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Positive L1-gain Filter Design for Positive Continuous-time Markovian
Jump Systems with Partly Known Transition Rates
Wenhai Qi and Xianwen Gao*

Abstract: The paper is concerned with the problem of positive L1-gain filter design for positive continuous-time
Markovian jump systems with partly known transition rates. Our aim is to design a positive full-order filter such that
the corresponding filtering error system is positive and stochastically stable with L1-gain performance. By applying
a linear co-positive Lyapunov function and free-connection weighting vectors, the desired positive L1-gain filter is
provided. The obtained theoretical results are demonstrated by numerical examples.
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1. INTRODUCTION

In practical application, there exists a class of special
systems whose common property is that the states and
outputs are nonnegative whenever initial conditions and
inputs are nonnegative. Such systems are denoted as posi-
tive systems [1, 2]. For this special class of systems, there
are many applications in practice, such as communication
networks [3], industrial engineering [4], system control
theory [5–12], and other aspects. Therefore, the research
on positive switched systems has became a heated topic
due to their importance from both theoretical and practi-
cal viewpoints. In [13–15], the two basic control prob-
lems for stability and stabilization have been considered.
Compared with traditional quadratic Lyapunov function,
linear co-positive Lyapunov function is more conveniently
for solving the corresponding control problems of positive
systems.

Markovian jump systems, which consist of the Marko-
vian process (or Markovian chain) and classical differen-
tial (or difference) equations, are a special class of hybrid
systems and popular in modeling actual control processes
that may experience random abrupt changes in their struc-
tures or parameters [16–20]. As a key factor, the transition
rates determine the system behavior of Markovian jump
systems. Until now, most of the analysis and synthesis
about Markovian jump systems have been covered under
the assumption of a completely accessible knowledge of
the transition rates. Actually, the knowledge on the tran-
sition rates can be obtained partly due to complex factors.
Recently, there are some achievements on the Markovian
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jump systems with partly known transition rates, such as
stability and stabilization [21, 22], H∞ control [23], satu-
rating actuator [24], finite-time control [25], and fault de-
tection [26]. Very recently, there are only a few papers on
the positive Markovian jump systems reported, including
stability [27], stabilization [27, 28], and filter design [29].

On the other hand, there are some useful methods on es-
timation and filtering reported, and H∞ filtering has been
one of the most popular approaches to deal with an ex-
ternal noise [30–32]. Recently, a reduced-order positive
H∞ filter for positive discrete-time linear systems has been
designed in [33]. The necessary and sufficient condition
is given to obtain the positive filter, which is derived in
term of linear matrix inequality. It is noticed that the L2-
form is used to deduce the H∞ performance index and the
traditional quadratic Lyapunov function is used to derive
the filter existence conditions in forms of LMI framework.
However, due to the positive property, it is natural to apply
L1-form to describe the performance index of positive sys-
tem. Thus naturally, using the linear co-positive Lyapunov
function approach, L1-gain performance analysis and con-
trol have been discussed in [10, 11, 29, 34, 35]. For the
positive L1-gain filter of positive discrete-time Markovian
jump systems, the relevant conclusion has been shown in
[29]. However, in the published literature, there are no re-
sults on the problem of positive L1-gain filter design for
positive continuous-time Markovian jump systems with
partly known transition rates, which is the motivation to
carry out the challenge and necessary work.

In this paper, we consider the problem of positive L1-
gain filter design for positive continuous-time Markovian
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jump systems with partly known transition rates. The
main contributions of this paper include: (1) by con-
structing a linear co-positive Lyapunov function, sufficient
condition for stochastic stability is proposed; (2) L1-gain
performance analysis for the considered systems is built
based on the stochastic stability; (3) Based on the obtained
results, the positive L1-gain filter is proposed.

Notations: A ⪰ (⪯ 0,≻,≺) represents that all entries
of matrix A are nonnegative (non-positive, positive, nega-
tive). A ≻ B (A ⪰ B) means that A−B ≻ 0 (A−B ⪰ 0). R
(R+) is the set of all real (positive real) numbers. Rn (Rn

+)
represents n-dimensional real (positive) vector space. The
vector 1-norm is denoted by ||x||1 = ∑n

k=1 |xk|, where xk is
the kth element of x ∈ Rn. Given v : R → Rn, the L1-
norm is defined by ||v||L1 =

∫ ∞
0 ||v||1dt.L1[0,+∞) is the

space of absolute integrable vector-valued functions on
[0,+∞), i.e., we say x : [0,+∞) → Rn is in L1[0,+∞) if∫ ∞

0 ||x(t)||1dt < ∞. Matrix A is said to be a Metzler ma-
trix if its off-diagonal elements are all nonnegative real
numbers. E{·} represents the mathematical expectation.
In denotes identity matrix and 1n stands for the all-ones
vector in Rn.

2. PROBLEM STATEMENT AND
PRELIMINARIES

Consider the following positive Markovian jump sys-
tems:

ẋ(t) =A(gt)x(t)+B(gt)w(t),

y(t) =C(gt)x(t)+D(gt)w(t),

z(t) =E(gt)x(t)+F(gt)w(t),

x(0) =x0, (1)

where x(t) ∈ Rn is the state vector; w(t) ∈ Rw is the dis-
turbance input which belongs to Lw

1 [0,+∞); y(t) ∈ Rp is
the control out; z(t) ∈ Rq is the signal to be estimated;
{gt , t ≥ 0} is a time-homogeneous stochastic Markovian
process with right continuous trajectories and takes val-
ues in a finite set S = {1,2, . . . ,N} with the transition rate
matrix Π = {πi j} (i, j ∈ S) given by:

P{gt+∆t = j|gt = i}=
{

πi j∆t +o(∆t), i ̸= j,
1+πi j∆t +o(∆t), i = j,

where ∆t ≥ 0, lim
∆t→0

(o(∆t)/∆t) = 0 and πi j ≥ 0, for i ̸= j

and
N

∑
j=1, j ̸=i

πi j =−πii.

Throughout the paper, the transition rates are assumed
to be partly known, i.e., some elements in matrix Π =
{πi j} are unknown. For ∀i ∈ S, the set Si represents
Si = Si

k
∪

Si
uk, with

Si
k ≜ { j : πi j is known, for j ∈ S},

Si
uk ≜ { j : πi j is unknown, for j ∈ S}.

And if Si ̸=∅, it is further given by

Si
k ≜ {ki

1,k
i
2, . . . ,k

i
m},1 ≤ m ≤ N,

where ki
m ∈ S represents the mth known transition rate of

Si
k in the ith row of the matrix Π. For simplicity, when

gt = i, the system matrices of the ith mode are denoted as
Ai, Bi, Ci, Di, Ei, and Fi.

Definition 1 [2]: System (1) is said to be positive if,
for any initial condition x0 ⪰ 0 and any input w(t)⪰ 0, the
corresponding trajectories x(t) ⪰ 0, y(t) ⪰ 0 and z(t) ⪰ 0
hold.

Lemma 1 [2]: System (1) is said to be positive if and
only if Ai are Metzler matrices and Bi ⪰ 0, Ci ⪰ 0, Di ⪰ 0,
Ei ⪰ 0, Fi ⪰ 0, ∀i ∈ S.

Lemma 2 [28]: Matrix A is a Metzler matrix if and only
if there exists a positive constant ε such that A+ εI ⪰ 0.

In this paper, the positive full-order linear filter is given
as follows:

ẋ f (t) =A f ix(t)+B f iy(t),z f (t) =C f ix(t)+D f iy(t),

x f (0) =x f 0, (2)

where x f (t) ∈ Rn is the filter state; A f i, B f i, C f i, and D f i

are the matrices to be determined of compatible dimen-
sions. Then, the resultant filtering error system is given as
follows:

˙̄x f (t) =Āix(t)+ B̄iw(t), e(t) = Ēix(t)+ F̄iw(t),

x̄(0) =x̄0 =
[
xT

0 xT
f 0
]T

, (3)

where

x̄(t) =
[
xT (t) xT

f (t)− xT (t)
]T

,e(t) = z f (t)− z(t),

Āi =

[
Ai 0

B f iCi +A f i −Ai A f i

]
, B̄i =

[
Bi

B f iDi −Bi

]
,

Ēi =
[
D f iCi +C f i −Ei C f i

]
, F̄i = D f iDi −Fi.

Remark 1: The filter (2) is designed to approximate
z(t) with z f (t). Consequently, the estimate z f (t) is re-
quired to be positive, which implies that the filter (2) is
supposed to be a positive system. From Lemma 1 , we see
that A f i ⪰ 0, B f i ⪰ 0, C f i ⪰ 0, and D f i ⪰ 0 are needed.

Definition 2 [28]: The system (3) (w(t) = 0) is said to
be stochastically stable if for any initial condition x̄(0) and
g0 ∈ S, the following inequality holds

E
{∫ ∞

0
||x̄(t)||1dt|x̄0,g0

}
< ∞. (4)

Definition 3 [28]: Given a stable positive system (1),
find a positive filter (2) with Āi ⪰ 0, B̄i ⪰ 0, Ēi ⪰ 0, and
F̃i ⪰ 0, such that the filtering error system (3) is positive,
stochastically stable and satisfies the performance

E
{∫ ∞

0
||e(t)||1dt

}
≤ γE

{∫ ∞

0
||w(t)||1dt

}
(5)



Positive L1-gain Filter Design for Positive Continuous-time Markovian Jump Systems with Partly Known ... 1415

under zero initial conditions.
Definition 4 [20]: Considering V (x̄(t), i) as the Lya-

punov function for the system (3), we define the weak in-
finitesimal operator as follows:

ΓV (x̄(t), i)

= lim
∆t→0

1
∆t

[E{V (x̄(t +∆t),g(t +∆t))|x̄(t),g(t) = i)}

−V (x̄(t),g(t) = i)]. (6)

3. MAIN RESULTS

This section will focus on the problem of stochastic sta-
bility analysis, L1-gain analysis and positive L1-gain filter
design. Firstly, let us consider stochastic stability for sys-
tem (3) (w(t) = 0).

Theorem 1: If there exist a set of vectors νi ∈ R2n
+ ,

ρi ∈ R2n, for ∀i ∈ S, such that

ĀT
i νi + ∑

j∈Si
k

πi j(ν j −ρi)≺ 0, (7)

ν j −ρi ⪯ 0, j ∈ Si
uk, j ̸= i, (8)

ν j −ρi ⪰ 0, j ∈ Si
uk, j = i, (9)

the filtering error Markovian jump system (3) (w(t) = 0)
with partly known transition rates is stochastically stable.

Proof: For system (3) (w(t) = 0), choose the co-
positive type Lyapunov function candidate as

V (x̄(t), i) = x̄T (t)νi. (10)

According to Definition 4, it can be shown that

ΓV (x̄(t), i) = x̄T (t)(ĀT
i νi +

N

∑
j=1

πi jν j).

Based on
N

∑
j=1

πi jρi = 0 for a set of vectors ρi, we have

ΓV (x̄(t), i) = x̄T (t)(ĀT
i νi +

N

∑
j=1

πi jν j −
N

∑
j=1

πi jρi)

=x̄T (t)(ĀT
i νi + ∑

j∈Si
k

πi j(ν j −ρi)+ ∑
j∈Si

uk

πi j(ν j −ρi)).

(11)

Note that πii < 0(∀i, j ∈ S, i = j) and πi j ≥ 0(∀i, j ∈
S, i ̸= j), therefore, if ∀ j ∈ Si

uk, i ∈ Si
k, inequalities (7)-(8)

imply that ΓV (x̄(t), i)< 0. On the other hand, if ∀ j ∈ Si
uk,

i ∈ Si
uk, we can obtain

ΓV (x̄(t), i) =x̄T (t)(ĀT
i νi + ∑

j∈Si
k

πi j(ν j −ρi)

+ ∑
j∈Si

uk

πi j(ν j −ρi)+πii(ν j −ρi)). (12)

From the fact πii = −
N

∑
j=1,i̸= j

πi j < 0 and inequalities

(7)−(9), we can also get ΓV (x̄(t), i) < 0. Following the
same line of the proof of [28] leads to

E
{∫ ∞

0
||x̄(t)||1dt|x̄0,g0

}
< ∞.

The proof is completed. □

Next, we will consider the L1-gain analysis problem for
the filtering error system (3).

Theorem 2: If there exist a set of vectors νi ∈ R2n
+ ,

ρi ∈ R2n, for ∀i ∈ S, such that the inequalities (8)-(9) and
the following inequalities

ĀT
i νi + ∑

j∈Si
k

πi j(ν j −ρi)+ ĒT
i 1 ≺ 0, (13)

B̄T
i νi + F̄T

i 1− γ1 ≺ 0, (14)

hold, the filtering error Markovian jump system (3)
(w(t) = 0) with partly known transition rates is stochas-
tically stable with L1-gain performance.

Proof: It is clear that inequality (7) holds if the inequal-
ity (13) is satisfied. According to Theorem 1, we derive
that system (3) (w(t) = 0) is stochastically stable. Choos-
ing a Lyapunov function candidate (10) leads to

ΓV (x̄, i)+∥e(t)∥L1 − γ∥w(t)∥L1

=x̄T (t)(ĀT
i νi + ∑

j∈Si
k

πi j(ν j −ρi)+ ∑
j∈Si

uk

πi j(ν j −ρi))

+wT (t)B̄T
i νi +1T Ēix̄(t)+1T F̄iw(t)− γ1T w(t)

=x̄T (t)(ĀT
i νi + ∑

j∈Si
k

πi j(ν j −ρi)+ ∑
j∈Si

uk

πi j(ν j −ρi)

+ ĒT
i 1)+wT (t)(B̄T

i νi + F̄T
i 1− γ1). (15)

Therefore, if inequalities (8)-(9) and (13)-(14) hold, we
have

ΓV (x̄(t), i)+∥e(t)∥L1 − γ∥w(t)∥L1 < 0, (16)

which means

E
{∫ ∞

0
||e(t)||1dt

}
≤ γE

{∫ ∞

0
||w(t)||1dt

}
.

The proof is completed. □

By using the L1-gain performance analysis result in
Theorem 2, sufficient conditions are obtained for the exis-
tence of the filter (2) as follows:

Theorem 3: Consider the positive system (1) and de-
note Ai = [Ai1 Ai2 · · · Ain]

T , Bi = [Bi1 Bi2 · · · Bin]
T , Ci =

[Ciq Ciq · · · Ciq]
T , Di = [Diq Diq · · · Diq]

T , e1 = [1 0 · · · 0]T ,
e2 = [0 1 · · · 0]T , · · · , en = [0 0 · · · 1]T , with Ais, Bis ∈Rr,
Cit , Dit ∈ Rr, s = 1,2, · · · ,n, t = 1,2, · · · ,q, i ∈ S. For
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given positive constant γ , the filtering error Markovian
jump system (3) with partly known transition rates is pos-
itive and stochastically stable with L1-gain performance,
if there exist vectors ν1i, ν2i, εi, αais, βbis, ccit , ddit ∈ Rn

+,
ρ1i, ρ2i ∈Rn, s = 1,2, · · · ,n, t = 1,2, · · · ,q, i ∈ S, such that
the following linear programming problem

AT
i ν1i +

n

∑
s=1

αais +CT
i

n

∑
s=1

βbis −AT
i ν2i + ∑

j∈Si
k

πi j(ν1 j −ρ1i)

+CT
i

q

∑
t=1

ddit +
q

∑
t=1

ccit −ET
i 1 ≺ 0, (17)

n

∑
s=1

αais + ∑
j∈Si

k

πi j(ν2 j −ρ2i)+
q

∑
t=1

ccit ≺ 0, (18)

BT
i ν1i +DT

i

n

∑
s=1

βbis −BT
i ν2i +DT

i

q

∑
t=1

ddit −FT
i 1

− γ1 ≺ 0, (19)

ν1 j −ρ1i ⪯ 0,ν2 j −ρ2i ⪯ 0, j ∈ Si
uk, j ̸= i, (20)

ν1 j −ρ1i ⪰ 0,ν2 j −ρ2i ⪰ 0, j ∈ Si
uk, j = i, (21)

Aisν2is −αais −CT
i βbis ⪯ 0,Bisν2is −DT

i βbis ⪯ 0, (22)

Eit − ccit −CT
i ddit ⪯ 0,Fit −DT

i ddit ⪯ 0,

αais + εises ⪰ 0, (23)

is solvable, where εi = [εi1 εi2 · · · εin]
T , ν2i =

[ν2i1 ν2i2 · · · ν2in]
T . In this case, the parameters of the

L1-gain filter are given

A f i = [νT
2i1αai1 νT

2i2αai2 · · · νT
2inαain]

T ,

B f i = [νT
2i1βbi1 νT

2i2βbi2 · · · νT
2inβbin]

T ,

C f i = [ci1 ci2 · · · ciq]
T ,D f i = [di1 di2 · · · diq]

T . (24)

Proof: Note αais + εises ⪰ 0, it follows from Lemma 2
that A f i are Metzler matrices. From (24), it is clear that
B f i ⪰ 0, C f i ⪰ 0, D f i ⪰ 0. Therefore, the filter (2) is posi-
tive.

From (17)-(19) and (22)-(24), we have

n

∑
s=1

αais =
n

∑
s=1

αisνT
2is = AT

f iν2i,
q

∑
s=1

ccit =CT
f i1,

n

∑
s=1

βbis =
n

∑
s=1

βisνT
2is = BT

f iν2i,
q

∑
s=1

ddit = DT
f i1. (25)

Substituting (25) into (17)-(19) and (22)-(23) yields

AT
i ν1i +AT

f iν2i +CT
i BT

f iν2i −AT
i ν2i + ∑

j∈Si
k

πi j(ν1 j −ρ1i)

+CT
i DT

f i1+CT
f i1−ET

i 1 ≺ 0,

AT
f iν2i + ∑

j∈Si
k

πi j(ν2 j −ρ2i)+CT
f i1 ≺ 0,

BT
i ν1i +DT

i BT
f iν2i −BT

i ν2i +DT
i DT

f i1−FT
i 1− γ1 ≺ 0,

(26)

and

ais +CT
i bis −Ais ⪰ 0,DT

i bis −Bis ⪰ 0,

CT
i ddit + ccit −Ei ⪰ 0,DT

i ddit −Fi ⪰ 0. (27)

It follows from (27) that

B f iCi +A f i −Ai ⪰ 0,B f iDi −Bi ⪰ 0,

D f iCi +C f i −Ei ⪰ 0,D f iDi −Fi ⪰ 0. (28)

Together with Metzler matrices Ai and A f i, it implies
that filtering error system (3) is positive. Denote νi =
[νT

1i νT
2i]

T , ρi = [ρT
1i ρT

2i]
T . Together with (26)-(28) and

(20)-(21), it implies that (8)-(9) and (13)-(14) hold.
Therefore, the filtering error Markovian jump system

(3) with partly known transition rates is positive and
stochastically stable with L1-gain performance.

The proof is completed. □

4. NUMERICAL EXAMPLES

Example 1: Consider two-mode Markovian jump sys-
tem with parameters:

A1 =

[
−2.1 0.4
0.5 −1.6

]
, A2 =

[
−1.6 0.3
0.5 −1.5

]
,

B1 =

[
0.2 0.1
0.3 0.1

]
, B2 =

[
0.1 0.2
0.1 0.1

]
,

C1 =

[
0.1 0.1
0.3 0.1

]
, C2 =

[
0.2 0.1
0.3 0.1

]
,

D1 =

[
0.2 0.1
0.3 0.2

]
, D2 =

[
0.1 0.2
0.2 0.1

]
, E1 =

[
0.1 0.2
0.1 0.1

]
,

E2 =

[
0.1 0.2
0.1 0.1

]
, F1 =

[
0.1 0.1
0.2 0.1

]
, F2 =

[
0.2 0.1
0.1 0.1

]
.

The transition rate matrix is given as follows:[
? ?

0.25 −0.25

]
,

where the unknown element is described by ‘?’.
For given γ = 0.1, solving Theorem 3 results in the fol-

lowing full-order filter gain matrices

A f 1 =

[
−2.4326 0.1760
0.2661 −1.4453

]
,B f 1 =

[
0.9361 0.8496
1.1553 0.7367

]
,

C f 1 =

[
3.9404 2.7793
3.9391 2.7551

]
,D f 1 =

[
13.9114 11.4075
13.9136 11.4305

]
,

A f 2 =

[
−2.5281 0.1632
0.2778 −1.5842

]
,B f 2 =

[
1.3647 1.1548
1.1159 0.8565

]
,

C f 2 =

[
3.8586 3.8861
3.8636 3.8637

]
,D f 2 =

[
15.6492 13.7059
15.5897 13.6077

]
.

The simulation results are shown in Figs. 1-5 for the dis-
turbance input w(t) =

[
e−t |sin(t)| e−t |sin(t)|

]T and ini-

tial conditions g(0) = 1, x(0) = x f (0) =
[
5 25

]T .
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Fig. 1. System modes g(t) of Example 1.

Fig. 2. State responses x1(t) and x f 1(t) of Example 1.

Fig. 3. State responses x2(t) and x f 2(t) of Example 1.

Fig. 1 stands for system modes g(t). Figs. 2-3 show
the state responses of real state x(t) and its estimate x f (t).
Figs. 4-5 plot the simulation results of z(t) and its estimate
z f (t). It is evident that the filtering error Markovian jump
system (3) with partly known transition rates is positive
and stochastically stable with L1-gain performance.

Remark 2: The completely known transition rate ma-
trix is given as follows:[

−0.5 0.5
0.25 −0.25

]
.

Fig. 4. Estimated signals z1(t) and z f 1(t) of Example 1.

Fig. 5. Estimated signals z2(t) and z f 2(t) of Example 1.

For given γ = 0.1, solving Theorem 3 results in the fol-
lowing full-order filter gain matrices

A f 1 =

[
−2.3344 0.2034
0.3490 −1.6921

]
,B f 1 =

[
0.7573 0.6630
1.0029 0.8134

]
,

C f 1 =

[
4.1402 2.8907
4.1382 2.8632

]
,D f 1 =

[
12.7812 10.5970
12.7950 10.6245

]
,

A f 2 =

[
−2.2231 0.0852
0.1978 −1.6288

]
,B f 2 =

[
1.3307 0.8970
1.2924 0.7363

]
,

C f 2 =

[
2.3180 1.9658
2.3232 1.9442

]
,D f 2 =

[
12.8026 9.4119
12.7280 9.3255

]
.

It means that the filtering error Markovian jump system
(3) with completely known transition rates is positive and
stochastically stable with L1-gain performance.

Example 2: For the mathematical model of virus mu-
tation treatment presented in [12], the dynamic system is
described as follows:

ẋ(t) =(Ri −δ I +ζ M)x(t)+Biw(t),

y(t) =Cix(t)+Diw(t),z(t) = Eix(t)+Fiw(t), (29)

where x(t) ∈ R2 indicates two different viral genotypes;
w(t) ∈ Rl is the disturbance input which belongs to
Ln

1[0,+∞); i indicates a Markovian process with two dif-
ferent states; ζ is a small parameter representing the mu-
tation rate; δ is the death or decay rate; M = [Mmn] denotes
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the system matrices; Mmn ∈ {0,1} represents the genetic
connections between genotypes, that is, Mmn=1 if and only
if it is possible for genotype n to mutate into genotype m.
The parameter values of the two-mode Markovian jump
systems are:

R1 =

[
0.05 0

0 0.25

]
,R2 =

[
0.06 0

0 0.26

]
,M =

[
0 1
1 0

]
,

B1 =

[
0.5 0
0 0.1

]
,B2 =

[
0.3 0
0 0.2

]
,C1 =

[
1.5 0
0 1.5

]
,

C2 =

[
0.6 0
0 0.9

]
,D1 =

[
0.1 0
0 0.1

]
,D2 =

[
0.2 0
0 0.1

]
,

E1 =

[
0.1 0.2
0.1 0.1

]
,E2 =

[
0.1 0.2
0.1 0.1

]
,F1 =

[
0.1 0.1
0.2 0.1

]
,

F2 =

[
0.2 0.1
0.1 0.1

]
,δ = 1.3,ζ = 0.001.

The transition rate matrix is given as follows:[
? ?

0.5 −0.5

]
,

where the unknown element is described by ‘?’.
For given γ = 0.25, solving Theorem 3 results in the

following full-order filter gain matrices

A f 1 =

[
−9.1350 0.0013
0.0028 −2.9332

]
,B f 1 =

[
5.2624 0.0019
0.0038 1.3333

]
,

C f 1 =

[
2.0045 0.5874
1.9338 0.5817

]
,D f 1 =

[
3.3693 1.4517
4.0862 1.4415

]
,

A f 2 =

[
−8.8526 0.0132
0.0132 −2.8585

]
,B f 2 =

[
6.2684 0.0206
0.0185 2.0297

]
,

C f 2 =

[
9.7395 6.7135
9.7728 6.7010

]
,D f 2 =

[
14.0180 11.0136
13.7736 11.0003

]
.

The simulation results are shown in Figs. 6-7 for the
disturbance input w(t) =

[
e−t |sin(t)| e−t |sin(t)|

]T and

initial conditions g(0) = 2, x(0) =
[
6 10

]T , x f (0) =[
10 15

]T .
Figs. 6-7 stand for system modes g(t), state responses

of real state x(t) and its estimate x f (t). It is shown that
the filtering error Markovian jump system (3) with partly
known transition rates is positive and stochastically stable
with L1-gain performance.

Remark 3: The completely known transition rate ma-
trix is given as follows:[

−0.75 0.75
0.5 −0.5

]
.

For given γ = 0.25, solving Theorem 3 results in the fol-

Fig. 6. System modes g(t) of Example 2.

Fig. 7. State responses x(t) and x f (t) of Example 2.

lowing full-order filter gain matrices

A f 1 =

[
−10.7643 0.0593

0.0551 −3.7857

]
,B f 1 =

[
6.4485 0.0699
0.0734 2.1127

]
,

C f 1 =

[
2.4334 1.4205
2.3455 1.4141

]
,D f 1 =

[
3.8417 1.9369
4.4185 1.9209

]
,

A f 2 =

[
−10.3443 0.0396

0.0509 −3.4513

]
,B f 2 =

[
9.9427 0.0742
0.1584 2.7001

]
,

C f 2 =

[
2.3098 0.9578
2.3236 0.9507

]
,D f 2 =

[
7.6896 2.0696
7.4698 2.0431

]
.

It means that the filtering error Markovian jump system
(3) with completely known transition rates is positive and
stochastically stable with L1-gain performance.

5. CONCLUSIONS

The problem of positive L1-gain filter design for posi-
tive continuous-time Markovian jump systems with partly
known transition rates has been addressed. By applying
a linear co-positive Lyapunov function, sufficient condi-
tions, which ensure the filtering error Markovian jump
system is positive and stochastically stable with L1-gain
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performance, are given in linear programming. Follow-
ing the approach in the paper, the future work may refer
to time delays, output feedback control, observer design,
and fault detection.
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