t) in (25) are tested in experiments. Since only state
x1 and x4 measurements are available, the H∞ filter (26) is
applied to have access to the remaining states.

In the experiments performed using the platform ECP-
210 configured to have gear play as in Fig. 4, the parame-
ters of the mechanical system were considered as in Table
1. The desired position with respect to m1 is given by
qdo = 2.0 cm, being the desired position with respect to
m2 qdi = 3.0 cm. The controller feedback gains were set
λ1 = 0.01 kg/s3, λ2 = 0.1 kg/s2 and λ3 = 0.01 kg/s. It
is worth mentioning that friction terms were calculated in
accordance with the methodologies presented in [27].

Additionally it is applied an external but bounded force
perturbation governed by

w1,1 = 0.2sin(10t)N. (45)

Table 1. Nominal parameters.

Description Notation Value
First mass m1 1.06 kg
Second mass m2 0.61 kg
Distance a 15.0 cm
Distance b 5.1 cm
Clearance c 1.0 cm
Viscous friction σ01 7.695 kg/s
Viscous friction σ02 2.1141 kg/s
Coulomb friction Fc1 0.1 N
Coulomb friction Fc2 0.1 N
Spring stiffness k 375.42 N/m

For the selected γ = 0.99, ρ = 1 and ε = 10−5, the corre-
sponding perturbed Riccati equations (23) and (24) have
the positive definite solutions:

Pε =

13.8716 1.8564 0.0459 −7.1751 −1.7726

1.8564 0.2485 0.0062 −0.9421 −0.2325

0.0459 0.0062 0.0036 −0.0055 −0.0012

−7.1751 −0.9421 −0.0055 7.8312 1.9559

−1.7726 −0.2325 −0.0012 1.9559 0.4971

,

Zε =

8.7285 1.2005 1.5362 −0.6914 −0.1862

1.2005 0.1708 0.2104 −0.0870 −0.0232

1.5362 0.2104 0.4800 0.4172 0.0954

−0.6914 −0.0870 0.4172 1.8367 0.4743

−0.1862 −0.0232 0.0954 0.4743 0.1331

,

which have been numerically found using MATLAB. The
initial values of the integral of position error, position er-
rors and velocities were set to x1(0) =−0.03 m, x2(0) = 0
m/s, x3(0) = 0 m.s, x4(0) = −0.02 m and x5(0) = 0 m/s,
respectively. Initial conditions for H∞ filter were set to
ξ (0) = 0. As follows from Fig. 5, the monotonic back-
lash model (34)-(35) yields an appropriate approximation
of the transmitted force. In order to illustrate the pro-
posed control approach, a comparison is made using the
plant under friction and backlash (as in Fig. 4), firstly,
it is developed the regulation compensator + H∞ control
considering friction and backlash and then is developed
and tested the regulation compensator + H∞ control with-
out the consideration of friction and backlash in its de-
sign. From Fig. 6–7, can be outline good performance
and desired robustness properties of the mechanical sys-
tem shown in Fig. 4 under the proposed regulation com-
pensator + H∞ control law (44). In Fig. 6, the unperturbed
case, can be seen that the position errors x1 and x4, corre-
sponding to the actuated and underactuated mass, respec-
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Fig. 5. Transmitted force, computed from the experiment.

tively, tend to zero in approximately 3.1 seconds in the
case when friction and backlash were considered, the con-
sequence of not considering the friction and backlash in
the control design is that the convergence time was in-
creased to 6.2 seconds approximately and the transient
signal presents oscillations. The estimated velocities of
the masses ξ2 and ξ5 corresponding to the first and second
mass were obtained from the filter (26), and they were
used as feedback in the controller, moreover, in the con-
trol signal in the case when it is considered friction and
backlash, a peak of 4.9 N approximately can be observed,
in contrast when it is not considered friction and backlash
the peak is of 3.0 N approximately.

In Fig. 7, where the system is affected by a non van-
ishing perturbation besides of nonlinear phenomena such
discontinuous friction and backlash, the positions errors
x1 and x4 tend to its nominal value at 5 seconds approxi-
mately in the case when friction and backlash were con-
sidered, and when the friction and backlash are not consid-
ered it is reached the nominal value at 7 seconds approx-
imately, being remarkable in both cases that the effect of
perturbations on the plant are diminished considerably.

4.4. PI controller comparison

In order to appreciate the attenuation of external pertur-
bations using the H∞ controller, it is made a comparison
against a PI control scheme, also it was considered a non
vanishing perturbation as in (45). The gains of PI con-
troller were set in P = 0.5kg/s2 and I = 0.01kg/s3, the
derivative term was not considered because we only have
position measurements and the H∞ filter as in (26) was
not used for the PI controller. The results can be seen in
Fig. 8 where the H∞ controller renders an outstanding per-
formance over the PI controller.
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Fig. 6. Experimental results for H∞ regulator considering
only mass position measurements, and their veloc-
ities ξ2 and ξ5 are estimated by a filter.

5. CONCLUSIONS

A nonlinear H∞ synthesis of discontinuous control sys-
tems is applied. The afore mentioned design procedure
has been shown to be eminently suited for solving a posi-
tion regulation problem for mechanical systems with de-
gree of underactuation one under discontinuous friction
and backlash. The friction model chosen for treatment
has been confined to the static discontinuous Coulomb
friction model augmented with viscous friction. In the
case of study, made for a rectilinear plant while under the
mass position measurements, the system is not twice dif-
ferentiable due to backlash phenomenon and discontinu-
ous friction, a monotonic approximation of well-known
dead zone model of backlash is used to be replaced in
the original system, moreover the discontinuous friction
is viewed as a particular case of the Dahl friction model
when parameter σ1 tends to infinity, making it possible
by this way to design an H∞ control for mechanical sys-
tems. The nonlinear H∞ output regulation synthesis pro-
posed is shown to be eminently suited to locally solve the
stabilization problem around a desired position while also
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Fig. 7. Experimental results for H∞ regulator, where mass
position measurements and estimated velocities
are used as feedback: Perturbed case.
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Fig. 8. Experimental comparison between the proposed
H∞ regulator and a PI controller: Perturbed case.

attenuating the dead zone model of backlash discrepan-
cies and external perturbation. Effectiveness of the design
procedure has been supported by experiments made for an
underactuated two degrees-of-freedom mechanical system
with backlash, where the platform ECP-210 was modified
to present a slackness between their masses.
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