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Iterative Identification Algorithms for Input Nonlinear Output Error Au-
toregressive Systems
Junxia Ma, Weili Xiong, and Feng Ding*

Abstract: This paper focuses on the parameter estimation problems of input nonlinear output error autoregressive
systems. Based on the key variables separation technique and the auxiliary model identification idea, the output of
the system is expressed as a linear combination of all the system parameters, the unknown inner variables in the
information vector are replaced with the outputs of the auxiliary model and a gradient based and a least squares
based iterative identification algorithms are derived. Simulation example is provided to illustrate the effectiveness
of the proposed algorithms.
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1. INTRODUCTION

Block-oriented nonlinear systems have been success-
fully applied to modeling several physical processes, such
as tractor-trailer [1], chemical processes [2], magneto rhe-
ological dampers [3] and so on. Nonlinear system mod-
eling is also widely used in feedback control and predic-
tive control [4–6]. The block-oriented nonlinear systems,
which consist of the interaction of linear dynamic sub-
systems and static nonlinear elements [7], contain Ham-
merstein systems, Wiener systems and their combinations
[8–10]. For decades, much research has been performed
on the nonlinear systems, and several approaches for the
parameter estimation and state estimation have been pre-
sented [11–13], such as the subspace state space approaches
[14], the filtering technique [15] and the maximum likeli-
hood methods [16]. Recently, Li et al. employed a ker-
nel machine to approximate the static nonlinear function
and proposed a space projection method to identify a class
of nonlinear autoregressive models with exogenous inputs
[17]; Paduart et al. applied the polynomial nonlinear state
space approach to identify a nonlinear system with a
Wiener Hammerstein structure [18]; Karimi and McAuley
developed a Laplace approximation maximum likelihood
estimation algorithm for estimating measurement noise
variances and model parameters in nonlinear stochastic
differential equation models [19].

Iterative methods can be used for the iterative learn-
ing control and optimal design. In the area, the iterative
approaches have been widely used for finding the solu-
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tions of matrix equations [20], obtaining the parameter
estimates of linear and nonlinear systems [21] and find-
ing the optimal analysis and synthesis filters [22]. Re-
cently, Hajarian proposed an iterative algorithm to solve
the periodic Sylvester matrix equations [23]; Li and Wen
proposed a normalized iterative algorithm for Hammer-
stein systems and proved the normalized algorithm can en-
sure the convergence property under arbitrary nonzero ini-
tial conditions [24]. Iterative algorithms can be combined
with the gradient search, the least squares search and the
Newton search to form new identification algorithms. For
example, Xie and Yang proposed a least squares based it-
erative identification for output error moving average sys-
tems [25]; Wang and Tang presented a gradient-based it-
erative estimation algorithm for a class of nonlinear sys-
tems with colored noise using the decomposition tech-
nique [26].

The auxiliary model identification method is an effec-
tive approach for identifying systems containing the un-
known variables in the information vector and its idea is
to set up an auxiliary model by using the measurable in-
formation. For example, Ding et al. studied an auxil-
iary model based recursive extended least squares algo-
rithm for dual-rate output error systems with colored noise
based on the dual-rate noisy data [27]. Hammerstein non-
linear systems contain product terms of the parameter of
the linear and nonlinear blocks. The key variables separa-
tion technique can be used to solve this problem. Vörös
proposed a recursive algorithm for Hammerstein systems
with discontinuous nonlinearities containing dead-zones
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using the key-term separation technique [28].

On the basis of the work in [29], this paper expends
the identification model from an input nonlinear finite im-
pulse response moving average model to a Hammerstein
nonlinear system with an output error autoregressive lin-
ear subsystem and studies its parameter estimation prob-
lem. Different from the work in [29], to obtain the linear
regressive form of the identification model, we need to
define two intermediate variables and then use the output
of the auxiliary model to replace the unknown interme-
diate variable. The main contributions of this paper are
to describe the output of the system in a linear combina-
tion of all the system parameters and to present a gradi-
ent based and a least squares based iterative identification
algorithms by using the key variables separation and the
auxiliary model. As a comparison, the auxiliary model
based stochastic gradient and recursive generalized least
squares algorithms are given. The proposed algorithms
are different from the over-parameterization iterative least
squares algorithm in [30] and the least squares based and
the gradient based iterative algorithms using the hierarchi-
cal identification principle in [31].

The rest of this paper is organized as follows. Section 2
gives the identification model of input nonlinear systems.
Section 3 presents a gradient based iterative identification
algorithm and an auxiliary model based stochastic gradi-
ent algorithm. To improve the convergence rate of the
iterative algorithm, a least squares based iterative identi-
fication algorithm is given in Section 4. The numerical
example is provided in Section 5 to show the effectiveness
of the proposed algorithms. Finally, Section 6 offers some
concluding remarks.

2. SYSTEM DESCRIPTION

Let us introduce some notation.
Symbols Meaning
I The identity matrix of appropriate sizes.
θ̂(t) The estimate of θ at time t.
θ̂k(t) The estimate of θ at iteration k.
âk(t) The estimate of a at iteration k.
b̂k(t) The estimate of b at iteration k.
ĉk(t) The estimate of c at iteration k.
γ̂k(t) The estimate of γ at iteration k.
λmax[X ] The maximum eigenvalue of symmetric

square matrix X.
XT The transpose of the vector or matrix X.
∥X∥ The norm of the vector X.
X :=A X is defined by A.

The typical nonlinear system includes the input nonlin-
ear system and the output nonlinear system. Here, we con-
sider an input nonlinear output error autoregressive (IN-
OEAR) system as shown in Fig. 1,

Fig. 1. The IN-OEAR system.

y(t) =
B(z)
A(z)

ū(t)+
1

C(z)
v(t), (1)

ū(t) = f (u(t)), (2)

where y(t) is the measured output, v(t) is the white noise
with zero mean and variances σ 2, u(t) and ū(t) are the
input and output of the nonlinear block, respectively, and
A(z), B(z) and C(z) are polynomials in the unit backward
shift operator z−1(z−1y(t) = y(t −1):

A(z) := 1+a1z−1 +a2z−2 + · · ·+anaz−na ,

B(z) := b0 +b1z−1 +b2z−2 + · · ·+bnbz−nb ,

C(z) := 1+ c1z−1 + c2z−2 + · · ·+ cncz−nc .

Assume that the orders na, nb and nc are known and
y(t) = 0, u(t) = 0 and v(t) = 0 for t ≤ 0. In order to ensure
the effectiveness of the identification algorithms, the input
signal should motivate all characteristics of the system.
The following assumptions are required.

Assumption 1: The input {u(t)} is taken as a persis-
tent excitation signal sequence with zero mean and unit
variance σ 2

u = 1.002.
The nonlinear block is polynomials or trigonometric func-

tions, more generally, ū(t)satisfies the following assump-
tion:

Assumption 2: The output of the nonlinear block is a
nonlinear function of the known basis:

ū(t) := γ1 f1(u(t))+ γ2 f2(u(t))+ · · ·+ γm fm(u(t)), (3)

where α ′

i s are the coefficients and fi(u(t))′s are the base
functions. Let

γ := [γ1,γ2, · · ·γm]
T ∈ Rm,

f (u(t)) := [ f1(u(t)), f2(u(t)) · · · fm(u(t))] ∈ R1×m.

From (3), we have

ū(t) = f (u(t))γ.

Define two intermediate variables:

x(t) :=
B(z)
A(z)

ū(t),w(t) :=
1

C(z)
v(t).

Then, we have

x(t) = [1−A(z)]x(t)+B(z)ū(t)

=−
na

∑
i=1

aix(t − i)+b0ū(t)+
nb

∑
i=1

biū(t − i),
(4)
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w(t) = [1−C(z)]w(t)+ v(t)

=−
nc

∑
i=1

ciw(t − i)+ v(t).

The output y(t) in (1) can be expressed as

y(t) = x(t)+w(t) (5)

=−
na

∑
i=1

aix(t − i)+b0ū(t)+
nb

∑
i=1

biū(t − i)

−
nc

∑
i=1

ciw(t − i)+ v(t).
(6)

Define the parameter vectors and the information vectors:

a :=


a1

a2
...

ana

 ∈ Rna , b̄ :=


b0

b1
...

bnb

 ∈ Rnb+1,

c :=


c1

c2
...

cnc

 ∈ Rnc .

ϕ s(t) := [−x(t −1),−x(t −2), · · ·− x(t −na)]
T ∈ Rna ,

F(t) := [ f (u(t)), f (u(t −1)), · · ·
f (u(t −nb))]

T ∈ R(nb+1)×m,

ϕ n(t) := [−w(t −1),−w(t −2), · · ·−w(t −nc)]
T ∈ Rnc ,

Then, equation (6) can be written as

y(t) = ϕ T
s (t)a+ b̄TF(t)γ +ϕ n(t)c+ v(t). (7)

However, difficulties arise in that the model in (7) con-
tains the product terms of the parameter vectors b̄ and γ of
the linear and nonlinear blocks. Although we can use the
over-parameterization model in (7) for identification [30],
the dimension of the resulting unknown parameter vector
increases, so does the calculation load. In this paper, we
adopt the key variables separation [32] and choose the sec-
ond term ū(t)on the right-hand side of (6) as a separated
key variable, the rests as the non-separated key variables,
and let the coefficient b0 = 1 [33]. Then, equation (6) can
be rewritten as

y(t) = ϕ T
s (t)a+ ū(t)+b1ū(t −1)+b2ū(t −2)+ · · ·
+bnb ū(t −nb)+ϕ n(t)c+ v(t).

(8)

Let n := na +m+ nb + nc, define the parameter vector θ
and the information vector ϕ(t) as

θ :=
[

ϑ
c

]
∈ Rn,ϑ :=

 a
γ
b

 ∈ Rna+m+nb ,

b :=


b1

b2
...

bnb

 ∈ Rnb ,

ϕ(t) := [ψT(t),−w(t −1), · · · ,−w(t −nc)]
T ∈ Rn,

ψ(t) := [−x(t −1),−x(t −2), · · · ,−x(t −na), f(u(t)),

ū(t −1), · · · , ū(t −nb)]
T ∈ Rna+m+nb .

(9)

Substituting the separated key variable ū(t) in (3) into (4)
gives

x(t) =−a1x(t −1)−a2x(t −2)−·· ·−ana x(t −na)

+α1 f1(u(t))+α2 f2(u(t))+ · · ·+αm fm(u(t))

+b1ū(t −1)+b2ū(t −2)+ · · ·+bnb ū(t −nb)

= ψT(t)ϑ . (10)

Substituting (10) into (5) gives

y(t) = ψT(t)ϑ +w(t)

= ψT(t)ϑ +ϕ T
n (t)c+ v(t)

= ϕ T(t)θ + v(t). (11)

Based on the key variables separation, we obtain the iden-
tification model in (11) for this IN-OEAR system in the
linear regressive form.

3. THE GRADIENT BASED ITERATIVE
ALGORITHM

Opt a set of data from j = t −L+1 to j = t (L denotes
the data length) and define a quadratic cost function

J1(θ) := ||Y(t)−Φ(t)θ ||2,

where

Y(t) :=


y(t)

y(t −1)
...

y(t −L+1)

 ∈ RL,

Φ(t) :=


ϕ T(t)

ϕ T(t −1)
...

ϕ T(t −L+1)

 ∈ RL×n.

Let k = 1,2,3, · · ·be an iterative variable and θ̂ k(t) be the
estimate of θ at iteration k, define

θ̂ k(t) :=
[

ϑ̂ k(t)
ĉk(t)

]
∈ Rn,

ϑ̂ k(t) :=

 âk(t)
α̂k(t)
b̂k(t)

 ∈ Rna+m+nb ,

âk(t) := [â1,k(t), â2,k(t), · · · , âna,k(t)]
T ∈ Rna ,
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α̂k(t) := [α̂1,k(t), α̂2,k(t), · · · , α̂m,k(t)]T ∈ Rm,

b̂k(t) := [b̂1,k(t), b̂2,k(t), · · · , b̂nb,k(t)]
T ∈ Rnb ,

ĉk(t) := [ĉ1,k(t), ĉ2,k(t), · · · , ĉnc,k(t)]
T ∈ Rnc .

Minimizing J1(θ) by using the negative gradient search,
we have

θ̂ k(t) = θ̂ k−1(t)−
µk(t)

2
grad[J1(θ̂ k−1(t))]

= θ̂ k−1(t)+µk(t)ΦT(t)[Y(t)−Φ(t)θ̂ k−1(t)].
(12)

Since the information vector ϕ(t) contains the unknown
inner variables x(t−i),ū(t−i)and w(t−i), we cannot com-
pute the estimate θ̂ k(t) from (12). The approach here
is to establish an auxiliary model by using the auxiliary
model identification idea [34], the unknown inner vari-
ables x(t− i) are replaced with the outputs of the auxiliary
model.

Define an auxiliary model

xa(t) :=
Ba(z)
Aa(z)

ū(t),

where Aa(z) and Ba(z) are the polynomials which have the
same orders with the A(z) and B(z). As shown in Fig. 2,
the variable xa(t) is the output of the auxiliary model.

Referring to the method in [35], we take the estimate
B̂(z)
Â(z)

as the transfer function of the auxiliary model. Define
the estimate ψ̂k(t) of ψ(t):

ψ̂k(t) =[−x̂a,k−1(t −1), · · · ,−x̂a,k−1(t −na),

f(u(t)), ˆ̄uk−1(t −1), · · · , ˆ̄uk−1(t −nb)]
T,

ˆ̄uk(t) =f(u(t))γ̂k(t).

Following (10), the unknown variables x(t − i) in ψ(t) in
(9) are replaced with the outputs of the auxiliary model:

x̂a,k(t) = ψ̂T
k (t)ϑ̂ k(t).

From (5), we have

w(t) = y(t)− x(t). (13)

Substituting x(t) in (13) with x̂a,k(t), the iterative estimate
ŵk(t) of w(t) can be computed by

ŵk(t) = y(t)− x̂a,k(t).

Fig. 2. The IN-OEAR system with an auxiliary model.

Replace the unknown w(t − i) in ϕ(t) with its estimate
ŵk−1(t − i) at iteration k−1, and define

ϕ̂ k(t) = [ψ̂T
k (t),−ŵk−1(t −1), · · · ,−ŵk−1(t −nc)]

T,

Φ̂k(t) :=


ϕ̂ T

k (t)
ϕ̂ T

k (t −1)
...

ϕ̂ T
k (t −L+1)

 ∈ RL×n.

Replacing Φ(t)in (12) with its estimate Φ̂k(t), we can ob-
tain the auxiliary model based gradient iterative (AM-GI)
algorithm for estimating the parameter vector θ of the IN-
OEAR system:

θ̂ k(t) = θ̂ k−1(t)+µk(t)Φ̂
T
k (t)

× [Y (t)− Φ̂T
k (t)θ̂ k−1(t)], (14)

Y(t) = [y(t),y(t −1), · · · ,y(t −L+1)]T, (15)

Φ̂k(t) = [ϕ̂ k(t), ϕ̂ k(t −1), · · · , ϕ̂ k(t −L+1)]T, (16)

ϕ̂ k(t) = [ψ̂T
k (t),−ŵk−1(t −1), · · · ,

− ŵk−1(t −nc)]
T, (17)

ψ̂k(t) =[−x̂a,k−1(t −1),−x̂a,k−1(t −2), · · · ,
− x̂a,k−1(t −na),

f(u(t)), ˆ̄uk−1(t −1), ˆ̄uk−1(t −2), · · · ,
ˆ̄uk−1(t −nb)]

T,

(18)

x̂a,k(t) = ψ̂T
k (t)ϑ̂ k(t), (19)

f(u(t)) = [ f1(u(t)), f2(u(t)) · · · fm(u(t))], (20)
ˆ̄uk(t) = f(u(t))γ̂k(t), (21)

ŵk(t) = y(t)− x̂a,k(t), (22)

0 < µk(t)≤
2

λmax[Φ̂
T
k (k)Φ̂k(k)]

, (23)

θ̂ k(t) = [ϑ̂ T
k (t), ĉ

T
k (t)]

T, (24)

ϑ̂ k(t) = [âT
k (t), γ̂

T
k (t), b̂

T
k (t)]

T. (25)

At each iteration, the parameter estimate θ̂ k(t) is based
on the estimates of the inner variables x̂k−1(t− i), ˆ̄uk−1(t−
i) and ŵk−1(t−i), see (14) and (16)–(18). In turn, the inner
variables are computed by the previous iterative estimate
θ̂ k(t), see (19), (21) and (22).

To show the advantages of the AM-GI algorithm, the
following gives the stochastic gradient algorithm based
on the auxiliary model identification idea. Consider the
input-output data set {y( j),u( j),0 ≤ j ≤ t}, and define a
cost function

J2(θ) :=
t

∑
j=1

[y( j)−ϕ T( j)θ ]2.

Minimizing J2(θ) based on the negative gradient search,
we can obtain the auxiliary model based stochastic gradi-
ent (AM-SG) algorithm for estimating θ of the IN-OEAR
system:
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θ̂(t) = θ̂(t −1)+
ϕ̂(t)
r(t)

e(t), (26)

e(t) = y(t)− ϕ̂ T
(t)θ̂(t −1), (27)

r(t) = r(t −1)+ ||ϕ̂(t)||2,r(0) = 1, (28)

ϕ̂(t) = [ψ̂T(t),−ŵ(t −1), · · · ,−ŵ(t −nc)]
T, (29)

ψ̂(t) = [−x̂a(t −1), · · · ,−x̂a(t −na), f(u(t)),
ˆ̄u(t −1), ˆ̄u(t −2), · · · , ˆ̄u(t −nb)]

T, (30)

xa(t) = ψ̂T(t)ϑ̂(t), (31)

f(u(t)) = [ f1(u(t)), f2(u(t)) · · · fm(u(t))], (32)
ˆ̄u(t) = f(u(t))γ̂(t), (33)

ŵ(t) = y(t)− xa(t), (34)

θ̂(t) = [ϑ̂ T
(t), ĉT(t)]T, (35)

ϑ̂(t) = [âT(t), γ̂T(t), b̂T(t)]T. (36)

4. THE LEAST SQUARES BASED ITERATIVE
ALGORITHM

The convergence rate of the AM-GI algorithm is slow.
To improve the convergence speed, this section derives a
least squares based iterative algorithm based on the auxil-
iary model identification idea. Minimizing J1(θ) and let-
ting the derivative of J1(θ) with respect to θ be zero gives

∂J1(θ)
∂θ

∣∣∣∣
θ=θ̂(t)

=−2ΦT(t)[Y(t)−Φ(t)θ̂(t)] = 0.

Then we can obtain the least squares estimate of the pa-
rameter vector θ :

θ̂ k(t) = [ΦT(t)Φ(t)]−1ΦT(t)Y(t). (37)

Because the inner variables x(t − i), ˆ̄u(t − i) and w(t − i)
in ϕ(t) are unknown, it is impossible to obtain the least
squares estimate θ̂ k(t) from (37). Similarly, using the
auxiliary model identification idea and the unknown in-
ner variables are replaced with the outputs of the auxiliary
models, i.e., replacing Φ(t) in (37) with Φ̂k(t), we can ob-
tain the auxiliary model based iterative least squares (AM-
LSI) algorithm for estimating the parameter vector θ :

θ̂ k(t) = [Φ̂T
k (t)Φ̂k(t)]−1ΦT

k (t)Y(t), (38)

Y(t) = [y(t),y(t −1), · · · ,y(t −L+1)]T, (39)

Fig. 3. The AM-GI estimation errors δ versus k.

Φ̂k(t) = [ϕ̂ k(t), ϕ̂ k(t −1), · · · , ϕ̂ k(t −L+1)]T, (40)

φ̂k(t) = [ψ̂T
k (t),−ŵk−1(t −1), · · · ,−ŵk−1(t −nc)]

T,
(41)

ψ̂k(t) = [−x̂a,k−1(t −1), · · · ,−x̂a,k−1(t −na),

f(u(t)), ˆ̄uk−1(t −1), · · · , ˆ̄uk−1(t −nb)]
T,
(42)

x̂a,k(t) = [âT
k (t), γ̂

T
k (t), b̂

T
k (t)]ψ̂k(t), (43)

f(u(t)) = [ f1(u(t)), f2(u(t)) · · · fm(u(t))], (44)
ˆ̄uk(t) = f(u(t))γ̂k(t), (45)

ŵk(t) = y(t)− x̂a,k(t), (46)

θ̂ k(t) = [âT
k (t), γ̂

T
k (t), b̂

T
k (t), ĉ

T
k (t)]

T. (47)

To initialize the AM-LSI algorithm, the initial value θ̂(0)
is generally taken to be a small real vector, e.g.,

θ̂(0) = 1n
/

p0 (p0 being normally a large positive num-
ber , e.g., p0 = 106).

For comparisons, we simply give the recursive gener-
alized least squares algorithm of estimating the parame-
ter vector θ . Minimizing J2(θ) and letting the derivative
of J2(θ) with respect to θ be zero leads to the following
recursive generalized least squares algorithm of estimat-
ing θ based on the key-term separation and the auxiliary
model (the AM-RGLS algorithm for short):

θ̂(t) = θ̂(t −1)+L(t)[y(t)− ϕ̂ T
(t)θ̂(t −1)], (48)

L(t) = P(t −1)ϕ̂(t)[1+ ϕ̂ T
(t)P(t −1)ϕ̂(t)]−1, (49)

P(t) = [I−L(t)ϕ̂ T
(t)]P(t −1), (50)

ϕ̂(t) = [ψ̂T(t),−ŵ(t −1), · · · ,−ŵ(t −nc)]
T, (51)

ψ̂(t) = [−xa(t −1), · · · ,−xa(t −na), f(u(t)),
ˆ̄u(t −1), · · · , ˆ̄u(t −nb)]

T, (52)

xa(t) = [âT(t), γ̂T(t), b̂T(t)]ψ̂(t), (53)

f(u(t)) = [ f1(u(t)), f2(u(t)) · · · fm(u(t))], (54)
ˆ̄u(t) = f(u(t))γ̂(t), (55)

ŵ(t) = y(t)− xa(t), (56)

θ̂(t) = [âT(t), γ̂T(t), b̂T(t), ĉT(t)]T. (57)
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Fig. 4. The AM-LSI estimation errors δ versus k.

Compared with the AM-RGLS algorithm, AM-LSI al-
gorithm fully uses all measured input and output data at
each iteration.

5. EXAMPLE

Consider the following IN-OEAR simulation system:

y(t) =
B(z)
A(z)

ū(t)+
1

C(z)
v(t),

ū(t) = α1u(t)+α2u2(t) = 0.80u(t)−0.60u2(t),

A(z) = 1+a1z−1 +a2z−2 = 1−1.00z−1 +0.32z−2,

B(z) = 1+b1z−1 +b2z−2 = 1+1.25z−1 −0.48z−2,

C(z) = 1+ c1z−1 = 1−0.95z−1,

θ = [−1.00,0.32,0.80,−0.60,1.25,−0.48,−0.95]T.

In simulation, the input {u(t)} is taken as a persistent
excitation signal sequence with zero mean and unit vari-

ance, and {v(t)} as a white noise sequence with zero mean
and variance σ 2. Taking the data length L = 1000, and
applying the AM-GI algorithm in (14)-(25) and AM-LSI
algorithm in (38)-(47) to estimate the parameters of this
system, the parameter estimates and their estimation er-
rors δ := ||θ̂ k(t)−θ ||/||θ || with different noise variances
are shown in Tables 1-2 and Figs. 3-4.

From Tables 1-2 and Figs. 3-4, we can draw the follow-
ing conclusions:

• The estimation errors are becoming smaller (in gen-
eral) as iteration k increases. Thus the proposed algo-
rithms are effective;

• The AM-LSI algorithm has faster convergence speed
and can generate more accurate parameter estimates
than the AM-GI algorithm;

• The estimation errors given by the AM-GI and the
AM-LSI algorithms become small as the noise vari-
ance decreases.

6. CONCLUSION

The iterative identification algorithms are presented for
IN-OEAR systems by using the key variables and the aux-
iliary model. They are the gradient based and the least

squares based iterative algorithms. Compared with the
gradient based iterative algorithm, the least squares based
iterative algorithm has faster convergence speed. The pro-
posed iterative identification algorithms can be extended
to Wiener nonlinear systems [36, 37] or other multivari-
able systems or multirate sampled-data systems [38] and
applied to other areas [39–41].
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