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Abstract: This paper focuses on the robust stability criteria of uncertain T-S fuzzy systems with time-

varying delay by delay-partitioning approach. An appropriate Lyapunov-Krasovskii functional is estab-

lished in the framework of state vector augmentation. Then, on the basis of the Finsler’s lemma, some 

tighter bounding inequalities (Seuret-Wirtinger’s integral inequality and Peng-Park’s integral inequali-

ty) are employed to deal with (time-varying) delay-dependent integral items. Therefore, less conserva-

tive delay-dependent stability criteria are obtained in terms of linear matrix inequalities (LMIs), which 

can be solved efficiently with the Matlab LMI toolbox. Finally, two numerical examples are provided 

to show that the proposed conditions are less conservative than existing ones. 
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1. INTRODUCTION 

 

Since Takagi-Sugeno (T-S) fuzzy model [1] was first 

introduced, much effort has been made in the stability 

analysis and control synthesis of such a model during the 

past two decades, due to the fact that it can combine the 

flexibility of fuzzy logic theory and fruitful linear system 

theory into a unified framework to approximate complex 

nonlinear systems [2,3]. On the other hand, as a source of 

instability and deteriorated performance, time-delay 

often occurs in many dynamic systems such as biological 

systems, chemical processes, communication networks 

and so on. Therefore, stability analysis for T-S fuzzy 

systems with time-delay has received more interest and 

achieved fruitful results, see, e.g., [4-10] and references 

therein. These stability criteria can be classified into two 

types: one is delay-dependent and the other is delay-

independent. The delay-dependent criteria are less 

conservative than delay-independent ones since they 

consider the length information of the delay [5,7,11].  

Among the recent techniques adopted in the stability 

analysis of T-S fuzzy systems with time-varying delay, 

the most noteworthy is the delay-partitioning approach: 

the delay interval is divided into multiple uniform/non-

uniform segments [11-15]. It has been proved that less 

conservative results may be expected with the increasing 

delay-partitioning segments [11,14]. On the other hand, 

to the system with time-varying delays, it is seen from 

[15] that the results based on reciprocally convex 

technique [16] generally have the less conservativeness 

than those based on Jensen inequality, since none of any 

useful integral items are arbitrarily ignored in the proof 

[14]. Recently, by dividing the delay interval into two 

uniform segments, [15] obtained the less conservative 

results than those in [5,17] for time-varying delay T-S 

fuzzy systems. More recently, on the basis of delay-

partitioning approach and Peng-Park’s integral inequality 

established by reciprocally convex approach, [14] has 

developed less conservative stability criteria than those 

in [5,13,15] for the uncertain T-S fuzzy systems with 

interval time-varying delay. Most recently, via the idea 

of combining delay-decomposition with state vector 

augmentation, a novel LKF is established, then by 

employing the reciprocally convex approach, [11] has 

achieved less conservative results than those in [5,14,18-

22] for the uncertain T-S fuzzy systems with time-

varying delay. However, when revisiting this problem, 

we find that the aforementioned works still leave plenty 

of room for improvement. 

This paper will develop less conservative stability 

criteria of uncertain T-S fuzzy systems with time-varying 

delay by means of delay-partitioning approach and 
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Finsler’s lemma. An appropriate augmented LKF is 

established in the framework of state vector augmenta-

tion. Then, some improved stability criteria are obtained 

by employing Seuret-Wirtinger’s integral inequality and 

Peng-Park’s integral inequality to deal with (time-

varying) delay-dependent integral items. Finally, two 

numerical examples are provided to show that the 

proposed criteria are less conservative than existing ones.  

The rest of this paper is organized as follows. The 

main problem is formulated in Section 2 and improved 

stability criteria for the uncertain T-S fuzzy systems with 

time-varying delay are derived in Section 3. In Section 4, 

two numerical examples are provided; and a concluding 

remark is given in Section 5.  

Notations: Through this paper, n

�  and n m×

�  denote, 

respectively, the n-dimensional Euclidean space and the 

set of all n m×  real matrices; the notation ( )A B> ≥  

means that A – B is positive (semi-positive) definite; I (0) 

is the identity (zero) matrix with appropriate dimension; 

A
T denotes the transpose; He( )A  represents the sum of 

A and AT; •  denotes the Euclidean norm in n

� ; “*" 

denotes the elements below the main diagonal of a 

symmetric block matrix; ([ 0] )nC τ− , ,�  is the family of 

continuous functions φ  from interval [ 0]τ− ,  to n

�  

with the norm 
0

sup ( ) ;
τ θτ

φ φ θ
− ≤ ≤

=  let ( ) (
t
x x tθ = +  

)θ , [ 0]θ τ∈ − , .  

 

2. PROBLEM FORMULATION 

 

In this section, a class of uncertain T-S fuzzy systems 

with time-varying delay is concerned. For each i =  

1,2, , r�  (r is the number of plant rules), the i th rule 

of this T-S fuzzy model is represented as follows: 

Plant Rule i : IF 
1
( )tθ  is 

1
,

i
M

2
( )tθ  is 

2
,

i
M � , 

( )
p
tθ  is ,

ip
M  THEN 

( ) [ ( )] ( ) [ ( )] ( ( )), 0

( ) ( ), [ ,0],

i i di di
x t A A t x t A A t x t t t

x t t t

τ

φ τ

= +Δ + +Δ − ≥⎧
⎨

= ∈ −⎩

�

 (1) 

where 
1
( ),tθ

2
( ),tθ � , ( )

p
tθ  are the premise variables, 

and each ( 1,2, , ; 1,2, , )
il

M i r l p= =� �  is a fuzzy set; 

( ) n

x t ∈�  is the state vector; ( ) ([ 0] )nt Cφ τ∈ − , ,�  is 

the initial function; Ai and Adi are constant real matrices 

with appropriate dimensions; the delay ( )tτ  is a time-

varying functional satisfying 

0 ( ) ,tτ τ≤ ≤  (2) 

( ) ,tτ μ<�  (3) 

where τ  and µ  are constants assumed to exist; The 

matrices ( )
i

A tΔ  and ( )
di

A tΔ  denote the uncertainties 

in the system and are defined as 

[ ( ), ( )] ( )[ , ],
i di i di

A t A t HF t E EΔ Δ =  (4) 

where H, Ei and Edi are known constant matrices and F(t) 

is an unknown matrix function satisfying 

T ( ) ( ) .F t F t I≤  (5) 

By a center-average defuzzier, product inference and 

singleton fuzzifier, the dynamic fuzzy model in (1) can 

be represented by 

1

( ) ( ( )){ ( ) ( ) ( ) ( ( ))},

( ) ( ), [ ,0],

r

i i di

i

x t h t A t x t A t x t t

x t t t

θ τ

φ τ

=

⎧
= + −⎪

⎨
⎪ = ∈ −⎩

∑�

 (6) 

where ( ) ( ),
i i i

A t A A t= + Δ ( ) ( )
di di di

A t A A t= + Δ  and 

1

1 1

( ( ))
( ( )) ,

( ( ))

p

il ll
i pr

il li l

M t
h t

M t

θ
θ

θ

=

= =

=

∏

∑ ∏
 1, , ,i r= �  (7) 

in which ( ( ))
il l

M tθ  is the grade of membership of 

( )
l
tθ  in Mil, and 

1
( ) ( ( ), , ( ));

r
t t tθ θ θ= �  By definition, 

the fuzzy weighting functions ( ( ))
i
h tθ  satisfy ( ( ))

i
h tθ  

0≥  and 
1

( ( )) 1.
r

ii
h tθ

=

=∑  For notational simplicity, hi 

is used to represent ( ( ))
i
h tθ  in the following description. 

 

Before proceeding, recall the following lemmas which 

will be used throughout the proofs. 

 

Lemma 1 (Finsler’s lemma) [23]: Let ,

nζ ∈� Φ =  
T

,

n n×

Φ ∈�  and m n

B
×

∈�  such that ( ) .rank B n<  Then 

the following statements are equivalent: 

(i) T
0ζ ζΦ < , 0Bζ∀ = , 0ζ ≠ ;  

(ii) T
0BB

⊥
⊥ Φ < ;  

(iii) He( ) 0,
n m

Y YB
×

∃ ∈ :Φ + <�  

where ( ( ))n n rank B

B
⊥ × −
∈�  is the right orthogonal com-

plement of B. 

Lemma 2 (Peng-Park’s integral inequality) [14,16]: 

For any matrix 
*

0,
Z S

Z

⎡ ⎤
⎢ ⎥
⎣ ⎦

≥  positive scalars τ  and ( )tτ  

satisfying 0 < τ(t) < τ, vector function [ 0]
n

x τ: − , →� �  

such that the concerned integrations are well defined, 

then 

T T( ) ( ) ( ) ( )
t

t

x s Zx s ds t t

τ

τ ϖ ϖ
−

− ≤ Ω ,∫ � �  

where 

T T T T( ) [ ( ) ( ( )) ( )]

* 2 He( ) .

*

t x t x t t x t

Z Z S S

Z S S Z

Z

ϖ τ τ= , − , − ,

− −⎡ ⎤
⎢ ⎥Ω = − + − +⎢ ⎥
⎢ ⎥∗ −⎣ ⎦

 

Lemma 3 (Seuret-Wirtinger’s integral inequality) [24]: 

For any matrix Z 0,>  the following inequality holds for 

all continuously differentiable function [ ] :
n

x α β: , → �  

T T1( ) ( ) ( ) ( )x s Zx s ds t t

β

α
ν ν

β α
≥ Θ ,

−
∫ � �  

where 

( )

( )
( ) ,

1 ( )

x

x
t

x s ds
β

α

β

α
ν

β α

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

∫
 

4 2 6

* 4 6 .

* 12

Z Z Z

Z Z

Z

−⎡ ⎤
⎢ ⎥Θ = −⎢ ⎥
⎢ ⎥∗⎣ ⎦
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Lemma 4 [25]: Let Q = QT, H, E and F(t) satisfying 
T ( ) ( )F t F t I≤  are appropriately dimensional matrices, 

then the following inequality 

He{ ( ) } 0Q HF t E+ <  

is true, if and only if the following inequality holds for 

any 0,ε >  

1 T T
0.Q HH E Eε ε

−

+ + <  

 

3. MAIN RESULTS 

 

This section aims to develop a novel robust stability 

criteria for uncertain fuzzy system (6) with time-varying 

delay by delay-partitioning approach. 

For any integer 1,m ≥  define ,
m

τδ =  then [0 ]τ,  can 

be divided into m segments, i.e., 

1
[0, ] [( 1) , ].

m

j
j jτ δ δ

=

= −∪  (8) 

For notational simplification, motivated by [14], let 

T

1 4

T T T

1

T T

[0 0 0 0] 1,2, , 4

( ) [ ( ( )) ( ) ( )

1
( ) ( )]

s

s m s

t

t

e I s m

t x t t t x t m

x s ds x t
δ

ζ τ ζ δ

δ

− − +

−

⎧ = , , , , , , , = +
⎪
⎪⎪

= − , , − ,⎨
⎪
⎪ , ,
⎪⎩

∫

� � �
��� ���

�

 (9) 

where 

T T T T

1
( ) [ ( ) ( ) ( ( 1) )] .t x t x t x t mζ δ δ= , − , , − −�  

Based on Lyapunov-Krasovskii stability theorem [26], 

we firstly state the following stability criterion for the 

nominal system (6), i.e., system (6) without parameter 

uncertainties. 

 

Theorem 1: Given a positive integer m, scalars 

0,τ ≥ ,µ  and ,

m

τ
δ =  then the nominal system (6) with 

a time-delay τ(t) satisfying (2) and (3) is asymptotically 

stable if there exist symmetric positive matrices 

1 2

3

,
*

P P
P

P

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
1 2

3

,
*

l l

l

l

R R
R

R

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

11 1

[ ] ,

*

m

ij m m

mm

X X

X X

X

×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

�

� � � �

�

 

jQ ,
0
,Z ,jZ  and any matrices Y and ( 1, 2, , ;

ij
S i r= �  

1,2, , ;j m= � 1,2, , 1)l m= −�  with appropriate dimen-

sions, such that the following LMIs hold for 1, 2,i =  

, r�  and 1,2, , :k m= �  

( , ) He( ) 0,
i

i k YΞ + Γ <  (10) 

( ) 0,
*

k ik

k

Z S
i k

Z

⎡ ⎤
ϒ , = ≥⎢ ⎥

⎣ ⎦
 (11) 

where 

3

4 5

0

2 T

4 4

0

( ) ( ) ( )j

j

m

m j m

j

i k k i k

e Z eδ

=

+ +

=

Ξ , = Ξ +Ξ +Ξ ,

⎛ ⎞
+ ,⎜ ⎟

⎜ ⎟
⎝ ⎠

∑

∑

 

T T T

2 1 4i i di m
A e A e e

+
Γ = + − ,  

T
T T

2 0 0 0 2

T T
0 3 0 0 3

T T
3 0 3

4 2 6

* 4 6 ,

* 12
m m

e Z Z Z e

e Z Z e

e Z e
+ +

⎡ ⎤ ⎡ ⎤− −⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥Ξ = −⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥∗ −⎣ ⎦⎣ ⎦ ⎣ ⎦

 

T
T T

1 22 4

1
T T T

33 2 3

He ,
*

m

m

P Pe e

Pe e eδ

+

+

⎧ ⎫⎡ ⎤ ⎡ ⎤⎡ ⎤⎪ ⎪
Ξ = ⎢ ⎥ ⎢ ⎥⎨ ⎬⎢ ⎥

−⎢ ⎥ ⎢ ⎥⎣ ⎦⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

 

T T
T T T T

2 2 3 3

T T T T
3 3 4 4

2

T T T T

1 1 2 2

,

m m m m

e e e e

e e e e
X X

e e e e
+ + + +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥Ξ = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

� � � �
 

T T
T T T T1

1 1 2 2

3
T T T T

1 2 2 3 3

,

m
j j j j

j j

j j j j j

e e e e
R R

e e e e

−

+ + + +

= + + + +

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟Ξ = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

∑  

1

T T

4 1 1 2 2

1

T T

1 1 1 1

( )

(1 )

k

j j j j j j

j

k k k k

k e Q e e Q e

e Q e e Q eµ

−

+ + + +

=

+ +

⎡ ⎤Ξ = −⎣ ⎦

+ − − ,

∑
 

T
T T

1 1

5
T T

1 2 2

( )
m

j jj j

jj j k j j

Z Ze e
i k

Ze e

+ +

= , ≠ + +

⎡ ⎤ ⎡ ⎤−⎡ ⎤
Ξ , = ⎢ ⎥ ⎢ ⎥⎢ ⎥

∗ −⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
∑  

T
T T

1 1

T T

1 1

T T

2 2

2 He( ) .

k kk k ik ik

k ik k ik

kk k

e eZ Z S S

e Z S Z S e

Ze e

+ +

+ +

⎡ ⎤ ⎡ ⎤− −⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥+ ∗ − + −⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥∗ ∗ −⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

Proof: For any 0,t ≥  there should exist an integer 

{1,2, , },k m∈ �  such that ( ) [( 1) , ].t k kτ δ δ∈ −  Then, 

choose the following augmented LKF candidate: 

5

{ ( ) [( 1) , ]}

1

( , ) | ( ),
t t k k i t

i

V t x V x
τ δ δ∈ −

=

=∑  (12) 

where 

T

1 0 0
( ) ( ) ( )

t
V x t P tη η= ,  

T

2 1 1
( ) ( ) ( )

t

t
t

V x s X s ds
δ
ζ ζ

−

= ,∫  

1

T

3

1

( ) ( ) ( )
m

t

t j j j
t

j

V x s R s ds
δ
η η

−

−

=

= ,∑ ∫  

1
( 1) T

4

1

( 1) T

( )

( ) ( ) ( )

( ) ( )

k
t j

t jt j
j

t k

kt t

V x x s Q x s ds

x s Q x s ds

δ

δ

δ

τ

−

− −

−

=

− −

−

=

+ ,

∑ ∫

∫
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( 1) T
5

1

0 T
0

( ) ( ) ( )

( ) ( )

m
j t

t j
j t

j

t

t

V x x s Z x s dsd

x s Z x s dsd

δ

δ θ

δ θ

δ θ

δ θ

− −

− +

=

− +

=

+ ,

∑ ∫ ∫

∫ ∫

� �

� �

 

with T T T

0
( ) [ ( ) ( ) ]

t

t

t x t x s ds
δ

η
−

= , ∫  and T( ) [ (j s x sη = −  
T T( 1) ) ( )]j x s jδ δ− , − , 1 2 1j m= , , , − .�  

 

Taking derivative of { ( ) [( 1) , ]}( , ) |
t t k k

V t x
τ δ δ∈ −

 along 

the trajectory of the nominal system (6) yields: 

5

{ ( ) [( 1) , ]}

1

( , ) | ( ) ,
t t k k i t

i

V t x V x
τ δ δ∈ −

=

=∑� �  (13) 

where 

T T

1 0 0 1
( ) 2 ( ) ( ) ( ) ( )

t
V x t P t t tη η ζ ζ= = Ξ ,�

�  (14) 

T T

2 1 1 1 1

T

2

( ) ( ) ( ) ( )

( ) ( )

V t X t t X t

t t

ζ ζ ζ δ ζ δ

ζ ζ

= − − −

= Ξ ,

�

 (15) 

1

T T

3

1

T

3

( ) [ ( ) ( ) ( ) ( )]

( ) ( )

m

t j j j j j j

j

V x t R t t R t

t t

η η η δ η δ

ζ ζ

−

=

= − − −

= Ξ ,

∑�

 (16) 

1

T

4

1

T

T

T

T

4

( ) [ ( ( 1) ) ( ( 1) )

( ) ( ]

( ( 1) ) ( ( 1) )

(1 ) ( ( )) ( ( ))

( ) ( ) ( )

k

t j

j

j

k

k

V x x t j Q x t j

x t j Q x t j

x t k Q x t k

x t t Q x t t

t k t

δ δ

δ δ

δ δ

μ τ τ

ζ ζ

−

=

≤ − − − −

− − −

+ − − − −

− − − −

= Ξ ,

∑�

 (17) 

T 2 T

5 0

0

( ) ( ) ( ) ( ) ( )
m

t

t j
t

j

V x x t Z x t x s Z x s ds
δ

δ δ
−

=

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∫�

� � � �  

( 1)
T

1

( ) ( )
m

t j

j
t j

j

s Z x s dsx

δ

δ
δ

− −

−

=

− .∑ ∫ �
�

 (18) 

For the case of ( ) [( 1) , ]t k kτ δ δ∉ −  and ( ) [(t kτ ∈ −  

1) , ],kδ δ 1 ,k m≤ ≤  applying Jensen inequality and 

Lemma 2 (Peng-Park’s integral inequality) to deal with 

the last item in (18), respectively, it can be deduced for 
ˆ

*

0,
Z Sk k

Zk

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

≥  where 
1

ˆ ,
r

i

k i ik
S h S

=

=∑  that 

( 1) T

1

( ) ( )
m

t j

j
t j

j

x s Z x s ds

δ

δ
δ

− −

−

=

− ∑ ∫ � �  

T

1 1

1

( ) ( )
*

m
j j

jj j k

Z Z

t t
Z

ν ν

= , ≠

−⎡ ⎤
≤ ⎢ ⎥

−⎢ ⎥⎣ ⎦
∑  (19) 

T

1 1

ˆ ˆ

ˆ ˆ( ) * 2 He( ) ( )

*

k k k k

k k k k

k

Z Z S S

t Z S Z S t

Z

ϖ ϖ

⎡ ⎤− −
⎢ ⎥

+ − + −⎢ ⎥
⎢ ⎥

∗ −⎢ ⎥⎣ ⎦

 

T

5

1

( ) ( ) ( )
r

i

i

h t i k tζ ζ
=

= Ξ , ,∑  

where T T T

1
( ) [ ( ( 1) ) ( )] ,t x t j x t jν δ δ= − − , −

T

1
( ) [ (t x tϖ =  

T T T( 1) ) ( ( )) ( )] .k x t t x t kδ τ δ− − , − , −  

 

On the other hand, it follows from Lemma 3 that 

T

0 0 0

T

2 0 0 2

0

T

0

( ) ( )

4 2 6

( ) * 4 6 ( )

* 12

( ) ( ),

t

j
t

x s Z x s ds

Z Z Z

t Z Z t

Z

t t

δ
δ

ν ν

ζ ζ

−

−

− −⎡ ⎤
⎢ ⎥≤ −⎢ ⎥
⎢ ⎥∗ −⎣ ⎦

= Ξ

∫ � �

 (20) 

where 
T

T T T

2

1( ) ( ) ( ) ( )
t

t

t x t x t x s ds
δ

ν δ

δ −

⎡ ⎤= , − , .⎢ ⎥⎣ ⎦∫  

By (13)-(20), the following inequality holds 

T
{ ( ) [( 1) , ]}

1

( , ) | ( ) ( ) ( )
r

t t k k i

i

V t x h t i k t
τ δ δ

ζ ζ
∈ −

=

≤ Ξ , ,∑�  (21) 

where ( )i kΞ ,  is defined in Theorem 1. 

In what follows, the nominal system (6) with the 

augmented vector ( )tζ  can be rewritten as: 

1

0 ( ) ,

r

i i

i

h tζ
=

= Γ∑  

where ( 1,2, , )
i
i rΓ = �  are defined in Theorem 1. 

Therefore, the asymptotic stability conditions for the 

nominal system (6) can be represented by 

T

1

1

( ) ( ) ( ) 0,

0 ( )

r

i

i

r

i i

i

h t i k t

subject to h t

ζ ζ

ζ

=

=

Ξ , <

: = Γ .

∑

∑

 (22) 

By Finsler’s lemma, for any matrix Y with appropriate 

dimension, the conditions in (22) are equivalent to 

T

1

( )[ ( ) He( )] ( ) 0.
r

i i

i

h t i k Y tζ ζ
=

Ξ , + Γ <∑  (23) 

Then, it follows from (21), (22), (23) and LMIs (10) 

that { ( ) [( 1) , ]}( , ) | 0.
t t k k

V t x
τ δ δ∈ −

<
�  This means 

2

{ ( ) [( 1) , ]}( , ) | ( )
t t k k

V t x x t
τ δ δ

γ
∈ −

< −
�  

for a sufficiently small 0.γ >  Therefore, by Lyapunov-

Krasovskii stability theorem [26], the nominal system (6) 

with any delay ( )tτ  satisfying (2) and (3) is globally 

asymptotically stable. This completes the proof.    � 
 

For the uncertain T-S fuzzy system (6), replacing 
i

A  

and Adi with ( )
i i

A HF t E+  and ( )
di di

A HF t E+  in (10), 

the following result can be easily derived by applying 

Lemma 4 and Schur complement [27]. Thus, it is omitted 

here. 
 

Theorem 2: Given a positive integer m, scalars 

0,τ ≥ ,µ  and ,

m

τ
δ =  then the uncertain T-S system 



Improved Stability Criteria for T-S fuzzy Systems with Time-varying Delay by Delay-partitioning Approach 

 

1525

(6) with the time-delay τ(t) satisfying (2) and (3) is 

asymptotically stable if there exist scalars 0
ik

ε >  

( 1, , ;i r= � 1, , ),k m= �  symmetric positive matrices 
1 2

3*

,

P P

P
P

⎡ ⎤
⎢ ⎥
⎣ ⎦

= [ ]
ij m m

X X
×

= , jQ ,
0

Z , jZ ,
1 2

3*

l l

l

R R

Rl
R

⎡ ⎤
⎢ ⎥
⎣ ⎦

=  and 

any matrices Y and ( 1, 2, , ; 1, 2, , ;
ij

S i r j m= =� � 1,l =  

2, , 1)m −�  with appropriate dimensions, such that the 

following LMIs hold for 1,2, ,i r= �  and 1,2, ,k = � m:  

T T

2 1
( ) He( ) ( )

* 0 0

*

i ik i di

ik

ik

i k Y YH e E e E

I

I

ε

ε

ε

⎡ ⎤Ξ , + Γ +
⎢ ⎥

− < ,⎢ ⎥
⎢ ⎥∗ −⎣ ⎦

 (24) 

( , ) 0,i kϒ ≥  (25) 

where ( )
i

i kΞ , , Γ  and ( )i kϒ ,  are defined in Theorem 1. 
 

Remark 1: Based on delay-partitioning approach, the 

new LKF (12) is different from those in [5,11,14,18,20-

22,28] on account of the [ ]
ij m m

X
×

-dependent integral 

item is considered. In addition, the relationships between 

the augmented state vectors T
[ ( )x t ,

T ( )x t δ− ,

T ( 2 )x t δ− ,  
T T( )]x t mδ, −�  have been fully taken into account by 

employing such a [ ]
ij m m

X
×

-dependent LKF, which 

combing with the Finsler’s lemma will be helpful to 

reduce the conservativeness of the derived conditions. 

This will be demonstrated later by numerical examples. 

Remark 2: For ( ) [( 1) ]t k kτ δ δ∈ − , (1 ),k m≤ ≤  a 

tighter bounding inequality, i.e., Peng-Park’s integral 

inequality (Lemma 2), is employed to effectively 

estimate the time-varying delay-dependent integral term 
( 1)

T ( ) ( ) .
t k

t k
k

x s Z x s ds

δ

δ

δ
− −

−

− ∫ � �  Since (i) no free weighting 

matrices are employed and (ii) none of time-varying 

delay-dependent useful items are ignored, some improve-

ments in both computational efficiency and performance 

behavior may be expected while inheriting the advan-

tages of delay-partitioning method [14]. On the other 

hand, Seuret-Wirtinger’s integral inequality (Lemma 3), 

that is shown less conservative than previous inequalities 

often based on Jensen’s theorem, is adopted to effectively 

estimate the integral term T

0
( ) ( ) .

t

t

x s Z x s ds

δ

δ
−

− ∫ � �  
 

Remark 3: In the proof of Theorem 1, some fuzzy- 
 

weighting matrices 
1

ˆ

r

i

k i ik
S h S

=

=∑  are introduced to con- 
 

sider the relationships of the T-S fuzzy models, which 

will lead to less conservative results [11]. 

Remark 4: The vector 
s
e s m= +�  defined in (9) 

plays a crucial role in representing the derivative of the 

augmented LKF in a unified framework of state vector 

augmentation, without listing out each elements of the 

large-scale symmetric block-matrix (see appendix) one 

by one. It’s worth mentioning that, the LMIs-based 

stability criteria in e
s
-form can be directly implemented 

by Matlab LMI Toolbox, for example, the term 
T

2 1 4m
e Pe

+
 in (10) indicates that one of (2 m, + 4)’s 

elements in LMI (10) is the matrix P1. 
 

Finally, in the case of the time-varying delay ( )tτ  

being non-differentiable or unknown ( ),tτ�  setting 
k

Q  

0= ( 0, 1, , 1)jQ j k≠ = −�  in Theorem 2, we have the 

following corollary. 

Corollary 1: Given a positive integer m, scalars τ ≥  

0 and ,

m

τ
δ =  then the uncertain T-S system (6) with the 

time-delay τ(t) satisfying (2) is asymptotically stable if 

there exist scalars 0
ik
ε > ( 1, , ; 1, , ),i r k m= =� �  sym-

metric positive matrices 1 2

3*

,

P P

P
P

⎡ ⎤
⎢ ⎥
⎣ ⎦

= [ ]
ij m m

X X
×

= ,
0

Z ,  

jZ ,

1 2

3*

l l

l

R R

Rl
R

⎡ ⎤
⎢ ⎥
⎣ ⎦

=  and any matrices Y and 
ij

S ( 1,2,i =  

, ;r� 1 2j m= , , , ;� 1 2 1)l m= , , , −�  with appropriate 

dimensions, such that the following LMIs hold for 

1 2i r= , , ,�  and 1 2 :k m= , , ,�  

T T

2 1
( ) He( ) ( )

* 0 0

*

i ik i di

ik

ik

i k Y YH e E e E

I

I

ε

ε

ε

⎡ ⎤Ξ , + Γ +
⎢ ⎥

− < ,⎢ ⎥
⎢ ⎥∗ −⎣ ⎦

�

 (26) 

( , ) 0,i kϒ ≥  (27) 

where 

3

4 5

0

2 T

4 4

0

( ) ( ) ( )j

j

m

m j m

j

i k k i k

e Z eδ

=

+ +

=

Ξ , = Ξ +Ξ +Ξ ,

⎛ ⎞
+ ⎜ ⎟

⎜ ⎟
⎝ ⎠

∑

∑

� �

 

with ,
i

Γ ( , ),i kϒ
0 3
, ,Ξ Ξ�  and 

5
( , )i kΞ  are defined 

in Theorem 1 and 

1

T T

4 1 1 2 2

1

( ) .
k

j j j j j j

j

k e Q e e Q e

−

+ + + +

=

⎡ ⎤Ξ = −⎣ ⎦∑�  

 

4. NUMERICAL EXAMPLE 

 

This section gives two examples to demonstrate the 

effectiveness of the proposed approach. For comparisons, 

we study the T-S fuzzy system (6) with fuzzy rules 

investigated in recent publications [5,11,14,18-22,28]. 

Example 1: Consider the following time-delayed 

nonlinear system [5,11,14,18,20-22,28]: 

2

1 2 1

2

1

2

2 1

2

2 2

( ) 0.5[1 sin ( ( ))] ( ) ( ( ))

[1 sin ( ( ))] ( ),

( ) sgn( ( ) / 2)[0.9cos ( ( )) 1] ( ( ))

( ( )) [0.9 0.1cos ( ( ))] ( ),

x t t x t x t t

t x t

x t t t x t t

x t t t x t

θ τ

θ

θ π θ τ

τ θ

⎧ = − − −
⎪

− +⎪⎪
⎨

= − − −⎪
⎪

− − − +⎪⎩

�

�

 

which can be exactly expressed as a T-S fuzzy system 

(6) with the following rules [14,22,28]: 

1

1 1

2

2 2

: If ( ) is / 2, then ( ) ( ) ( ( ));

: If ( ) is 0 then ( ) ( ) ( ( )),

d

d

R t x t A x t A x t t

R t x t A x t A x t t

θ π τ

θ τ

± = + −

, = + −

 (28) 

where 

1 1

2 0 1 0
, ,

0 0.9 1 1
d

A A
− −⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦
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Table 1. Maximum allowable delay bounds of τ for 

different μ: Example 1. 

µ 0 0.1 ≥ 1 

Tian et al. [28] 1.597 - 0.721 

Lien et al. [5] 1.5973 1.484 0.831 

Li et al.[20] 1.5974 1.4847 0.982 

Liu et al. [21] 1.5974 1.4957 1.2642 

Peng et al.[22] 1.8034 - 0.9899 

Kwon et al. [18] 1.6609 1.5332 1.2696 

Zeng et al. [11] (m=3) 2.0002 1.8090 1.3631 

Theorem 1 (m=3) 2.3359 2.1698 1.6381 

Theorem 1 (m=4) 2.4870 2.3279 1.8274 

[11] improved by (m=3) 16 8> . % 19 9> . % 20 2> . %

 

2 2

1 0.5 1 0
, .

0 1 0.1 1
d

A A
− −⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
 

The membership functions for above rules 1 and 2 are 

2

1
( ( )) ( ( )),sinh t tθ θ=   2

2
( ( )) ( ( )),cosh t tθ θ=  (29) 

where 
1

( ) ( ).t x tθ =  

For different μ, the Maximum allowable delay bounds 

of the time-varying delay computed by Theorem 1 with 

m=3,4 are listed in Table 1. For comparison, the upper 

bounds obtained by the conditions in [5,11,18,20-22,28] 

are also tabulated in Table 1, where “–” denotes that the 

results are not provided in these papers. It is clear that 

the method proposed in this paper is less conservative 

than those in [5,11,18,20-22,28]. It is also concluded that 

the conservatism is gradually reduced with the increase 

of m. With initial state conditions T
[1 1] ,,−  Fig. 1 shows 

the simulation results of the state responses of the T-S 

fuzzy system (28) with 0 ( ) 2.4870tτ≤ ≤  listed in 

Table 1; and the phase portrait of system (28) is given in 

Fig. 2. It shows from the simulation results (Figs. 1 and 

2) that the maximum allowable delay bounds of τ listed 

in Table 1 are capable of guaranteeing asymptotical 

stability of the considered system (28). 

 

Example 2: Consider the following uncertain T-S 

fuzzy system [5,11,19,21] 

2

1

( ) {( ( ))[ ( ) ( ) ( ) ( ( ))},
i i di

i

x t h t A t x t A t x t tθ τ

=

= + −∑�  (30) 

where 

1

2 1
,

0.5 1
A

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 
1

1 0
,

1 1
d

A
−⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
 

2

2 0
,

0 1
A

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

2

1.6 0
,

0 1
d

A
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 

1

1.6 0
,

0 0.05
E

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

1

0.1 0
,

0 0.3
d

E
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 
2

1 6 0

0 0 05
E

.⎡ ⎤
= ,⎢ ⎥− .⎣ ⎦

 

2

0 1 0

0 0 3
d

E
.⎡ ⎤

= ,⎢ ⎥.⎣ ⎦
 

0 03 0

0 0 03
H

.⎡ ⎤
= ,⎢ ⎥− .⎣ ⎦

 

 

Fig. 1. The state responses of system (28). 

 

 

Fig. 2. The phase portrait of system (28). 

 

and the membership functions are the same in (29). 

For different μ, by utilizing Theorem 2, Corollary 1 

and the conditions in [5,11,19,21], the upper bounds that 

guarantee the robust stability of the considered system 

are summarized in Table 2. It can be concluded that the 

result proposed in this paper is less conservative than 

those in [5,11,19,21]. Meanwhile, it is shown in Table 2 

that the conservatism is gradually reduced with the 

increase of m. With initial state conditions T
[1 1],−  and 

the unknown matrix function ( ) diag{sin ,cos },F t t t=  

Fig. 3 shows the simulation results of the state responses 

of the system (30) with 0 ( ) 1.6425tτ≤ ≤  listed in Table 

2; and the phase portrait of (30) is given in Fig. 4. It also 

shows from the simulation results (Figs. 3 and 4) that the 

maximum allowable delay bounds of τ listed in Table 2 

are capable of guaranteeing asymptotically robust stabil-

ity of the considered system (30). 

 

Table 2. Maximum allowable delay bounds of τ for 

different μ: Example 2.  

µ 0 0.1 0.5 Unknown

Li et al. [19] 0.950 0.892 0.637 – 

Lien et al. [5] 1.168 1.122 0.934 0.499 

Liu et al. [21] 1.192 1.155 1.100 1.050 

Zeng et al. [11] (m=2) 1.390 1.318 1.132 1.127 

Theorem 2 (m=2) 1.4737 1.4182 1.2916 1.2299

Theorem 2 (m=3) 1.6425 1.5990 1.4923 1.4182

[11] improved by (m=2) >6.0 % >8.9 % >14.1 % >9.1 %
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Fig. 3. The state responses of system (30). 

 

 

Fig. 4. The phase portrait of system (30). 

 

5. CONCLUSION 

 

The robust stability criteria for uncertain T-S fuzzy 

systems with time-varying delay have been investigated 

in this paper by delay-partitioning approach, Finsler’s 

lemma and LMIs approach. An appropriate LKF is 

established in the framework of state vector augmen-

tation. Then, by virtue of employing Seuret-Wirtinger’s 

integral inequality and Peng-Park’s integral inequality to 

effectively deal with (time-varying) delay-dependent 

integral items, none of any useful time-varying items are 

arbitrarily ignored, therefore, less conservative results 

can be expected. Two numerical examples have been 

given to demonstrate that the proposed result is an 

improvement over existing ones.  

 

APPENDIX A 

Theorem 1 is in the form of es defined in (9), another 

conventional form (i.e., the large-scale symmetric block-

matrix form) of Theorem 1 is also given as follows: 

Theorem 1’: Given a positive integer m, scalars 

0τ ≥ , ,µ  and ,

m

τ
δ =  then the nominal system (6) with 

the time-delay τ(t) satisfying (2) and (3) is asymptotically 

stable if there exist symmetric positive matrices P =  
1 2

3*

,
P P

P

⎡ ⎤
⎢ ⎥
⎣ ⎦

1 2

3*

,

l l

l

R R

Rl
R

⎡ ⎤
⎢ ⎥
⎣ ⎦

= [ ]
ij m m

X X
×

= , ,jQ
0
,Z ,jZ  and any 

matrices 
1
,Y

2
,Y

3
Y  and ( 1, 2, , ;

ij
S i r= � 1, 2, , ;j m= �  

1,2, , 1)l m= −�  with appropriate dimensions, such that 

the following LMIs hold for 1,2, ,i r= �  and 1,2,k =  

, :m�  

0,
ik k i

Π +Ψ +Λ +Φ <  (A.1) 

( , ) 0,
*

k ik

k

Z S
i k

Z

⎡ ⎤
ϒ = ≥⎢ ⎥

⎣ ⎦
 (A.2) 

where 

T
( 4) ( 4) ( 4) ( 4)( ) ( )

lj m m lj m m
π π

+ × + + × +
Π = + ,  

T
( 4) ( 4) ( 4) ( 4)( ) ( )

ik lj m m lj m m
ψ ψ

+ × + + × +
Ψ = + ,  

1 2 , 4
diag{ , , , },

k k k k m+
Λ = Λ Λ Λ�  

T

1 1 2

1 1

2

He( ) 0
di i di

i

Y A Y A A Y

ϕ χ

ϕ

⎡ +
⎢

∗⎢
⎢ ∗ ∗
⎢
⎢
⎢ ∗ ∗ ∗Φ = ⎢
⎢ ∗ ∗ ∗
⎢

∗ ∗ ∗⎢
⎢
⎢ ∗ ∗ ∗
⎢⎢⎣

�

�

�

� � � �

�

�

�

�

 

 

T T

1 3

T T
0 3 1 2 3

0 3

1

T
0 2

2

3

0

0 0 0

0 0 6

0 0 6 0

0 0

0 0

12

He( )

di

i

m m

m

m

j

j

Y A Y

Z P P Y A Y

Z P

Z P

Z Y

δ

δ

ϕ χ

ϕ

δ

δ

+

=

⎤− +
⎥

+ − + ⎥
⎥−
⎥
⎥
⎥
⎥
⎥∗
⎥

∗ ∗ − ⎥
⎥⎛ ⎞
⎥∗ ∗ ∗ −⎜ ⎟

⎜ ⎟ ⎥⎥⎝ ⎠ ⎦
∑

� � � �

 

with 

1, 1

1, 1 2, 2

2,

, 2,2 1,

, 3 1, 1,

, 3 2, 2 2,

0, ,

j

l j l j

lj

l m

X l j m

X X l m l j m

X l m j m

otherwise

π

−

− − − −

−

= ≤ ≤ +⎧
⎪

− ≤ ≤ + ≤ ≤ +⎪
= ⎨

≤ ≤ + ≤ = +⎪
⎪
⎩

 

, 1,

, 1, 1,

, 1, 2,

, 1, 2,

0, ,

k ik

T
k ik

lj k ik

k ik

Z S l j

Z S l j k

Z S l j k

Z S l k j k

otherwise

ψ

− + = =⎧
⎪

− = = +⎪
⎪

= − = = +⎨
⎪− + = + = +
⎪
⎪
⎩

 

11 1 0 2 2

31 12 11 1 2 0

3 2 1 1 3 3 1 2 1

3 1 3 2 1 1 1

3 1

4 He( ), 1

4 , 2

3 1

1

i

j j j j j j

j

m m m m m

m m

R Z Z P Y A j

R R R Z Z Z j

R R R R Z Z

j m

R R R Z Z j m

R Z j m

ϕ
, − , − , − , − −

, − , − , − −

, −

− − + + = ,⎧
⎪

+ − − − − = ,⎪
⎪ + − − − − ,⎪

= ⎨
≤ ≤ − ,⎪

⎪ − − − − , = ,
⎪
− − , = + ,⎪⎩
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21 1 0 2

2 2 1

2 1

2 1

2 1j j j j

m m

R Z Z P j

R R Z j m

R Z j m

χ
, , −

, −

⎧ + − − , = ,
⎪

= − + , ≤ ≤ − ,⎨
⎪
− + , = ,⎩

 

1

1 2

(1 ) 1,

2

3 1

0

k

kj
j j

Q j

Q j

Q Q j k

otherwise

µ

− −

− − , =⎧
⎪

, = ,⎪
Λ = ⎨

− , ≤ ≤ + ,⎪
⎪ , .⎩
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