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A Coverage Algorithm for Multiple Autonomous Surface Vehicles in
Flowing Environments
Lei Zuo, Weisheng Yan*, Rongxin Cui, and Jian Gao

Abstract: This paper is concerned with the coverage problem with multiple autonomous surface vehicles (ASVs) in
time-varying flowing environment, where the interest information distribution is unknown to the coverage networks.
While taking the model parameter uncertainty into consideration, a decentralized, adaptive control law is proposed
such that the coverage network will converge to the optimal assigned region from arbitrary positions. For ease
of exploration, we first investigate the static coverage problem of two-agent systems in flowing environment and
present an example by extending the two-agent systems into the general case. In addition, Gaussian Estimation
is introduced to predict the value of the sensory function through the sampled measurements. By using the static
coverage partition as theoretical foundation, we transform the optimal coverage control into the moving target
tracking problems, where the target is the centroid of the assigned region for each ASV. Based on these techniques,
a decentralized kinematic control algorithm is developed to navigate the multi-ASV systems. Furthermore, the
adaptive back-stepping techniques are employed to extend the kinematic controller into dynamic case with uncertain
model parameters. Finally, simulation studies are provided to demonstrate the feasibility and effectiveness of the
proposed approaches.
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1. INTRODUCTION

Cooperative control of multiple agents have the effi-
ciency and robustness merits compared with single agent
[1–6]. One of the typical problems in multi-agent cooper-
ations is Voronoi diagram based coverage control, which
has been intensively studied in recent years [7, 8]. These
coverage algorithms have been viewed as important tools
in different engineering fields, including targets search
[9], environment monitoring [10], spatial estimation [11],
etc. In these applications, the multi-agent networks can
be treated as the resources and the target areas are con-
sumers. The purpose of coverage control is to assign the
multiple agents optimally to the consumers such that the
proposed objective function would reach the minimum.
For instance, a coverage algorithm is proposed for multi-
robot systems in [12] by using the gradient decent meth-
ods, which reveals the characteristics of Voronoi cell in
coverage control. In [13], the Gaussian functions are em-
ployed to estimate the sensory function over the target re-
gion such that the multi-agent systems can be assigned
optimally based on the density of local information. Fur-
thermore, distributed trajectories for multi-agent systems
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are proposed in [14] to monitor the target area periodi-
cally, where the decentralized pathes are constructed by
adding virtual agents into the coverage networks.

In this work, we focus on the optimal Voronoi Parti-
tion of multi-ASV systems in time-varying flowing envi-
ronment. As the coverage problem is region assignment
strategy of multiple agents, it is important to figure out
the sensor region for each agent in flowing environment.
There are some coverage algorithms in special environ-
ment: A coverage algorithm in river environment is pre-
sented in [15], of which the metric in river is defined by
the sum of reachable sets of each agent. In [16], a cover-
age control algorithm in constant flowing environment is
proposed, which takes both energy consumption and trav-
eling time as the Voronoi metric and presents the Voronoi
cell though geometry approximation. For indoor environ-
ments, a Voronoi diagram based configuration of multi-
agent systems is proposed with the consideration of the
energy constraints in [17].

Furthermore, we address a particular system model
based coverage problem in which the Euler-Lagrange
equations with uncertain model parameters are introduced
to make this paper practically. The ideal of employing
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special system model have appeared in some articles. For
example, a coverage algorithm of wheeled dynamic is pro-
posed in [18], where constant and variable forward speed
are taken into consideration, respectively. In [19], a cov-
erage control law for multi-robot networks is provided
to monitor the environment, where the anisotropic of the
robot is limited in a sector region.

The main contribution of this paper is that a coverage
algorithm for multi-ASV systems is proposed in flowing
environment, where the sensory function over the objec-
tive region is unknown to the coverage network. Compar-
ing with the existing results, the advantages of this paper
are that: (i) In many engineering field, the operators in
monitoring tasks are complicated. For most of the exist-
ing linear coverage algorithms, the under-actuated system
model is used in this paper such that the proposed algo-
rithms are close to the engineering applications. (ii) A
redeveloped Voronoi Partition is provided while the ob-
jective flied is influenced by the time-varying currents.
(iii) The adaptive backstepping technique is employed to
design the dynamic controller while the ASV model pa-
rameters are uncertain. Therefore, the proposed coverage
algorithms for ASV model in flowing environment is sig-
nificant and practical to the engineering applications.

The remainder of the paper is organized as follows: The
formulation of coverage problem in time-varying flowing
environment is presented in Section 2. In Section 3, the
static coverage control strategy with time-varying currents
is provided. Furthermore, the kinematic and dynamic cov-
erage algorithms for Euler-Lagrange equations are pro-
posed to deal with model parameters uncertainty in Sec-
tion 4. In Section 5, simulation studies are provided to
demonstrate the feasibility and effectiveness of the pro-
posed approaches. In final, concluding remarks are drawn
in Section 6.

2. PROBLEM FORMULATION

Let Q ∈ R2 be a time-varying flowing environment and
q be an arbitrary point in Q. Denote Vc as the time-varying
currents, which is given by [20]

V̇c +gVc = ω, (1)

where g are constant and ω are white noise, ϕc is the di-
rection of the currents.

Consider n ASVs coverage the horizontal plane Q, of
which the sensory function is described by ϕ(q). The
kinematic and dynamic motion of ASV are respectively
shown as follows [21]:

ẋ = ucosψ − vsinψ +Vc cosϕc,

ẏ = usinψ + vcosψ +Vc sinϕc,

ψ̇ = r,

(2)

where u (surge speed), v (sway speed) and r (angular
speed) are the velocity of ASV in body-fixed coordinate

frame {B} with the respect to water. x, y and ψ are the
posture of ASV in global coordinate frame {U}.

muu̇−mvvr+duu = τu,

mvv̇+muur+dvv = 0,

mr ṙ−muvuv+drr = τr,

(3)

where mu, mv, mr and muv are the mass and hydrodynamic
added mass terms, du, dv, dr capture hydrodynamic damp-
ing effects. τu, τr denote the control force in surge and
torque of ASV, respectively. These model parameters can
be found in [20] for details.

By using Euler-Lagrange (E-L) equations as ASV
model in (3), the under-actuation of ASV can be pre-
sented in three component equations, which is practical
and meaningful for engineering applications. In addition,
the problem of model parameter uncertainty can be for-
mulated and solved conveniently because the weight or
the inertia of ASV are taken into account in E-L model.

In order to explicit the coverage strategy of multi-ASV
networks, a cost function over the region Q is defined as

H(P) =
n

∑
i=1

∫
Wi

f (∥q− pi∥)ϕ(q)dq, (4)

where Wi is the assigned region for ASV i, ϕ(q) is the sen-
sory function over Q, P= [p1, . . . , pn]

T are the positions of
the multiple ASVs and f (∥q− pi∥) = ∥q− pi∥2 means the
cost for ASV i traveling from pi to q.

The sensory function ϕ(q) respects the distribution of
the interest information such as temperature, salinity and
the probability of events occur over the task region. By
taking this sensory function ϕ(q) into H(P), the weigh of
every point in region Q is taken into consideration. In this
way, the coverage strategy will pay more attention on the
point with high sensory values. The method of getting the
sensory function will be introduced in section 4 for detail.

According to the mathematic form of cost function in
(4), the value of H(P) is not only associate with P, but
the assignment region to Wi. Therefore, the optimization
of coverage strategy is to be performed with respect to
the positions of ASV and the partition of the space. Fur-
thermore, by using the integration of the sensory func-
tion ϕ(q), the weigh at every point in the region is taken
into consideration. In this way, the coverage network will
have an optimal configuration if the proposed cost func-
tion H(P) reaches the minimum.

Therefore, the coverage problems of multiple ASVs in
time-varying flowing environment is formulated as fol-
lows:

Problem 1: Consider n ASVs in a time-varying flow-
ing region Q, of which the sensory function ϕ(q) is un-
known to the coverage networks. The kinematic and dy-
namic motion of ASV are described by (2) and (3), respec-
tively. With the uncertain model parameters, the purpose
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of this paper is to design an adaptive control law to deploy
the multiple ASVs into the optimal coverage cells from
arbitrary initial positions such that the cost function H(P)
would reach the minimum.

3. STATIC VORONOI PARTITION WITH
FLOWING CURRENTS

In this section, we formulate a static coverage frame-
work for multi-ASV systems in time-varying flowing en-
vironment. Before we start the region assignment, a brief
proposition in [22] would be used to deal with the optimal
Voronoi cells.

Lemma 1: The optimal configuration of multi-agent
system in a sensory area is the centroidal Voronoi Parti-
tion.

The Standard Voronoi region of ASV i is given by

Vi = {q ∈ Q|∥q− pi∥ ≤ ∥q− p j∥,∀i, j ∈ n, i ̸= j}, (5)

where the mass MVi and the centroid CVi are shown as fol-
lows{

MVi =
∫

Vi
ϕ(q)dq,

CVi =
1

MVi

∫
Vi

qϕ(q)dq.
(6)

Consider two distinct neighbor points (p1, p2) in Eu-
clidean plane. Denote V (p1) and V (p2) as the Voronoi
Region generated by p1 and p2, respectively. The bound-
ary between V (p1) and V (p2) is described by

ζ (p1, p2)≜ {q ∈ Q : V (p1)∩V (p2)}
= {q ∈ Q : c(p1,q) = c(p2,q)}, (7)

where c(p1,q) and c(p2,q) are the traveling cost from p1,
p2 to q, respectively.

According to the geometric property of standard
Voronoi Partition, ζ (p1, p2) is the bisector of p1 and p2,
which satisfies that ∥p1 − q∥ = ∥p2 − q∥,q ∈ ζ (p1, p2).
However, the boundary will be warped by the time-
varying currents, which is denoted by ζ ′(p1, p2).
Fig. 1 illustrates the relationship between ζ (p1, p2) and
ζ ′(p1, p2).

For the standard Voronoi Partition, we usually define
that f (∥pi−q∥)= ∥pi−q∥2 [12]. In flowing environment,
however, the motion of ASVs is either assisted or impeded
by Vc. We define a novel criticism to take the currents Vc

into account, which is shown by

c′(p1,q) =
∥∥∥p1 −q+

∫ q

p1

Vc(τ)dτ
∥∥∥. (8)

By defining the cost function f (∥p1 − q∥) = c′(p1,q), it
is practical to show the time cost form p1 to q when the
region is influenced by currents Vc.

Hence, the boundary curve ζ ′(p1, p2) of two-agent sys-
tems in flowing environment is shown as follows:

p1 
V(p1) 

V(p2) 

p2 

C(x,p1) 

C(x,p2) 

p1 
V(p1) 

V(p2) 

p2 

C(x,p1) 

C(x,p2) 

Vc 
ξ(p1,p2) 

ξ(p1,p2) 

x x 

a b 

Fig. 1. Voronoi partition of two-agent systems.

Proposition 1: Consider two-ASV systems (p1, p2) in
time-varying flowing environment Q, of which the time-
varying currents Vc is described by (1). The boundary
curve between V (p1) and V (p2) is provided as

ζ (p1, p2) = {q ∈ Q | c′(p1,q) = c′(p2,q)}. (9)

where c′ is shown by (8).

Therefore, the Voronoi cell of p1 in flowing environ-
ment is presented by

V (p1) = {q ∈ Q | c′(p1,q)≤ c′(p2,q)}. (10)

For the general case in time-varying flowing environ-
ment, the Voronoi cells of multiple ASVs are geometric
polygon associated with neighbors. It is necessary to find
out the neighbor sets Ni, i = 1, . . . ,n such that each ASV
can calculate its Voronoi cell in time-varying flowing en-
vironment.

There are two kinds of relationship between ASV i and
the others: adjacent and separated. For instance, p1 and
p2 are adjacent if and only if V (p1) is not contained by
any other Voronoi cell V ′(p1), which is generated by p1

and any other ASVs.

By comparing the ASV i with the other ASVs, it is
easy to find out the neighbor sets Ni. Depending on the
two-agent case, the example of static Vornoi Partition for
multi-ASV networks in time-varying flowing environment
is presented in Fig 2, where the time-varying currents
Vc = [−0.6e−t +0.3t,−0.4e−t +0.6t]T .

In Fig. 2, the ’o’ points are the positions of multi-ASV
network. The solid lines represent the Standard Voronoi
Partition and the dotted lines are the warped Voronoi Par-
tition. The simulation result shows us that the standard
Voronoi cells of multi-ASV systems are warped by Vc,
which means the monitoring region for each ASV should
be reassigned related to Vc. Therefore, it is significant
to focus on the region assignment of coverage control in
flowing environment.
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Fig. 2. Static Voronoi partition in flowing environments.

4. COVERAGE CONTROL FOR MULTI-ASV
SYSTEMS WITH TIME-VARYING CURRENTS

4.1. Estimation of the sensory information
Generally, the sensory function ϕ(q) of information

over region Q is unknown to the multi-ASV systems. In
order to assign the multi-ASV networks based on local
information, the Gaussian functions are introduced to es-
timate the sensory information.

We assume that the collected data from the sensor is ac-
curate and the sensory function ϕ(q) can be parameterized
as an unknown linear combination of a set of Gaussian
function K(q) = [K1(q), . . . ,Km(q)], which is denoted by

ϕ(q) =K(q)T a, ∃a ∈ Rm
+. (11)

Let âi be the approximation of parameter vector for
ASV i and we obtain

ϕ̂(q)i =KT âi, i = 1, . . . ,n. (12)

Define the errors of parameter vectors and sensory func-
tion as

ãi = âi −a,

ϕ̃i = ϕ̂i −ϕ . (13)

where i = 1, . . . ,n.
The estimation methods in [23] are employed to ap-

proximate the sensory function in region Q, which can be
described as follows:

Lemma 2: Consider a distributed estimation systems.
The adaptive estimation law of parameter vector âi are
proposed by

˙̂aprei =−Fiâi − γJi,

˙̂ai = Ξ( ˙̂aprei − Ipro ji
˙̂aprei),

(14)

Fig. 3. Tracking proceeding of ASV i.

where Ξ ∈Rm×m is a diagonal, positive definite adaptation
gain matrix. γ ∈ R+ is an adaptation gain scalar. Fi and Ji

are described by

Fi =
∫

Vi
K(q)(q−pi)

T dq
∫

Vi
(q−pi)K(q)T dq∫

Vi
ϕ̂dq

,

J̇i = ω(τ)K(τ)ϕ̃i, q ∈Vi,
(15)

where ω(t) is positive and determines the sampling
weight.

The diagonal matrix Ipro ji is defined element-wise as

Ipro ji =


0 for âi( j)> 0,

0 for âi( j) = 0 and ˙̂aprei( j)≥ 0,

1 otherwise,

(16)

where j denotes the jth element for vector ai.

According to the adaptive law in (14), the estimated pa-
rameter vector âi is only related to pi and Vi. Hence, the
approximation of sensory information ϕi is applicable in Vi

and the mathematical form of M̂Vi and ĈVi are re-provided
by {

M̂Vi =
∫

Vi
ϕ̂i(q)dq,

ĈVi = 1
M̂Vi

∫
Vi

qϕ̂i(q)dq.
(17)

4.2. Kinematic controller for multi-ASVs systems

According to Lemma 1, the optimal position for ASV i
is the centroid of its Voronoi cell, which can be denoted as
the pursue target of ASV i. Fig. 3 illustrates the relation-
ship of ASV i and its target along time. Denote βi ≜ βi(t)
as the angle measured between the heading of ASV i and
its target ĈVi . ei ≜ ei(t) is the distance from ASV i to ĈVi

in {U}. Therefore, the coverage problem in region Q with
time-varying flowing currents can be transformed into the
tracking problem with moving target ĈVi .
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The mathematical forms of ei and βi are

ei =
√
(xi − xc

i )
2 +(yi − yc

i )
2,

βi = tan−1
(
(yi − yc

i )

(xi − xc
i )

)
,

(18)

where [xi,yi]
T ≜ pi, [xc

i ,y
c
i ]

T ≜ ĈVi .
It is verified that the possible strategy for the controller

has to satisfy the following requirements: (1). Manipulate
ri to make that limt→∞ βi = 0. This will align the direction
of attitude and speed of ASV i. (2). Actuate ui to force
the position of ASV i such that limt→∞ ei = 0. In order to
satisfy these requirements, we get the following theorem:

Theorem 1: Let a coverage network consisting of n
ASVs monitor the objective region Q, where the motion
of ASV is described by (2) and (3). The warped partition
and the sensory function are calculated by the redeveloped
Voronoi partition in (10) and the Gaussian estimation in
(14), respectively. Based on these two techniques, the de-
centralized kinematic control laws in closed-loop are pro-
posed as

ui =k1ei −Vc cos(ψi −φc)+ k3ϕ̃i, i = 1, . . . ,n

ri =k1 sinβi +
Vc

ei
sin(ψi −φc)cosβi

− vi

ei
cosβi + k2β +

sinβi

ei
k3ϕ̃i,

(19)

where ei and βi are defined in (18) and k1, k2, k3 are posi-
tive constants.

Proof: Firstly, the derivative of βi and ei of ASV i is
provided by

ėi =−ui cosβi − vi sinβi −Vc cos(βi −ψi −φc),

β̇i =
sinβi

ei
ui −

cosβi

ei
vi − ri +

Vc

ei
sin(βi +ψi −φc).

(20)

Define the Lyapunov function candidate as

Vk =
n

∑
i=1

(
1
2

β 2
i +

1
2

e2
i ) =

n

∑
i=1

(V1 +V2), (21)

where V1 =
1
2 β 2

i , V2 =
1
2 e2

i .
Consider the positive definite function

V1 =
1
2

β 2
i . (22)

while substituting (20) into V1, the time derivative of V1

is given by

V̇1 =βi[
sinβi

ei
ui −

cosβi

ei
vi − ri

+
Vc

ei
sin(βi +ψi −φc)].

(23)

According to the control law in (19), we obtain

V̇1 =−k2β 2
i . (24)

Thus, we conclude that βi is bounded and converges
exponentially to zero as t → ∞.

Then, consider another positive definite function

Vass =
1
2

e2
i +

1
2

vi
2. (25)

Take the derivative of Vass and obtain

V̇ass = eiėi + viv̇i. (26)

Rewrite ėi and v̇i in dynamics though (19)

ėi =−k1 cosβiei + f e
i − vi sinβi,

v̇r
i =− 1

mv
(muuiri +dv

i vi) =−divi +giei + f v
i ,

(27)

where

f e
i =Vc[cos(ψi −φc)cosβi − cos(βi +ψi −φc)]

+ k3ϕ̃ cosβi,

di =
dv

i

mv
− Vc

ei
cos(ψi −φc)cosβi

− mu

mv
[k1 cosβi − k3ϕ̃ cosβi],

gi =− mu

mv
(k2

1 sinβi + k1k2βi),

f v
i =− mu

mv
[k1Vc sin(ψi −βi −φc)+ k2k3βiϕ̃

− V 2
c

ei
cos(ψi −φc)sin(ψi −φc)cosβi

− k2Vc cos(ψi −φc)βi + k1k3ϕ̃ sinβi

+
Vc

ei
k3ϕ̃ sin(ψi −φc)cosβi].

(28)

Thus, V̇ass can be simplified as

V̇ass =− k1 cosβie2
i + f e

i ei − eivi sinβi

−divi
2 +giviei f v

i vi.
(29)

Since βi is bounded, there exist d̄T ≜ maxt0≤t≤T |di(t)|,
ḡT ≜ maxt0≤t≤T |gi(t)|, f̄ e

T ≜ maxt0≤t≤T | f e
i (t)|, f̄ v

T ≜
maxt0≤t≤T | f v

i (t)|.
Hence, we imply that

V̇ass ≤ k1e2
i + f̄ e

T ei + ei|vi|+ d̄T vi
2ḡT ei|vi|+ f̄ v

T |vi|. (30)

According to the inequality theorem ab ≤ γ
2 a2 + 1

2γ b2,
we have

V̇ass ≤(1+ k1 +
ḡT

2
+

f̄ e
T

2
)e2

i +
f̄ e
T

2
+

f̄ v
T

2

+(1+ d̄T +
ḡT

2
+

f̄ v
T

2
)vi

2,

≤λVass +
f̄ e
T

2
+

f̄ v
T

2
,

(31)
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where λ ≜ 2max{1+ k1 +
ḡT
2 + f̄ e

T
2 ,1+ d̄T +

ḡT
2 +

f̄ v
T
2 }.

Therefore, we conclude that ei and vi are bounded in
finite time.

According to (27), the dynamics of ei in closed-loop
satisfies

ėi =−k1 cosβei + εi, (32)

where

εi =Vc[cos(ψi −φc)cosβi − cos(βi +ψi −φc)]

+ k3ϕ̃ cosβi − vi sinβi. (33)

Since limt→∞ βi = 0 and vr
i is bounded, we imply that

limt→∞ εi = 0.
Take the derivative of V2 and obtain

V̇2 ≤−k1e2
i + eiεi,

≤−k1(1−δ )e2
i −δe2

i + eiεi, (34)

≤−k1(1−δ )e2
i , ∀|ei| ≥

|εi|
k1δ

,

where k1 > 0, 0 < δ < 1.
Thus, ei is input-to-stable(ISS) system with εi as in-

put [24]. Moreover, since limt→∞ εi = 0, we have that
limt→∞ ei = 0, which shows us limt→∞ ∥pi −CVi∥= 0.

By using these proposed results, we conclude that the
multi-ASV coverage networks will converge to the opti-
mization configuration in finite time from arbitrary initial
positions. □

4.3. Adaptive dynamic controller for multi-ASVs sys-
tems

Due to the uncertainty of ASV model parameters in
time-varying following environment, the adaptive back-
stepping techniques are employed to ensure the robustness
and controllability of the multi-ASV systems.

Let α1
i and α2

i be the ideal control inputs for ASV i,
which can be viewed by (19). Define the auxiliary vari-
ables z1i and z2i as

z1i = ui −α1
i ,

z2i = ri −α2
i ,

(35)

where ui and ri are the virtual control inputs.
Denote the model parameters set of ASV i as

Θi ≜[mu,mv,muv,mr,du,dr,
mu

mv
mr,

dv

mv
mr]

T

≜[θ 1
i , . . . ,θ 8

i ]
T .

(36)

Let Θ̂i be the approximation of model parameters and
define that

Θ̃i ≜ Θi − Θ̂i, (37)

where Θ̃i are the estimation errors.

Define the Lyapunov function candidate by

Vad p =
n

∑
i=1

(
1
2

β 2
i +

1
2

z2
1i +

1
2

z2
2i +

1
2

Θ̃T
i Γ−1

i Θ̃i)

=
n

∑
i=1

Vad pi .

(38)

Based on the dynamic motion of ASV in (3), the time
derivative of Vad pi is given by

V̇ad pi =z1i[τu
i +mvviri −duu−muα̇1

i +
sinβi

ei
βi]

+ z2i[τ r
i +muvuivi −drri −mrα̇2

i −βi]

− k2β 2
i − Θ̃T

i Γ−1
i

˙̂Θi.

(39)

where τu
i and τ r

i are the dynamic control inputs of ASV i.
In order to make the indefinite terms in (39) cancel out,

we provide the dynamic control laws by

τu
i =− θ̂ 2

i viri + θ̂ 5
i ui + θ̂ 1

i α̇1
i −

sinβi

ei
βi − k4z1i,

τ r
i =− θ̂ 3

i uivi + θ̂ 6
i ri + θ̂ 4

i α̇2a
i + θ̂ 7

i uiri
cosβi

ei

+ θ̂ 4
i (

viβ̇i

sin
βiei +

viėi cosβi

e2
i

)+βi

+ θ̂ 8
i vi

cosβi

ei
− k5z2i,

(40)

where

α2a
i =k1 sinβi +

Vc

Ei
sin(ψi −φc)cosβi

+ k2β +
sinβi

ei
k3ϕ̃ .

(41)

Thus, we get the mathematical form of Vad pi as follows

V̇ad pi =−k2β 2
i − k4z2

1i − k5z2
2i + Θ̃i[Λi −Γ−1 ˙̂Θi], (42)

where Λi is shown by

Λi ≜ diag
{
− z1i,z1iviri,z2iuivi,bi,−z1iui,−z2iri,

− z2iuiri
cosβi

ei
,−z2ivi

cosβi

ei

}
.

(43)

where bi =−(α̇2a
i + vi sinβiβ̇i

ei
+ vi cosβi ėi

e2
i

).
Based on the simplified equation in (42), the adaptive

control laws for the model parameters of ASV i are pro-
posed by

˙̂Θi = ΓiΛi. (44)

Therefore, we obtain

V̇ad pi =−k2β 2
i − k4z2

1i − k5z2
2i ≤ 0. (45)

It can be concluded that (βi,z1i,z2i) will converge to
zero as t → ∞, which can be used to proof the following
theorem.
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Theorem 2: Let a coverage network consisting of n
ASVs monitor the objective region Q, where the motion
of ASV is described by (2) and (3). The warped partition
and the sensory function are calculated by the redeveloped
Voronoi partition in(10) and the Gaussian estimation in
(14), respectively. To deal with the model parameters un-
certainty, an adaptive update law in (44) is provided to
estimate the system model parameters. Based these tech-
niques, the dynamic controllers of the multi-ASV systems
are proposed in (40) such that the coverage network will
converge to the optimal partition from arbitrary initial po-
sitions in finite times.

Proof: Define the Lyapunov function candidate Vad p as
(38). By resorting to (45), we can easily obtain that

V̇ad p ≤ 0. (46)

Based on the LaSalle’s invariance principle, the multi-
ASV coverage networks will converge to the optimiza-
tion positions in region Q with time-varying currents and
model parameters uncertainty. □

5. SIMULATIONS

Simulation studies are displayed to illustrate the
performance of the multi-ASV coverage networks in
flowing environment. Consider 8 ASVs in 10km ×
10km region, where the time-varying currents Vc =
[(exp0.6t +0.2)exp−0.6t ,
(exp0.4t +0.3)exp−0.4t ]. The kinematic and dynamic mo-
tion of ASV are briefly described by (2) and (3), respec-
tively.

According to the estimation laws in Lemma 2, region Q
is divided into 3×3 unit square and 9 Gaussian functions
K= [K(1), . . . ,K(9)] are chosen to parameterized the sen-
sory function. Each component of Gaussian functions is
implemented by

K( j) =
1

σ j
√

2π
exp

{
−
(q−µ j)

2

2σ 2
j

}
, j = 1, . . . ,9,

where µ j is the center of each grid square and σ( j) =
[2.0,2.3,2.4,2.6,3.6,2.9,2.6,1.5,3.0]T .

Then, the initial value of parameters in the adap-
tive control laws are: J(0) = [0,0,0,0,0,0,0,0,0]T ,
Θ̂(0) = diag{0,0,0,0,0,0,0,0}; The control gain param-
eters for each ASV are selected as follows: k1 = 0.4,
k2 = 0.8,k3 = 1.3,γ = 3000, k4 = 1000, k5 = 500, Γ =
diag{10,20,30,1.3,3.5,3.6,5.2,4.9}×103.

Simulation results of the multi-ASV coverage networks
in time-varying flowing environment are shown in Fig. 4
and Fig.5.Fig.4 displays the approximation of the sensory
information over region Q, which shows us the distribu-
tion of the probability where event occurs. Fig. 5 illus-
trates us that the errors between the estimated and accu-
rate Voronoi area of multi-ASV systems is limited in the
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Fig. 4. Estimated sensory function.

Fig. 5. Estimated errors of Voronoi cells.

range [0,100] and converge to zeros, which means that the
estimated sensory function for each vehicle will converge
to the accurate value of the interest information in finite
time.

The proceeding of multi-ASV coverage control strategy
from arbitrary positions is illustrated in Fig. 6. In Fig.
6, the ’o’ points denote the initial positions of multi-ASV
systems and ’+’ points are the final optimal positions. The
moving trajectories of multi-ASV systems are presented
by the dash lines. The solid partition lines represent the
standard Voronoi Partition of the coverage network and
the dot lines are redeveloped Voronoi boundary in time-
varying flowing environment.

Note that the sensory function is estimated through
sampled data online, the partition of coverage network is
time-varying based on the moving position of the multi-
ASV systems. Therefore, the presented partition of cov-
erage networks in Fig. 6 is temporary, which is the opti-
mization for coverage network at final time. The simula-
tion result in Fig 6 shows us that even though the Voronoi
cells of multi-ASV systems in region Q are actually influ-
enced by the currents, the multi-ASV coverage networks
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Fig. 6. Proceeding of multi-ASV coverage control sys-
tems in flowing environment.
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Fig. 7. The time evolution of tracking errors (e and β ).

can still converge to the optimization configuration.
The time evolution of the tracking errors (e, β ) and the

control inputs (τu, τr) are shown in Fig. 7 and Fig. 8, re-
spectively. In Fig. 7, we observe that the e and β of the
multi-ASV systems converge to zeros in finite time, which
means that the multiple ASVs reach the centroid of its
Voronoi cell. Furthermore, the control inputs of the multi-
ASV systems in Fig 8 present the corresponding action
tendency with the tracking errors and show us the stabili-
ties of the closed-loop coverage systems.

6. CONCLUSION

This paper has addressed the coverage problems of
multi-ASV systems in time-varying flowing environment.
A decentralized coverage algorithm was proposed such
that the multiple ASVs could be navigated to the assigned
cells optimally. In order to find out the influence of the
time-varying currents to the coverage networks, we pre-
sented the static Voronoi boundaries for multi-ASV net-

0 20 40 60 80 100
−20
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20
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τ u

0 20 40 60 80 100
−500

−250

0

250

500

t/s

τ r

Fig. 8. The time evolution of control inputs (τu and τr).

works to reconstruct the Voronoi cells by extending the
two-ASV case. In addition, Gaussian functions were
employed to estimate the sensory function such that the
multi-ASV networks could spread over the region based
on the interest information. By transforming the coverage
problems into the pursue ones, a kinematic control law
was provided to drive the ASVs to the optimal positions.
Moreover, we proposed an adaptive dynamic control algo-
rithm to deal with the uncertainty of the model parameters
by using the backstepping techniques. In this framework,
simulation results were provided to show the feasibility
and stability of the proposed approaches.
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