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Mean-square Exponential Stability of Impulsive Stochastic Time-delay
Systems with Delayed Impulse Effects
Dandan Wang, Lijun Gao*, and Yingying Cai

Abstract: This paper is concerned with the mean-square exponential stability problem for a class of impulsive
stochastic systems with delayed impulses. The delays exhibit in both continuous subsystem and discrete subsystem.
By constructing piecewise time-varying Lyapunov functions and Razumikhin technique, sufficient conditions are
derived which guarantee the mean-square exponential stability for impulsive stochastic delay system. It is shown
that the obtained stability conditions depend both on the lower bound and the upper bound of impulsive intervals,
and the stability of system is robust with regard to sufficiently small impulse input delays. Finally, two examples
are proposed to verify the efficiency of the proposed results.
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1. INTRODUCTION

Being typically composed of reference input, plant out-
put, control input, networked control systems (NCSs) wh-
ose components information are exchanged via communi-
cation networks have attracted a great of attention in re-
cent studies [1–5]. It is known that in the transmission
of the impulse information, input delays are usually en-
countered named as delayed impulses. For example, in
the application of networked control systems (see section
2: model for networked control systems, for some details).
In addition to modeling impulsive control, delayed im-
pulses are also used to model abrupt changes in the state
variables. These changes may be related to such phenom-
ena as shocks, harvesting or other faults. In many cases,
time delays are assumed to have a bound and can be dealt
with by impulses [6–14]. In Peng, and Wang [11], the
mean-square exponential stabilization property for a class
of stochastic systems with time delay was investigated via
impulsive control, in which the time varying delays are
assumed having a bound in order to analyze the impact of
delays.

Stochastic functional differential systems can be ap-
plied to modeling many real world phenomenons, such as
science and engineering (see Mao, [15]). Consequently,
stability analysis issue has received a lot of attention (see,
e.g., [16, 17]). Among the concepts of stability in existing
references about stochastic systems, mean square expo-
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nentially stability has been well studied. It is a consensus
that noise can stabilize an unstable system even make a
stable system more stable. In the years pass by, a large
number of literatures on the stabilization problems have
been made [8, 16, 18, 19].

As we all know that impulse effects exist in practical
systems, due widely to state changing abruptly at certain
moments of time, especially when impulsive control per-
mit the discontinuous inputs and stochastic interferences.
And in the transmission of the impulse information, input
delays are often encountered.

Recently, a number of papers investigated the stability
and control problems for stochastic impulsive systems, see
[20–22], for more details. In Wu, and Sun [21], some
criteria for p−moment stability of stochastic differential
equations with impulsive jump and Markovian switching
was obtained by using Lyapunov function method. Based
on Lyapunov-Razumikhin technique, the mean square ex-
ponential stability of uncertain linear impulsive stochas-
tic systems with Markovian switching was established in
[17].

Moreover, Rakkiyappan, and Balasubramaniam studied
the mean square asymptotic stability for a class of Marko-
vian jumping impulsive stochastic Cohen-Grossberg neu-
ral networks, and some delay-interval dependent sta-
bility criteria are obtained by the Lyapunov-Krasovskii
functional technique. Recently, in [23], linear impulsive
stochastic delay system has been studied and the mean
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square exponential stability conditions are construced
based on a set of LMIs. Unfortunately, many parameters
are included in LMIs in [22, 23] which making the cost
expensive. Therefore, it is necessary to conduct our work
to reduce the complexity and the cost.

However, it should be pointed out that the linear im-
pulsive stochastic systems with delayed impulses have not
been fully investigated. The stability analysis in these
literatures using time-invariant Lyapunov functions, are
likely to neglect some helpful information regarding to
state jumps that happening at impulse instant. For ex-
ample, the results in [11] may be conservative when both
the upper bound and the lower bound of impulse inter-
vals are known for the stability conditions. The afore-
mentioned discussions motivate an investigation into the
current research. The main contributions are highlighted
as follows: 1) A novel time-varying Lyapunov function is
constructed and some new stability criteria are obtained
to guarantee the mean-square exponential stability for im-
pulsive stochastic delay systems; 2) The results depend
both on the lower bound and the upper bound of impul-
sive intervals. Therefore, the results that we derived relax
the constraints of impulsive intervals and reduce the con-
servatism of existing results; 3) In line with the theorems,
an impulsive controller with delayed impulses is designed
via solving a set of LMIs.

2. MODEL FOR NETWORKED CONTROL
SYSTEM AND PRELIMINARIES

In this section, an example of NCS is given to illustrate
the delayed impulses may exist in actual background.

The structure of the NCS is shown in Fig. 1. It is
consisted of a continuous time plant and a discrete time
controller, which only act at sampling instant and change
state. The continuous-time plant model of the NCSs is
supposed to take the form :

ẋ = Ax(t)+Bu∗(t)+Cω(t),u∗(t) = uk, t > 0, (1)

where x(t),u∗(t),ω(t),uk = u(tk) are the state vector, con-
trol input, exogenous signal and delayed discrete time in-
put. The matrices A,B,C are constant matrices of appro-
priate dimensions. As shown in Fig. 1, the random delays
exist in the sensor-to-controller (S-C) and controller-to-
actuator (C-A) sides. Here τk represents the S-C delay,
and rk stands for the C-A delay.

In the NCSs, the delay information is important for the
controller design. Through utilizing the embedded proces-
sor and time-stamping technique [24], the information of
rk−1−τk at time instant sk is known at the controller node
if the time delay τk exits. By considering the effect of
random delays, the mode-dependent state-feedback con-
troller is designed as

uk = Kyk,

Fig. 1. Schematic overview of the networked control sys-
tem.

and we adopt the more general impulsive control law

∆x(tk) = Bkuk.

to stabilize the plant. Then the impulses can be modified
as

∆x(tk) = Bkx((t −dk)
−), t = tk. (2)

Thus, the impulses are obtained as the following form

x(tk) = B1kx(t−)+B2kx((t −dk)
−), t = tk. (3)

Throughout this paper, we assume that matrices have
compatible dimensions, if not particular statement. Let
R = (−∞,+∞), R+ = [0,+∞), N = {1,2, ...}. The na-
tion M > 0(< 0) is used to denote a symmetric positive
(negative) definite matrix. λmax(·) and λmin(·) denote the
maximum and minimum eigenvalues of the correspond-
ing matrix, respectively. |·| represents the Euclidean norm
for vectors or the spectral norm for matrices. For τ > 0,
let PC([−τ,0],Rn) denote the set of piecewise right con-
tinuous function ϕ : [−τ,0] → Rn with the norm defined
by ∥ϕ∥= sup−τ≤θ≤0 ∥ϕ(θ)∥. If x ∈ PC([t0 − τ,+∞],Rn),
then for each t ≥ t0, we define xt ∈ PC([−τ ,0],Rn) by
xt(s) = x(t + s) for −τ ≤ s ≤ 0. Let B(t) is standard
one dimensional Brownian motion defined on a com-
plete probability space (Ω,F ,P) with a natural filtration
{Ft}t≥0 generated by {ω(s;0 ≤ s ≤ t)}. E{·} stands for
the mathematical expectation operator with respect to the
given probability measure P.

In this paper, we can obtain the following linear impul-
sive stochastic delay closed-loop system

dx(t) = [A0x(t)+A1x(t − τ)]dt +[D0x(t)
+D1x(t − τ)]dB(t), t ≥ t0, t ̸= tk,

x(tk) =C0x(t−k )−C1x((tk −dk)
−), k ∈ N,

(4)

where x(t) ∈ Rn is the system state. A0,A1,D0,D1,C0,C1,
are the corresponding dimension matrices. {tk} is a
strictly increasing sequence of impulse times in [0,∞), de-
note limh→0+ x(tk − h) = x(t−k ), limh→0+ x(tk + h) = x(t+k ).
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dk denotes the impulse input delay at impulse time tk,k ∈
N. We assume that t0 = 0, limk→∞ tk = ∞ and dk ∈ [0,d].
Denote S(δ1,δ2) = {{tk};δ1 ≤ tk − tk−1 ≤ δ2,k ∈ N} for
some positive scalars δ1 and δ2 satisfying δ1 ≤ δ2. The
aim of control is to find out an appropriate gain C0 and C1

such that for any {tk} ∈ S(δ1,δ2) and dk ∈ [0,d] system
(4) is mean square exponentially stable. For a prescribed
scalar τ > 0, suppose that there exist any positive scalars
ci, i = 1,2, ...,n such that 0 ≤ xi(t−τ)

xi(t)
≤ ci, thus for any pos-

itive scalars ki, i = 1,2, ...,n, the following holds

0 ≤ ∑n
i=1 kix(t − τ)[cix(t)+ xi(t − τ)]

= xT (t)ΛSx(t − τ)− xT (t − τ(t))Λx(t − τ), (5)

where Λ = diag{k1, ...,kn}, S = diag{c1, ...,cn}. More-
over,

∣∣D2
1

∣∣ |Pi| < 2 |Λi j| , i, j = 1,2, where Pi satisfying the
following conditions in Theorem 1. Set

κ1 =
∣∣∣A0 +A1e

ε0
2 d +D0 +D1e

ε0
2 d
∣∣∣ ,κ2 = |C0 −C1| .

Definition 1: For given class S of admissible impulse
time sequences, the system (1) is said to be mean-square
exponentially stable over S if there exist a pair of positive
scalars ρ and ν such that

E ∥ x(t, t0,x0) ∥2≤ ρ exp(−ν(t − t0))E{∥ x0 ∥2}, t ≥ t0,

for all impulse time sequence {tk} ∈ S .
For given impulsive time sequence {tk ∈ S(δ1,δ2)}, we

introduce the following two piecewise linear functions ρ,
ρ1 ∈ [t0,∞)→ R+ for t ∈ [tm−1, tm),k ∈ N

ρ(t) =
tm − t

tm − tm−1
, ρ1(t) =

1
tm − tm−1

. (6)

It is easy to show that there exists ρ2(t) ∈ [0,1], such that

ρ1(t) =
1−ρ2(t)

δ1
+

ρ2(t)
δ2

. (7)

Notice that ρ(t) ∈ [0,1), for t ≥ t0,ρ(t−m ) = 0 and ρ(tm) =
ρ(t+m ) = 1,k ∈ N.

3. MAIN RESULTS

In this section, we are aiming at establishing two suffi-
cient criteria for linear impulsive stochastic delay system
(4) with known gain C0 and C1, by utilizing LMIs and
Razumikhin method. For this purpose, we firstly give two
lemmas, which will be applied to prove our theorems.

Lemma 1 [8]: For any vectors x,y ∈ Rn, matrices
A,P,D,E,N,F ∈Rn×n, with ∥F∥≤ 1, and scalars ε > 0,

the following holds

DFN +NT FT DT ≤ εNNT + ε−1NT N. (8)

Lemma 2 [11]: Let C2,1(R+ ×Rn,R+) denote a fam-
ily of all nonnegative functions V (t,x) on R+×Rn which

are continuously twice differentiable in x and once dif-
ferentiable in t. If V ∈ C2,1(R+ ×Rn,R+), then for any
stopping times 0 ≤ t1 ≤ t2,

EV (t2,x(t2)) = EV (t1,x(t1))+E
∫ t2

t1 LV (t,x(t))dt, (9)

as long as the integrations involved exist and are finite.

Theorem 1: Assume that the impulsive time sequence
{tk} ∈ S(δ1,δ2) and impulse input delays dk ∈ (0,d),
where δ1 ≤ δ2, lδ1 ≤ d ≤ (l + 1)δ1 for some nonnega-
tive integer l. System (4) can be mean square exponen-
tially stable if for positive scalars ε2,ε3 µ ∈ (0,1), there
exist n× n matrices P1 > 0,P2 > 0, and positive definite
diagonal matrices Λi j ∈ Rn ×Rn, i, j = 1,2, such that the
following matrix inequalities hold:[

Ωi j PiA1 +DT
0 PiD1 +Λi jS

∗ DT
1 PiD1 −2Λi j

]
< 0, i, j = 1,2 −(µ − ε κ2

λ0
)P1 (C0 −C1)

T P2 0
∗ −P2 P2C1

0 ∗ −εI

< 0,
(10)

where Ωi j = AT
0 Pi +PiA0 +DT

0 PiD0 +
ln µ
δ2

Pi +
1
δ j
(P1 −P2),

κ = dκ1 + lκ2, then system (4) is mean square exponen-
tially stable over S(δ1,δ2).

Proof: For ϕ ∈ Cb
F0
([−τ,0],Rn), we denote the solu-

tion x(t, t0,ϕ) of (4) by x(t). From (10), there exist small
enough scalars ε0, and ε1 ∈ (0,1−µ), such that

Ξi j =

[
Ω̃i j PiA1 +DT

0 PiD1 +Λi jS
∗ DT

1 PiD1 −2Λi j

]
< 0, i, j = 1,2

Ξ1 =

 −(µ − ε κ̃2

λ0
)P1 (C0 −C1)

T P2 0
∗ −P2 P2C1

0 ∗ −εI


< 0,

(11)

where Ω̃i j =AT
0 Pi+PiA0+DT

0 PiD0+(ε0−µ1)Pi+
1
δ j
(P1−

P2), µ1 = − ln(µ+ε1)
δ2

, κ̃ = (dκ1 + lκ2)eε0d . For any given
scalar ε > 0, choose δ > 0, such that λ1δ < µλ0ε , λ1 =
max{λmax(P1),λmax(P2)},λ0 = min{λmin(P1),λmin(P2)}.
We assume that ϕ ∈ Cb

F0
([−τ,0],Rn) satisfies E ∥ϕ |2 < δ .

Choose a time dependent Lyapunov function candidate for
system (4) as

V (t) = xT (t)P(t)x(t),

where P(t) = (1−ρ(t))P1 +ρ(t)P2. We will prove that

V (t)≤ λ0εe−ε0(t−t0−d), t ∈ [t0 − τ,+∞). (12)

We assume that the impulsive time sequence on t ∈ [t0 −
d,+∞) is {tk}. For any given t ∈ [tk, tk+1), set W (t) =
e−ε0(t−t0−d)V (t). In the following, we will prove that

EW (t)< λ0ε, t ∈ [t0 − τ,+∞). (13)
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Firstly, we will prove that

EW (t)< λ0ε, t ∈ [t0 − τ, t1). (14)

Noting that

EW (t +θ)< λ1E ∥ϕ |2 < λ1δ < µλ0ε < λ0ε,
θ ∈ [−τ,0). (15)

Next, one only needs to prove that

EW (t)< λ0ε, (16)

for t ∈ [t0, t1). On the contrary, there exist some t ∈ (t0, t1)
such that EW (t) ≥ λ0ε . Set t̃ = inf{t ∈ (t0, t1) : EW (t) ≥
λ0ε}. After that we have t̃ ∈ (t0, t1) and EW (t̃)≥ λ0ε . Set
˜̃t = sup{t ∈ (t0+τ, t̃) : EW (t)≤ µλ0ε}. Then ˜̃t ∈ (t0+τ, t̃)
and EW (˜̃t) = µλ0ε . So for t ∈ [˜̃t, t̃), taking the derivative
of the Lyapunov function along the trajectories of (4) and
using the inequalities (10), we have

D+W (t)

≤ eε0(t−t0−τ)ε0EV (t)+D+EW (t)−µ1EW (t)

+µ1EW (t)

≤ eε0(t−t0−τ){(ε0 −µ1)xT P(t)x

+2xT P(t)(A0x+A1η) + trace[D0x+D1η ]T P(t)

[D0x+D1η ]+ρ1(t)xT (P1 −P2)x
}

+µ1EW (t)

+
2

∑
i=1

2

∑
j=1

2ρi j(t)[xT Λi jSη −ηT Λi jη ]

≤ eε0(t−t0−τ)
2

∑
i=1

2

∑
j=1

ρi j(t)ξ T Ξi jξ +µ1EW (t)

(17)

where ξ T = (xT ,ηT ),x = x(t),η(t) = x(t − τ(t)). It fol-
lows from (11) and (17)

D+W (t)< µ1EW (t), t ∈ [˜̃t, t̃]. (18)

This leads to

EW (t̃)< EW (˜̃t)eµ1δ2 ≤ µλ0εeµ1δ2 < λ0ε. (19)

This is a contradiction, so (16) holds.
Now we assume that for some m ∈ N,

EW (t)< λ0ε, t ∈ [t0 − τ, tm]. (20)

We shall prove that

EW (t)< λ0ε, t ∈ [tm, tm+1). (21)

First, we will give an estimate of W (tm). From (20), we
have

|x(s)|2 ≤ εe−ε0(tm−t0−τ), s ∈ [t0 − τ, tm). (22)

We notice that {tk} ∈ S(δ1,δ2) and lδ1 ≤ d ≤ (l + 1)d.
So there are at most l impulse times on [tm − dm, tm). We
assume that impulsive instants in [tm −dm, tm) are tm j , j =
1,2, ..., l0, l0 ≤ l. By (22), we get∣∣x(t−m )− x((tm −dm)

−)
∣∣

≤
∫ tm

tm−dm

|ẋ(s)|ds+
l0

∑
j=1

|△x(t(m j))|

≤
∫ tm

tm−dm

κ1 |x(s)|ds+
l0

∑
j=1

κ2
∣∣x((tm j −dm j)

−)
∣∣

≤ (dκ1eε0d + l0κ2eε0d)εe−
ε0
2 (tm−t0−d)

≤ κ̃ε
1
2 e−

ε0
2 (tm−t0−d).

(23)

Denotes △x̃m = x((tm − dm)
−)− x(t−m ). Pre- and post-

multiplying (11) by diag{eT (t−m ), I, I} and its trans-
pose, respectively, via using the fact that V (t−m ) =
xT (t−m )P1x(t−m ), we have −Ṽ (tm) xT (t−m )(C0 −C1)

T P2 0
∗ −P2 P2C1

0 ∗ −εI

< 0, (24)

where Ṽ (tm) = (µ − ε κ̃2

λ0
)V (t−m ). It follows from (20) that (µλ0 − εκ̃2)ε̃ xT (t−m )(C0 −C1)

T P2 0
∗ −P2 P2C1

0 ∗ −εI

< 0, (25)

where ε̃ =−εe−ε0(tm−t0−d)). Then by (23) and Schur com-
plement, we further obtain[

−µλ0εe−ε0(tm−t0−d)) xT (t−m )(C0 −C1)
T P2

∗ −P2

]
+ ε

[
△x̃T (t−m )

0

][
△x̃(t−m ) 0

]
+ ε−1

[
0

P2C1

][
0 CT

1 P2
]

< 0.

(26)

By Lemma 1, for any scalar ε > 0, combining (26) and
using x(tm) =C0x(t−m )−C1x((tm −dm)

−) yields[
−µλ0εe−ε0(tm−t0−d)) xT (tm)P2

∗ −P2

]
< 0. (27)

Then by Schur complement, we have

xT (tm)P2x(tm)< µλ0εe−ε0(tm−t0−d)). (28)

Observing that P(tm) = P2, it follows that V (tm)≤ µλ0ε
e−ε0(tm−t0−d)). Thus we obtain W (tm)< µλ0ε < λ0ε .
Hence, EW (t) ≤ λ0ε, t ∈ [tm, tm+1). So if that is not
true, there exists t ∈ [tm, tm+1) such that EW (t) ≥ λ0ε .
Set t∗ = inf{t ∈ [tm, tm+1) : EW (t−m ) ≥ λ0ε}. Thus,
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we have that t∗ ∈ (tm, tm+1) and EW (t∗) = λ0ε . Set
t̄ = sup{t ∈ [tm, t∗) : EW (t−m ) ≤ µλ0ε}. Then t̄ ∈ (tm, t∗)
and EW (t̄) = µλ0ε . Applying the similar argument used
in the proof of (19), we have EW (t∗)≤EW (t̄)eµ1δ2 < λ0ε ,
which yields a contradiction. Therefore, (21) holds,
which in turn implies that (12) holds by the induction
method. So system is globally mean square exponentially
stable.

Remark 1: Stability conditions in Theorem 1 imply
that the upper bound of impulsive input delays can be
determined by a set of LMIs as well as the upper bound of
impulse input delays. The assumption µ ∈ (0,1) and LMI
conditions mean that system (4) is stable and the impulses
are stabilizing. Therefore, Theorem 1 proves that the sta-
bility of system (4) is robust to quite small impulse input
delays.

Remark 2: It is noted that conditions {tk} ∈ S(δ1,δ2)
and lδ1 ≤ d ≤ (l + 1)δ1 inditcate that there are at most l
impulse times on [tm − dm, tm), i.e., the impulse times is
finite on any interval [tm − dm, tm). This constraint on δ1

grantees the implementation of (23).

Next, let us generalize the results to stochastic impul-
sive switched system

dx(t) =[Aι
0x(t)+Aι

1x(t − τ(t))]dt

+[Dι
0x(t)+Dι

1x(t − τ(t))]dB(t), t ≥ t0, t ̸= tk,

x(tk) =Cι
0x(t−k )−Cι

1x(t−k −dk)), k ∈ N,

(29)

where t is a switching signal. Naturally, we can obtain a
sufficient condition for system (29).

Theorem 2: Suppose that the impulsive time sequence
{tk} ∈ S(δ1,δ2) and impulse input delays dk ∈ (0,d),
where δ1 ≤ δ2, lδ1 ≤ d ≤ (l + 1)δ1 for some nonnega-
tive integer l. System (29) can be mean square exponen-
tially stable if for positive scalars ε2,ε3 µ ∈ (0,1), there
exist n× n matrices Pι

1 > 0,Pι
2 > 0, and positive definite

diagonal matrices Λi j ∈ Rn ×Rn, i, j = 1,2, such that the
following matrix inequalities hold:[

Ωi j Pι
i A1 +(Dι

0)
T Pι

i Dι
1 +Λi jS

∗ (Dι
1)

T Pι
i Dι

1 −2Λi j

]
< 0, i, j = 1,2 −(µ − ε κ2

λ0
)Pι

1 (Cι̃
0 −Cι̃

1)
T Pι̃

2 0
∗ −Pι̃

2 Pι̃
2Cι̃

1
0 ∗ −εI

< 0,
(30)

where Ωi j = (Aι)T
0 Pι

i + Pι
i Aι

0 + (Dι
0)

T Pι
i Dι

0 + ln µ
δ2

Pι
i +

1
δ j
(Pι

1 − Pι
2),κ = dκ1 + lκ2, then system (29) is mean

square exponentially stable over S(δ1,δ2).
Proof: Choose a time-dependent Lyapunov function

candidate for system (29) as V ι(t)= xT (t)Pι(t)x(t), where

Pι(t) = (1−ρ(t))Pι
1 +ρ(t)Pι

2 . We will prove that

V (t)≤ λ0εe−ε0(t−t0−d), t ∈ [t0 − τ,+∞). (31)

Denotes △x̃m = x((tm − dm)
−) − x(t−m ). Pre- and

post-multiplying (11) by diag{eT (t−m ), I, I} and its trans-
pose, respectively, via using the fact that V ι(t−m ) =
xT (t−m )P

ι
1 x(t−m ), we have −Ṽ (tm) xT (t−m )(C

ι̃
0 −Cι̃

1)
T Pι̃

2 0
∗ −Pι̃

2 Pι̃
2Cι̃

1
0 ∗ −εI

< 0, (32)

where Ṽ (tm) = (µ − ε κ̃2

λ0
)V ι(t−m ).

By Lemma 1, for any scalar ε > 0, combining (26) and
using x(tm) =Cι̃

0x(t−m )−Cι̃
1x((tm −dm)

−) yield[
−µλ0εe−ε0(tm−t0−d)) xT (tm)Pι̃

2
∗ −Pι̃

2

]
< 0. (33)

The rest of the proof is very similar to Theorem 1, thus
we omit it here.

Remark 3: In this paper, we use V ι̃(tk) to define the
Lyapunov function which reflects the impulse effects at
constant tk in mode ι̃ and V ι(t−k ) to define the Lyapunov
function which is different to impulses at constant tk in
mode ι .

When applying Theorem 1 to system (4), impulsive
controller are obtained as follows:

Corollary 1: Consider system (4). Assume that the
impulsive time sequence {tk} ∈ S(δ ,δ ) and impulse input
delays dk ∈ [0,d], where d ≤ δ1 ≤ δ2. If for prescribed
positive scalars µ ∈ (0,1),λ0,ε , there exist n×n matrices
P1 > 0,P2 > 0, and positive definite diagonal matrix Λi j ∈
Rn×n, i, j = 1,2, and matrix Y ∈ Rn×n, such that (10) and
the following LMI hold: −(µ − ε (dκ1)

2

λ0
)P1 Y T P2 0

∗ −P2 P2C1

0 ∗ −εI

< 0, (34)

then system (4) is mean square exponentially stable.
Moreover, the impulsive controller gain of (4) is given
by C0 −C1 = Y . It is easy to show according to Theorem
1, thus we omit it here.

Remark 4: Corollary 1 gives the way to design the
controller gain C0,C1. The main procedure can be sum-
marized as follows:

Step 1. Suppose that the impulses are equidistant, i.e.,
{tk} ∈ S(δ ,δ ), where δ is known and δ > d.

Step 2. For given constant µ ,ε,λ0 ∈ (0,1), we can ob-
tain d. Further, choosing P1 > 0,P2 > 0, we have C0,C1 by
solving LMI (10), and Ci > 0, i = 1,2.
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Fig. 2. State response of Example 1 without impulses.
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Fig. 3. State response of Example 1 under impulses with
tk − tk−1 = 0.1001.

4. NUMERICAL EXAMPLE

Example 1: Consider the following stochastic delay
system

dx(t) =[A0x(t)+A1x(t − τ)]dt

+[D0x(t)+D1x(t − τ)]dB(t), t ≥ t0,
(35)

where A0 =

[
0.5 0.3
0 0.4

]
,A1 =

[
1.3 0.3
0.23 1.5

]
,D0 =[

0.2 0.1
0.3 0.1

]
, and D1 = 0,1I.

From Fig. 2, we know that system (35) is not stable
with τ = 0.002, initial data ϕ(θ)= [1,−1] and θ ∈ [−τ,0].

When the delayed impulses are involved in the system,
one can use Corollary 1 to stabilize it. Now, without lose
of generality, we assume the impulses are equidistant, i.e.,
{tk} ∈ S(δ ,δ ),δ = 0.1. Noticing that d < δ , from (l −
1)δ ≤ d ≤ lδ , it implies l = 0. According to Corollary 1,
choose ε = 0.5,µ = 0.5,λ0 = 0.2, we have d < 0.1400 and

Fig. 4. The switching signal.
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Fig. 5. The impulsive signal with tk − tk−1 = 0.1110.

k1 ≥ 3.1952. The corresponding impulsive gain matrixes
are C0 = 0.8089I,C1 = 0.1110I. Therefore, we choose tk−
tk−1 = 0.1001, the simulation results are presented in Fig.
3.

Remark 5: From Fig. 3, we can clearly see that system
(35) is stable. This shows that our results hold. What’s
more, the results are better than [6]. In [6], with the same
impulsive control system and the initial data, our stability
conditions have wider adaptive scope.

Remark 6: Peng [3] calculate tk − tk−1 < 0.011, while
using our condition, we get tk − tk−1 < 0.13. It can enlarge
the maximum limitation of impulsive interval, which, in
practice, shows that the robustness of system (35) about
impulsive delay is amplified comparing to [3]. Therefore,
our results are more superior.

Example 2: Consider the following stochastic switch-
ing delay system

dx(t) = [Aι
0x(t)+Aι

1x(t − τ)]dt
+[Dι

0x(t)+Dι
1x(t − τ)]dB(t), t ≥ t0,

(36)

where A1
0 =

[
0.5 0.3
0 0.4

]
,A1

1 =

[
−1.3 0.3
0.23 −1.5

]
,D1

0 =[
0.2 0.1
0.3 0.1

]
, and D1

1 = 0.1I; A2
0 =

[
−1 3
0.1 −2

]
,A2

1 =
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Fig. 6. State response of Example 2 under any switching
signal and the impulsive period=0.1110.

[
−2 1
1 −2

]
,D1

0 =

[
−0.7 0.8
0.4 −0.6

]
, and D2

1 =

−0.2I.
Here, we will demonstrate that the stability property of

system can be applied to any switching signal. See the
following simulation results.

The corresponding impulsive gain matrixes are C0 =
0.8089I,C1 = 0.1110I, and we choose tk − tk−1 = 0.1110.
Set the switching period is arbitrarily number.

5. CONCLUSIONS

In this paper, we have dealt with the problem of expo-
nential stability for impulsive stochastic system with de-
layed impulses. And the impulsive controller have been
designed. In order to derive a less conservative upper
bound of impulsive intervals and stability condition, we
have considered the time-varying Lyapunov function into
LMIs. By employing the Lyapunov-Ruzumikhin method,
a sufficient condition has been established to ensure linear
impulsive stochastic delay system mean square exponen-
tially stable. Further, we generate the result to impulsive
switched stochastic delay system. At last, the effective-
ness of the proposed result has been demonstrated by two
examples.
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