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Robust Delay Dependent Fault Estimation for a Class of Interconnected
Nonlinear Time Delay Systems
Maryam Kazerooni, Alireza Khayatian*, and Ali Akbar Safavi

Abstract: This paper focuses on the problem of fault estimation for a class of interconnected nonlinear systems with
time varying delays. In contrast to the common assumption imposed on the problem in most literature, here, there is
no need for the delay rate to be less than one. Both actuator and component faults are considered within the general
fault model invoked as multiplicative faults in this study. Robust adaptive observers are used to detect and estimate
simultaneously the states and the parameter faults in each subsystem. The designed observers ensure a prescribed
H∞ performance level for the fault estimation error, irrespective of the uncertainties which are assumed here to
be the unknown interconnections between the subsystems. With the aid of H∞ performance index, the common
assumption regarding the observer matching condition is no longer required. Sufficient conditions for asymptotic
stability of the observers are derived via a matrix inequality approach with the aid of LyapunovKrasovskii function.
Finally, a simulation example is presented to show the validity and feasibility of the proposed method.
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1. NTRODUCTION

The increase in the demand for safety and reliability of
dynamical systems invokes further development of fault
detection and isolation techniques. The faults may have
harmful effect on systems if they are not detected in time.
This is why, the fault detection and isolation (FDI) tech-
niques are of practical significance [1]. The main task of
the FDI techniques is to detect the abnormality in the pro-
cess and to determine which subsystem or component has
encountered with a fault [2]. Then, the magnitude of the
fault can be determined via some on-line fault estimation
approaches. Finally, the calculated fault information can
be exploited to compensate the effect of the fault.

Generally, fault detection and isolation (FDI) can be
organized as model based or signal processing based ap-
proaches [3]. The model based FDI approaches have been
found quite effective for FDI from both theory and practi-
cal point of views [4].

Among different model-based techniques such as par-
ity space, observer-based, and parameter estimation-based
approaches [5], the most common technique is the ob-
server based approach. In the fault diagnosis scheme
based on an adaptive observer, the faults can be detected
and approximated, and the estimated faults may be further
used for fault-tolerant control.

Time delay is a common phenomenon in chemical pro-

Manuscript received November 1, 2014; revised March 17, 2015; accepted May 11, 2015. Recommended by Associate Editor Nam H. Jo
under the direction of Editor Duk-Sun Shim.

Maryam Kazerooni, Alireza Khayatian, and Ali Akbar Safavi are with the School of Electrical & Computer Engineering Shiraz University,
Shiraz, Iran (e-mails: {mkazerooni, khayatia, safavi}@shirazu.ac.ir).
* Corresponding author.

cesses, biological reactors, rolling mills, communication
networks, etc. Despite the massive research on fault diag-
nosis techniques for nonlinear uncertain systems and the
valuable results provided [6-9], the works on fault diagno-
sis for time-delay systems are few.

In general, faults can be classified into additive and
multiplicative based on their effects on the system dynam-
ics and outputs [10]. Some of the component faults in-
cluding actuator faults may appear in the form of multi-
plicative faults. Nevertheless most of the fault estimation
techniques focus on the effects of additive faults. On the
other hand, some studies on multiplicative fault estimation
are investigated in [10, 11]. Fault estimation techniques
for multiplicative faults are often more complicated.

To design of an asymptotic observer, disturbance de-
coupling should be feasible [12]. This is a necessary ex-
istence condition which is commonly referred to as the
observer matching condition (i.e., rank (CH) = rank (H)
where C and H are the output matrix and the disturbance
input matrix, respectively). When the unknown distur-
bances are considered as completely unknown and un-
bounded observer, matching condition should be satisfied
[13]. However, such a necessary existence condition is
very restrictive and there are many practical systems that
do not satisfy this condition. In this paper, with aid of H?
performance index, matching condition is simply ignored.

In the following, the most relevant works on this topic
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are reviewed.
A fault detection, estimation, and accommodation prob-

lem for a class of nonlinear time delay systems is investi-
gated by [14], where an iterative learning observer (ILO)
for fault detection, estimation, and compensation is uti-
lized. The considered system is represented in a cen-
tralized form. Furthermore, in the proposed approach in
[14], the disturbance and its derivative should be bounded
which limit the applications.

The problem of robust reliable H∞ control for a class
of uncertain Takagi-Sugeno fuzzy systems with actuator
failures and time-varying delay is investigated in [15]. A
state feedback reliable H∞ controller is designed such that,
the resulting closed loop system is robustly asymptotically
stable with a prescribed H∞ performance level. There, the
considered system is a linear uncertain time delay system
and only actuator fault is considered

A robust fault detection filter design problem is inves-
tigated for nonlinear time-delay systems with unknown
inputs in [16]. In that work, by applying robust H∞ op-
timization control technique, the existence conditions of
the robust fault detection filter for the nonlinear time-delay
systems with unknown inputs are presented in terms of a
linear matrix inequality (LMI) formulation, with no de-
pendency on the time delay. Moreover, in the mentioned
paper, constant time delay is considered and the faults are
represented in an additive form.

An actuator fault diagnosis method is investigated for
a class of time-delayed nonlinear systems in [17]. There,
the considered system is represented by a dynamic state
space model where the time delays are embedded into
the state vector. Then, an adaptive fault diagnosis ob-
server is designed and the Lyapunov stability theory is
used to derive the required adaptive tuning rule for the
estimation of the nonlinear actuator fault. The problem
of H∞ fault detection for a kind of linear singular systems
with time-varying delay is investigated in [18]. There, the
residual is generated by a generalized form of observer-
based fault detection filter. Besides, delay-dependent con-
ditions on the existence of the H∞ fault detection filter
are derived by applying Lyapunov-Kravoskii function ap-
proach. In [28], an Adaptive observer for a class of non-
linear systems with time-varying delays is proposed which
estimates both states and unknown parameters simultane-
ously. The sufficient conditions for existence of the ob-
server are derived using the linear matrix inequality ap-
proach. There, it is needed that the rate of time delay to
be less than one and no uncertainties are considered in the
system description.

The discussed papers consider fault detection and esti-
mation both for time delay nonlinear or linear systems in
centralized forms.

A decentralized fault detection design for a class of dis-
tributed large-scale nonlinear uncertain systems is devel-
oped in [19], where a fault detection estimator is designed

by utilizing local measurements and certain communi-
cated information from the interconnected subsystems.

It is well-known that time delays are inherent in many
real physical systems. On the other hand, existence of
faults in interconnected systems is more probable due to
their wide distribution in space and the interdependencies
among the subsystems. Therefore, the study of fault de-
tection for interconnected system is quite important. This
motivates the present fault detection and estimation re-
search for interconnected nonlinear systems with time de-
lays without satisfying the matching condition. The states
are assumed to be unavailable while the outputs are mea-
surable. In this paper, the robust adaptive observers are in-
vestigated for a class of interconnected nonlinear systems
with time varying delays.

In our research, faults are modeled in multiplicative
form which are presented by unknown parameters and
known functions and can represent both actuator and pro-
cess faults. The known functions should satisfy Lipchitz
condition. While in many papers, actuator faults are only
considered [15]. In each subsystem after detecting faults,
the proposed robust adaptive observers estimate simulta-
neously the system’s states and the parameter faults. By
incorporating the appropriate Lyapunov-Krasovskii func-
tion, some sufficient conditions in term of matrix inequal-
ities which depend on time delays for stability of the pro-
posed observers are derived. The maximum rates of de-
lays are obtained where the matrix inequalities are feasi-
ble. Moreover, any restrictive assumption is not necessary
to be imposed on the uncertainties except to be bounded.
Furthermore, with the help of H? performance, the com-
mon assumption regarding the observer matching condi-
tion is no longer required. In comparison to [20], it is
shown that the observation error converges to zero rather
than being bounded.

The rest of the paper is arranged as follows. Section
2 explains preliminaries. In Section 3, problems formu-
lation and some assumptions are presented for a class of
decentralized nonlinear time-delay systems. The proposed
fault detection observer design method is given in Section
4. Section 5 concentrates on fault estimation approach.
The validity and feasibility of the proposed method are il-
lustrated in Section 6. Finally, conclusions are provided in
Section 7.

2. PRELIMINARIES

Following [21], some propositions are given which will
be used in the later analysis and focuses on observer
matching condition.

Consider a nonlinear system as

ẋ = Ax+φ(x,u, t), (1)

y =Cx, (2)



Robust Delay Dependent Fault Estimation for a Class of Interconnected Nonlinear Time Delay Systems 571

where x ∈ Rn, u ∈ Rm, y ∈ R are the system states inputs
and outputs respectively. The term φ(x,u, t) ∈ Rn is con-
tinuous in its arguments.

Definition 1: For the matrix pair (A,C), and the as-
sumption that for any Q > 0 there exists a matrix L with
appropriate dimension such that the Lyapunov equation

(A−LC)T P+P(A−LC) =−Q (3)

has a unique solution P > 0. Then, the term (φ(.) ) is
said to be matched with respect to the pair (A,C)if the
following decomposition

φ(x,u, t) = P−1CT ψ(x,u, t) (4)

holds for some continuous function ψ(x,u, t). The triple
(A,C,φ(.)) is then said to satisfy the observer matching
condition.

Proposition 1: Consider the system presented by (1)-
(2). The triple (A,C,φ(.)) satisfies the observer matching
condition if and only if the term φ(x,u, t) has decomposi-
tion

φ(x,u, t) = Dψ(x,u, t) (5)

with some constant matrix D such that the matrix equation

DT P = TC (6)

is solvable with some matrix T . Here, P satisfies equation
(3). See [21], for more details.

3. PROBLEM FORMULATION

Consider a system consisted of n interconnected sub-
systems with time varying delays, which may be subjected
to multiple faults occurring at unknown times. The i th
subsystem, i = 1,2, ...,n, is described by:

ẋi = Aixi + fi(xi,xi(t −di(t)))+EiHi(ui,yi,xi)θi(t)

+ Biui + Gi∆i(x,x(t −di(t))),

yi =Cixi,

xi = gi(t), −di(t)≤ t ≤ 0,

(7)

where xi ∈ Rni , ui ∈ Rmi , yi ∈ R are the states, input,
and output of the i th subsystem respectively. fi(xi,xi(t −
di(t))) is a nonlinear function and di(t) is a time varying
delay and satisfies 0 < di(t)≤ hi < ∞, ḋi(t)≤ τi where hi

and τi are scalar constants. ∆i(.) represents the unknown
interconnection effects between the i th subsystem and the
remaining subsystems. Ai, Bi, Ci, Ei and Gi are the sys-
tem matrices of appropriate dimensions. gi(t) is a contin-
uous function on the interval ⌈−di(t),0⌉ which indicates
the initial states.

The term Hi(ui,yi,xi)∈Rni×pi is a known nonlinear ma-
trix function of ui, yi, xi. The θi(t)∈Rpi is a vector of fault
parameters which can change unexpectedly when a fault

occurs. θi(t) =

{
= θiH(t) t < Ti

̸= θiH(t) t ≥ Ti
, where Ti is the un-

known fault occurrence time, and θiH is a piecewise con-
stant.

The following assumptions are necessary for our proof.
Assumption 1: There exist known positive constants

γi1, γi2, γi3 (i = 1, ..., n), such that the following Lipchitz
inequalities hold:

∥ fi(xi,xi(t −di(t)))− fi(x̂i, x̂i(t −di(t)))∥ ≤
γi1 ∥xi − x̂i∥+ γi2 ∥xi(t −di(t))− x̂i(t −di(t))∥ ,

(8)

∥Hi(ui,yi,xi)−Hi(ui,yi, x̂i)∥ ≤ γi3 ∥xi − x̂i∥ ,
∀ui,yi ∈ R,

(9)

Assumption 2: It is assumed that ∥θi(t)∥ ≤ θi0 where
θi0is known.

The following lemmas will be required in the proof of
the main result of the paper:

Lemma 1 [21]: Assume that X and Y are vectors or
matrices with appropriate dimension, then a constant α >
0 can be chosen, such that the following inequality always
holds:

XTY +Y T X ≤ αXT X +α−1Y TY. (10)

Lemma 2 [22]: For any constant matrix M, M = MT >
0, and a positive scalar κ > 0 such that the integrations in
(11) are well defined, the following inequality holds:

1
κ

[∫ κ

0
w(s)ds

]T

M
[∫ κ

0
w(s)ds

]
≤

∫ κ

0
wT (s)Mw(s)ds.

(11)

Lemma 3 (Barbalat’s Lemma [10]): If limt→∞
∫ t

0 f (τ)dτ
exists and is finite, and f (t) is a uniformly continuous
function, then limt→∞ f (t) = 0.

Remark 1: Assumption 1 is widely considered in the
literature to design observers for Lipschitz kinds of non-
linear systems [24, 25].

Remark 2: Assumption 2 is a common assumption in
representing multiplicative faults [10].

The following section focuses on the proposed fault de-
tection observer design.

4. THE PROPOSED FAULT DETECTION
OBSERVER DESIGN APPROACH

To detect faults when θi(t) changes suddenly, fault de-
tection observers for each subsystems are designed by the
following:

˙̂xi = Aix̂i + fi(x̂i, x̂i(t −di(t)))+Biui

+EiHi(ui,yi, x̂i)θiH(t)+Li(yi − ŷi), (12)

x̂i = ji(t), −di(t)≤ t ≤ 0,

ŷi =Cix̂i, (13)
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V̇i ≤ ėT
i P1iei + eT

i P1iėi + eT
i P2iei − (1− τi)eT

i (t −di(t))P2iei(t −di(t))+hiėT
i P3iėi −

∫ t

t−hi

ėT
i (s)P3iėi(s)ds

V̇i ≤ ((Ai −LiCi)ei + fi(xi,xi(t −di(t)))− fi(x̂i, x̂i(t −di(t)))+Ei(Hi(ui,yi,xi)−Hi(ui,yi, x̂i))θiH(t)

+Gi∆i(x,x(t −di(t)))T P1iei + eT
i P1i((Ai −LiCi)ei + fi(xi,xi(t −di(t)))− fi(x̂i, x̂i(t −di(t))))

+Ei(Hi(ui,yi,xi)−Hi(ui,yi, x̂i))θiH(t)+Gi∆i(x,x(t −di(t)))+ eT
i P2iei − (1− τi)eT

i (t −di(t))P2iei(t −di(t))

+hiėT
i P3iėi −

∫ t

t−hi

ėT
i (s)P3iėi(s)ds

(19)

where x̂i and ŷi represent the state and output estimation
vectors, Li is the observer gain matrix which is determined
by the matrix inequality approach. ji(t) is a continuous
function on the interval ⌈−di(t),0⌉ which indicates the
initial states. The estimation error (ei = xi − x̂i) dynamic
and observation error (eyi) for each subsystem are given
by

ėi = (Ai −LiCi)ei

+ fi(xi,xi(t −di(t)))− fi(x̂i, x̂i(t −di(t)))

+Ei(Hi(ui,yi,xi)−Hi(ui,yi, x̂i))θiH(t)

+Gi∆i(x,x(t −di(t)),

(14)

eyi = yi − ŷi. (15)

Consider there exists a positive constant γi such that the
following condition is satisfied:∫ ∞

0
∥ei∥2 dt < γi

∫ ∞

0
∥∆i∥2 dt,∀∆i ∈ L2 [0,∞) ,∆i ̸= 0.

(16)

The following theorem provides sufficient condition of
convergence to zero of estimation error ei.

Theorem 1. If there are positive definite matrixes
P1i = PT

1i > 0 , and P2i = PT
2i > 0, and P3i = PT

3i > 0, and
vectors Li and Y1i, and positive scalars γi, εi, µi such that
the following matrix inequalities hold

Λ̄i =
φ̄11 εiγi2γi1I P1i P1iEi P1iGi hi(AT

i P1i −CT
i Y1i)

∗ φ22 0 0 0 0
∗ ∗ −εiI 0 0 hiP1i
∗ ∗ ∗ −µiI 0 hiET

i P1i
∗ ∗ ∗ ∗ −γiI hiGT

i P1i

∗ ∗ ∗ ∗ ∗ −hiP1iP−1
3i P1i


< 0,

(17)

where

φ̄11 = AT
i P1i −CT

i Y T
1i +P1iAi −Y T

1i Ci +P2i

+ εiγ2
i1I +µiθ 2

i0γ2
i3I − P3i

hi
+ I,

φ22 = &− (1− τi)P2i + εiγ2
i2I − P3i

hi
,

Y1i = P1iLi,

then, it can be concluded that ei is bounded, further-
more if ∆i(.) ∈ L∞, as inequality (16) indicates ei ∈ L2.
Becauseei ∈ L∞, ėi is uniformly bounded. Based on Bar-
balat lemma, ei → 0.

“∗” and “I” denote, respectively, the symmetric ele-
ments in a symmetric matrix and identity matrix with ap-
propriate dimensions.

Proof: Consider the following Lyapunov-Krasovskii
function:

Vi =eT
i P1iei +

∫ t

t−di(t)
eT

i (s)P2iei(s)ds.

+
∫ 0

−hi

∫ t

t+z
ėT

i (s)P3iėi(s)dsdz.
(18)

The time derivative of Vi along the trajectories of error
dynamic (14) is given by (19). Denote

Fi = fi(xi,xi(t −di(t)))− fi(x̂i, x̂i(t −di(t))),

ψi = Hi(ui,yi,xi)−Hi(ui,yi, x̂i).

According to Assumption 1, for any scalars εi, µi > 0, the
following inequalities are achieved:

εiFT
i Fi ≤ χi,

χi = εi(γ2
i1eT

i ei + γ2
i2eT

i (t −di)ei(t −di)

+ γi2γi1eT
i ei(t −di)+ γi2γi1eie

T
i (t −di)),

(20)

∥Hi(ui,yi,xi)θiH(t)−Hi(ui,yi, x̂i)θiH(t)∥
≤ ∥Hi(ui,yi,xi)−Hi(ui,yi, x̂i)∥θi0 ≤ θi0γi3ei,

(21)

µi(ψiθiH(t))T ψiθiH(t)≤ µi(θ 2
i0γ2

i3eT
i ei). (22)

By using Lemma 2, the following inequality is ob-
tained.

−
∫ t

t−hi

ėT
i (s)P3iėi(s)ds ≤−

[∫ t

t−hi

ėi(s)ds
]T P3i

hi

[∫ t

t−hi

ėi(s)ds
]

≤−
[∫ t

t−di(t)
ėi(s)ds

]T P3i

hi

[∫ t

t−di(t)
ėi(s)ds

]
≤−(ei(t)− ei(t −di(t)))T P3i

hi
(ei(t)− ei(t −di(t)))

And moving the left hand sides of (20) and (22) to the
right hand side and then adding these positives terms to the
Lyapunov equation (19), it yields (23). The term hiėT

i P3iėi

is simplified as follows:
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V̇i ≤ eT
i (Ai −LiCi)

T P1iei + eT
i P1i(Ai −LiCi)ei + eT

i P1iFi + eiP1iFT
i +2(∆i(x,x(t −di(t)))T GT

i P1iei

− εiFT
i Fi + εi(γ2

i1eT
i ei + γ2

i2eT
i (t −di(t))ei(t −di(t))+ γi2γi1eT

i ei(t −di(t))+ γi2γi1eie
T
i (t −di(t)))

+ eT
i P1iEiψiθiH(t)+(ψiθiH(t))T ET

i P1iei −µi(ψiθiH(t))T ψiθiH(t)+µi(θ 2
i0γ2

i3eT
i ei)

+ eT
i P2iei − (1− τi)eT

i (t −di(t))P2iei(t −di(t))+hiėT
i P3iėi

− (ei(t)− ei(t −di(t)))T P3i

hi
(ei(t)− ei(t −di(t)))

(23)

hiėT
i P3iėi = hiζ̄ T

i ψT
i P3iψiζ̄i, (24)

where

ζ̄i(t)=


ei

Fi

ψiθiH(t)
∆i

 , ψT
i =

[
(Ai −LiCi) I Ei Gi

]
.

After some manipulations, one can get:

V̇i ≤ ζ T
i (t)ϒiζi(t)+hiζ̄ T

i (t)ψT
i P3iψiζ̄i(t), (25)

where

ϒi =


φ11 εiγi2γi1I P1i P1iEi GT

i P1i

∗ φ22 0 0 0
∗ ∗ −εiI 0 0
∗ ∗ ∗ −µiI 0
∗ ∗ ∗ ∗ 0

 , (26)

where

φ11 = AT
i P1i −CT

i Y T
1i +P1iAi −Y T

1i Ci +P2i + εiγ2
i1I

+µiθ 2
i0γ2

i3I − P3i

hi
,

φ22 =−(1− τi)P2i + εiγ2
i2I − P3i

hi
,

Y1i = P1iLi, ζi(t) =


ei

ei(t −di(t))
Fi

ψiθiH(t)
∆i

 .

By absorbing the second term in (25) into the first and
using Schur Lemma, (25) can be written as

V̇i ≤ ζ T
i Λiζi,

where matrixes Λi is as follows:

Λi =
φ11 εiγi2γi1I P1i P1iEi P1iGi hi(AT

i P1i −CT
i Y1i)

∗ φ22 0 0 0 0
∗ ∗ −εiI 0 0 hiP1i
∗ ∗ ∗ −µiI 0 hiET

i P1i
∗ ∗ ∗ ∗ 0 hiGT

i P1i

∗ ∗ ∗ ∗ ∗ −hiP1iP−1
3i P1i

 .

(27)

It follows from (16) that

eT
i ei − γi∆

T
i ∆i +V̇i < ζ T

i Λ̄iζi, (28)

where

Λ̄i =
φ̄11 εiγi2γi1I P1i P1iEi P1iGi hi(AT

i P1i −CT
i Y1i)

∗ φ22 0 0 0 0
∗ ∗ −εiI 0 0 hiP1i
∗ ∗ ∗ −µiI 0 hiET

i P1i
∗ ∗ ∗ ∗ −γiI hiGT

i P1i

∗ ∗ ∗ ∗ ∗ −hiP1iP−1
3i P1i

 ,

(29)

φ̄11 =AT
i P1i −CT

i Y T
1i +P1iAi −Y T

1i Ci +P2i + εiγ2
i1I

+µiθ 2
i0γ2

i3I − P3i

hi
+ I.

The time derivative of the Lyapunov function of the
overall system satisfies

n

∑
i=1

(eT
i ei − γi∆

T
i ∆i +V̇i)<

n

∑
i=1

ζ T
i Λ̄iζi. (30)

It is clear that ifΛ̄i < 0 (i = 1, 2, .., n), then V̇ < 0.
Therefore, it can be concluded that ei will converges to
zero. Integrating both sides of (28) yields∫ ∞

0
(eT

i ei − γ2
i ∆T

i ∆i)dt + Vi(.)|t=∞ − Vi(.)|t=0

<
∫ ∞

0
ζ T

i Λ̄iζidt.

Using the fact that Vi > 0for all t ̸= 0; one can get∫ ∞

0
eT

i eidt ≤
∫ ∞

0
γi∆

T
i ∆idt.

Hence, the inequality (16) is guaranteed, and the proof is
completed. Based on Theorem 1, it can be concluded that
as far as the system is at its normal condition and there
is no fault the observation error (eyi) is zero, but when a
fault occur the observation error (eyi) deviate from zero
and the fault can be detected. The next step is to estimate
the faults. This is investigated in the following section.
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5. THE PROPOSED FAULT ESTIMATION
DESIGN APPROACH

To estimate the fault after an alarm has been generated,
the following observer is constructed for each subsystem
which has the same structure as the fault detector design
except for θiH(t) which is substituted by θ̂i(t):

˙̂xi = Aix̂i + fi(x̂i, x̂i(t −di(t)))+Biui

+EiHi(ui,yi, x̂i)θ̂i(t)+Li(yi − ŷi),

x̂i = ji(t), −di(t)≤ t ≤ 0,

(31)

where x̂i is the state vector observer and θ̂i(t) is an esti-
mate of θi(t). It is assumed that after the occurrence of
fault, θi(t) ̸= θiH(t).

The state estimation error dynamic of each subsystem
can be obtained as:

ėi =Aiei + fi(xi,xi(t −di(t)))− fi(x̂i, x̂i(t −di(t)))

+Ei(Hi(ui,yi,xi)θi(t)−Hi(ui,yi, x̂i)θ̂i(t))

+Gi∆i(x,x(t −di(t))−Li(yi − ŷi).

(32)

The next theorem specifies sufficient conditions for the
stability of the estimators in the time varying delay cases.

Theorem 2: If there are positive definite matrixes P1i =
PT

1i > 0 andP2i = PT
2i > 0 and P3i = PT

3i > 0, and matrixes
Si , and vectors Li and Y1i, and positive scalars γi,εi,µi, the
matrix inequality (17) holds and

ET
i P1i = SiCi (33)

and the fault parameter error (θ̃i = θi − θ̂i) update law is
selected as

˙̃θi =−Γ−1
i Hi(ui,yi, x̂i)

T ET
i P1iei =−Γ−1

i Hi(ui,yi, x̂i)
T Sieyi.

(34)

Then it can be concluded that the estimators are stable and
the fault parameter error θ̃i remains bounded.

Proof: Consider the following Lyapunov-Krasovskii
function

Vi =eT
i P1iei +

∫ t

t−di(t)
eT

i (s)P2iei(s)ds

+
∫ 0

−hi

∫ t

t+z
ėT

i (s)P3iėi(s)dsdz+ θ̃ T
i Γiθ̃i.

(35)

Its derivative with respect to time is

V̇i ≤ėT
i P1iei + eT

i P1iėi + eT
i P2iei

− (1− τi)eT
i (t −di)P2iei(t −di)

+hiėT
i P3iėi −

∫ t

t−hi

ėT
i (s)P3iėi(s)ds+2θ̃ T

i Γi
˙̃θi.

(36)

From assumption 1, for any scalarsµi > 0, the following
inequalities are obtained:

∥Hi(ui,yi,xi)θi(t)−Hi(ui,yi, x̂i)θi(t)∥
≤ ∥Hi(ui,yi,xi)−Hi(ui,yi, x̂i)∥θi0 ≤ θi0γi3ei,

(37)

µi(ψiθi(t))T ψiθi(t)≤ µi(θ 2
i0γ2

i3eT
i ei). (38)

By considering (20) and (38), and choosing the fault
parameter error (θ̃i = θi − θ̂i) as (34) and after some ma-
nipulations and similar to the previous section, one can get
(39).

The time derivative of the Lyapunov function can be
written as:

eT
i ei − γi∆

T
i ∆i +V̇i < ζ T

i Λ̄iζi, (40)

where ζi(t) =


ei

ei(t −di(t))
Fi

ψiθi(t)
∆i

 and Λ̄i is given in (29).

Therefore, the time derivative of the Lyapunov function
of the overall system satisfies

n

∑
i=1

eT
i ei − γi∆

T
i ∆i +V̇i <

n

∑
i=1

ζ T
i Λ̄iζi. (41)

It is evident that if Λ̄i < 0 (i = 1, 2, ..,n), then V̇ =

∑n
i=1 V̇i ≤ 0. This implies that the estimators are stable, and

the fault parameter error θ̃i remains bounded. The proof
of this theorem is similar to Theorem1, thus the detail is
omitted.

6. SIMULATION RESULTS

In this section an example is given to verify the effec-
tiveness of the proposed method. Consider the equation
of an interconnected two pendulum systems as (42). The

V̇i ≤ eT
i (Ai −LiCi)

T P1iei + eT
i P1i(Ai −LiCi)ei + eT

i P1iFi + eiP1iFT
i +2(∆i(x,x(t −di(t)))T GT

i P1iei

− εiFT
i Fi + εi(γ2

i1eT
i ei + γ2

i2eT
i (t −di(t))ei(t −di(t))+ γi2γi1eT

i ei(t −di(t))+ γi2γi1eie
T
i (t −di(t)))

+ eT
i P1iEiψiθi(t)+(ψiθi(t))T ET

i P1iei −µi(ψiθi(t))T ψiθi(t)+µi(θ 2
i0γ2

i3eT
i ei)

+ eT
i P2iei − (1− τi)eT

i (t −di(t))P2iei(t −di(t))+hiėT
i P3iėi

− (ei(t)− ei(t −di(t)))T P3i

hi
(ei(t)− ei(t −di(t)))

(39)
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figure of two inverted pendulums connected by a spring is
shown in Fig. 1.

ẋ11 = x12,

ẋ12 = (
m1gr

J1
− kr2

4J1
)sin(x11(t −d1(t)))

+
kr(l −b)

2J1
+

u1

J1
+

kr2

4J1
sin(x22),

x1 = [x11,x12]
T ,

y1 =C1x1,

ẋ21 = x22,

ẋ22 = (
m2gr

J2
− kr2

4J2
)sin(x21(t −d2(t)))

+
kr(l −b)

2J2
+

u2

J2
+

kr2

4J2
sin(x11),

y2 =C2x2,

x2 = [x21,x22]
T ,

(42)

where xi j, i, j = 1, 2 are the states of each subsystem and
yi, i = 1, 2 depict the output of each subsystem. m1 = 2 kg
and m2 = 2.5 kg, J1 = 0.5 N.S

m2 and J2 = 0.625 N.S
m2 , k =

100 N/m, r = 0.5 m, l = 0.5 m, and g = 9.81 m/
s2m/s,

and b = 0.4 m.
We consider a simple multiplicative actuator fault in

subsystem 1 and 2, respectively. Specifically, for i = 1,2,
we let ui = ūi +θiūi, where ūi is the nominal control input
in the non-fault case (ūi =−20yi), and θi ∈ ⌊−1,0⌋ is the
parameter characterizing the magnitude of the fault.

To simulate a fault, we set θ1 =−0.5, for subsystem 1 at
T0 = 5 sec and θ2 =−0.75, for subsystem 2 at T0 = 7 sec.
Besides, it is assumed θiH (i = 1, 2) is zero. The outputs
of the system are defined such that Ci = [ 1 0.5 ], i =
1, 2. Si (i = 1, 2) are obtained to be 0.05 which satisfy
the assumption in Theorem 1. The optimization problem
which is formulated by matrix inequality form is solved
by CVX software [23].

Remark 3: Equation (17) is a kind of nonlinear matrix
inequality. The problem is solved by the iterative linear

Fig. 1. Two inverted pendulums connected by a spring
[26].

matrix inequality approach which splits the problem into
two simpler optimization problems, where each is linear
in the decision variables and then solves the problem iter-
atively. Actually, this approach changes the problem from
optimal to a suboptimal one. So each of the simpler op-
timization problems can be solved by a linear matrix in-
equality (LMI) or CVX toolbox. For more information
please refer to [27].

6.1. Simulation results-slow time varying delay case
In this case, it is assumed that the rate of delay (τi, i= 1,

2) is less than one. The considered delays ared1(t) =
0.3+ 0.3sin(t) and d2(t) = 0.4+ 0.2sin(t) respectively.
Observation error of the first and the second subsystem in
a time varying delay case are shown in Fig. 2 and Fig. 3
respectively. After the fault occurrences, the observation
error (eyi) deviates from zero, and the fault is detected.
Next, the fault estimator is activated and the parameter
fault changes according the adaptive rule.

It is obvious that when the faults are estimated, obser-
vation error converges to zero. The fault magnitude of the
first and the second subsystems are estimated with satis-
factory accuracy as shown in Fig. 4 and Fig. 5 respec-
tively. The fault magnitude of each subsystem converges
approximately to their true values (θ1 =−0.5, for subsys-
tem 1) and (θ2 =−0.75, for subsystem 2). From the above
simulation results, it is seen that the proposed observer and
estimator have acceptable performances.

In this case, it is assumed that the rate of delay (τi, i =
1,2) is less than one. The considered delays are d1(t) =
0.3+ 0.3sin(t) and d2(t) = 0.4+ 0.2sin(t) respectively.
Observation error of the first and the second subsystem in
a time varying delay case are shown in Fig. 2 and Fig. 3
respectively. After the fault occurrences, the observation
error (eyi) deviates from zero, and the fault is detected.
Next, the fault estimator is activated and the parameter
fault changes according the adaptive rule. It is obvious
that when the faults are estimated, observation error con-
verges to zero. The fault magnitude of the first and the
second subsystems are estimated with satisfactory accu-
racy as shown in Fig. 4 and Fig. 5 respectively. The es-
timation of fault magnitude of each subsystem converges
approximately to their true values (θ1 =−0.5, for subsys-
tem 1) and (θ2 =−0.75, for subsystem 2). From the above
simulation results, it is seen that the proposed observer and
estimator have acceptable performances.

6.2. Simulation results- fast time varying delay case
In this case, a fast time-varying delay is considered. It

is assumed that the time-varying delay of the first and the
second subsystem are d1(t) = 0.3 + 0.3sin(8t), d2(t) =
0.4+ 0.2sin(8t) respectively. The rate of time delay (τ2)
is greater than one. Observation error of the first and the
second subsystem for time varying delay case are shown
in Fig. 6 and Fig. 7, respectively. The fault magnitude
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Fig. 2. Observation error of the first subsystem- the slow
time varying delay.

Fig. 3. Observation error of the second subsystem- the
slow time varying delay.

of the first and the second subsystems are estimated with
satisfactory accuracy as shown in Fig. 8 and Fig. 9, re-
spectively.

7. CONCLUSIONS

In this paper, a fault detection and estimation scheme
for a class of interconnected nonlinear systems with time
varying delays was considered. The rate of the delay
can be greater than one. The proposed robust adaptive
observers estimate the system’s states and the parameter
faults at the same time for each subsystem. The proposed
fault estimator has been shown to be capable of ensur-
ing a prescribed H∞ performance level for the fault esti-
mation error, irrespective of the uncertainties. The esti-
mated fault can be further used in a fault-tolerant control
design stage. The simulation results show that the pro-
posed method works reasonably well. Furthermore, the

Fig. 4. Estimation of fault magnitude of the first
subsystem-the slow time varying delay case.

Fig. 5. Estimation of fault magnitude of the second
subsystem-the slow time varying delay case.

maximum rate of the time varying delays can be obtained
from the feasible matrix inequalities.
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