
International Journal of Control, Automation and Systems 15(1) (2017) 329-344
http://dx.doi.org/10.1007/s12555-014-0363-2

ISSN:1598-6446 eISSN:2005-4092
http://www.springer.com/12555

Robust Model Predictive Control of Biped Robots with Adaptive On-line
Gait Generation
Reza Heydari and Mohammad Farrokhi*

Abstract: In this paper, an on-line gait control scheme is proposed for the biped robots for walking up and down the
stairs. In the proposed strategy, the nonlinear model predictive control approach is used for the trajectory planning
and as well as for the control of the robot. The motion of the robot is expressed in the form of a cost function
and some constraints that are related to the stable walking of the robot. The main feature of this method is that it
does not need any off-line trajectory planning and the walking gait is formulated such that the environmental and
stability constraints of the robot are satisfied. This on-line trajectory planning gives the important ability to the
robot to adjust its gait lengths. In this way, the robot is able to ascend and descend the stairs without knowing the
height and depth of the stairs in advance. In the control algorithm, the Radial-Basis Function (RBF) neural network
with on-line training method is used to model the behavior of the robot over the prediction horizon. The stability
analysis of the closed-loop system is performed using the Lyapunov method as well as the Poincaré map. The
proposed method is applied to a 5-DOF biped robot in the sagittal plane. The simulation results show effectiveness
of the proposed method.

Keywords: Biped robot, model predictive control, neural network, Poincaré map.

1. INTRODUCTION

One of the great challenges for the biped robots is walk-
ing in uneven terrains, such as inclined surfaces and stairs.
Despite wheeled robots, biped robots have a better abil-
ity to move on uneven grounds or other complex environ-
ments. On the other hand, the dynamics of these robots
are complex and inherently unstable. Therefore, selecting
an effective control scheme for ensuring the stability of
the robot during walking is very vital. Many researchers
proposed the trajectory generation and control algorithm
for the biped robots on flat surfaces [1–3]. However, there
exist a few studies about the ascending/ descending stairs
by these robots [4–6].

During motion, it is necessary that the robot stay bal-
anced. One of the stability criteria for stable walking of
the biped robots is the Zero Moment Point (ZMP) [7, 8],
which is defined as the point on the ground where the sum
of all the moments of active force acting on the biped robot
is equal to zero. When the ZMP falls within the polygon of
the support area, the walking is defined to be dynamically
stable [9]. In the case of single support phase, the sup-
port polygon is the area of the stance foot on the ground
whereas for the double support phase, it is the area con-
taining both feet touching the ground.
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Park et al. have presented a trajectory generation
method and control approach for a biped robot to climb
stairs [5]. In their method, the path planning is performed
off-line using the Virtual Height Inverted Pendulum Mode
(VHIPM) method. The motion of the Center of the Mass
(COM) is modeled by the variable length pendulum mode.
In this way, the ZMP error can be reduced via adjustment
of the pendulum length. First, the desired ZMP trajectory
is designed. Then, the Center of Gravity (COG) trajectory
in the x and y directions is designed based on the desired
ZMP trajectories. The COG trajectory in the z direction is
generated using a sixth order polynomial. Fu et al. have
proposed a method for walking control of humanoid robot
while climbing stairs [10]. This approach consists of a
stair-climbing gait and a sensory control strategy. The sen-
sory control strategy consists of a torso attitude controller,
a ZMP compensator, and an impact reducer. The feed-
back control parameters are adjusted by a reinforcement
learning method.

Almost all methods presented in literature are designed
based on a predefined path tracking. However, when the
environment changes, it is necessary to redesign the trajec-
tory. Nevertheless, human does not walk based on a pre-
defined trajectory. He satisfies some motion constraints
such as stability, avoiding collision with the obstacles, and

c⃝ICROS, KIEE and Springer 2016

http://www.springer.com/12555


330 Reza Heydari and Mohammad Farrokhi

minimizing the energy consumption. Moreover, if there
are some errors in the path tracking, it does not create a
serious problem in the robots motion as long as the con-
straints are satisfied. In other words, human predicts his
next steps based on these constraints and not a predefined
path. One of the appropriate control schemes to fulfill
these goals is the Model Predictive Control (MPC) meth-
ods. In [11], the Nonlinear MPC (NMPC) method is used
for the on-line trajectory generation and control of a 7-
DOF biped robot when it walks on flat surfaces. The main
feature of their method is using an on-line iterative opti-
mization approach to compute the decision variables over
the prediction horizon. Moreover, the predictive controller
uses the dynamic model of the biped robot to predict its
future behavior. Therefore, if there is any uncertainty in
the robot, the controller may not work well. Diedam et al.
have used MPC method for the HRP-2 humanoid robot
[12]. In their method, the trajectory generation and con-
trol of the robot is performed simultaneously. They have
used the MPC controller to track the desired ZMP. In their
method, the desire ZMP trajectory is generated off-line
and the cost function is defined as the error between the
real and desired ZMP. In [13], implementation of MPC
for the real-time walking pattern generation of a humanoid
robot is presented. The nonlinear dynamic model of the
robot is approximated using a linear discrete-time system.
It is well known that in the presence of linear constraints
on the input and output, the MPC problem can be set up as
a quadratic programming. Hence, at each step, a quadratic
function is solved. In [14], the NMPC with the Nonlinear
Disturbance Observer (NDO) has been employed in or-
der to reject the parameter uncertainties and the external
forces acting on the robot. The NMPC is designed in such
a way that the gait length may be changed in the presence
of disturbances to maintain the robots stability. Wieber
has used the MPC for the stable walking of a biped robot
on flat surfaces [15]. In order to reduce the complexity
of the problem, simplified equations of the inverted pen-
dulum is used instead of the dynamic equation of biped
robots.

In the past two decades, several studies have been pre-
sented on the modeling, analysis and control of the biped
robots. Due to the high nonlinearity of these robots, the
stability analysis usually is performed based on a linear
model of the system [16–18]. However, the linear model
can be used as long as the states of the system are near
the operating point. For this reason, the linear model can
be used only for stability analysis around the operating
point. In recent years, researchers have used the Poincaré
map for stability analysis of the biped robots. Considering
that walking of the biped robot is a repetitive motion, the
Poincaré map is a suitable approach for the study of these
systems [19–21]. The closed-loop system is stable if all
eigenvalues of the linearized Poincaré map are inside the
unit circle [22].

This paper employs the NMPC method for simultane-
ous trajectory generation and control of biped robots for
ascending and descending the stairs. In the proposed strat-
egy, the gait length is adjusted to satisfy the stability, the
environment constraints, and the cost function. Using the
NPMC to adjust the gait length, it provides more flexibil-
ity and improves the ability of the controller to maintain
stability of the biped robot in the complex environments.
In other words, the robot can successfully ascend and de-
scend the stairs with different heights and depths. To
achieve these goals, it is necessary to define the cost func-
tion and the constraints properly. Moreover, the impor-
tant issue that arises in the application of the MPC is that
the performance of the controller depends on the predic-
tion model. For this reason, the prediction model should
adapt itself to the changes in the robot and in the envi-
ronment. In this paper, the Radial-Basis Function (RBF)
Neural Network (NN) is used to identify adaptively the
biped robot. In this way, the performance of the controller
in the presence of uncertainties and disturbances is greatly
improved. The stability analysis of the closed-loop system
is performed using the Lyapunov stability method as well
as the Poincaré map.

2. DYNAMIC OF BIPED ROBOT

The schematic diagram of the biped robot with five-
DOF that is used in this paper is shown in Fig. 1. The
biped robot consists of a torso and two legs. The torso
of the robot is connected to the hip via a rotational joint.
There is an actuator at each joint of the robot. Therefore,
the system is fully actuated. It is assumed that the feet
are massless. Moreover, it is assumed that the feet are al-
ways parallel to the ground. In addition, it is assumed that
the friction between the feet and the ground is sufficiently
large to ensure no slipping of the stance leg. Each gait
of the robot is composed of three phases: 1) Single Sup-
port Phase (SSP), 2) Double Support Phase (DSP) and 3)
SSP impact. The differential equation of the dynamic mo-
tion of the robot in each phase can be derived using the
Lagrangian method or the Newton-Euler formulation.

2.1. Single support phase (SSP)
In this phase, one foot of the robot is in contact with the

ground and the other foot swing from the rear to the front.
Moreover, the tip of the stance leg is fixed on the ground.
The dynamic equation describing the robots motion in the
SSP can be written as follows:

D(θ)θ̈+H(θ, θ̇)θ̇+G(θ) = τ , (1)

where D(θ) is a 5×5 positive definite and symmetric in-
ertia matrix, H(θ, θ̇) is a 5× 5 matrix of centrifugal and
Coriolis terms, and G(θ) is a 5×1 vector of gravity terms.
Moreover, θ, θ̇, θ̈ and τ are the vector of generalized
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Fig. 1. Five-link biped robot in the sagittal plane.

cordinates, velocities, accelerations, and torques, respec-
tively. The elements of D(θ), H(θ, θ̇) and G(θ) for a 5-
DOF biped robot are given in [23].

2.2. Double support phase (DSP)
In the DSP, both feet are in contact with the ground

while the body can move forward slightly. This phase be-
gins when the tip of swing leg contacts the ground and ter-
minates with the tip of the rear leg taking off the ground.
Since both feet are fixed on the ground during this phase,
there exist a set of holonomic constraint equations as [23]

Φ=

[
xe − xb −L

ye − yb

]
= 0, (2)

where L is the distance between the tips of the two feet,
which is constant in every step, (xe,ye) and (xb,yb) are the
coordinate of the tip of the swing leg and the stance leg,
respectively. The dynamic equation of the biped robot in
the DSP can be written as

D(θ)θ̇+H(θ, θ̇)θ̇+G(θ) = JT (θ)λ+τ , (3)

where D, H, G and τ are the same as in (1), λ is a 2× 1
vector of the Lagrange multipliers, and J is a 2× 5 Ja-
cobean matrix.

2.3. Impact effect
At the time when the tip of the swing leg collides with

the ground, the angle velocities change discontinuously.
Then, the swing leg becomes the support leg and the sup-
port leg leaves the ground and becomes the swing leg. The
interval of exchange of legs during the impact is assumed
infinitely small and a perfectly plastic collision take place,
which means that the tip of the swing leg does not leave
the walking surface after the impact. During the impact

phase, no change in the joint angular positions is assumed.
The instantaneous change in the joint angular velocities of
the links can be described as [23]

θ̇+ = θ̇−+D−1JT (JD−1JT )−1(−Jθ̇−), (4)

where θ̇+ and θ̇− are 5×1 angular velocity right after and
before the impact, respectively.

3. NONLINEAR MODEL PREDICTIVE
CONTROL

The Model Predictive Control (MPC) is one of the most
successful control strategies. The MPC is an optimization-
based control concept that can be applied to a wide range
of dynamic systems. In this method, the main idea to find
a control law for the system is to optimize the predicted fu-
ture behavior of the system. One of the major advantages
of the MPC is that the constraints imposed on the sys-
tem can be incorporated into the control law. The MPC
generates the control actions by optimizing an objective
function repeatedly over a finite moving prediction hori-
zon using the system constraints based on a model of the
dynamic system.

3.1. Cost function
The distance of the ZMP from the boundaries of the

support polygon can be considered as a criterion for the
stability of the biped robot. Therefore, if the ZMP is set at
the middle of the support polygon, the biped robot has the
best stability margin. On the other hand, when the ZMP is
close the boundaries of the support polygon, the stability
of the system is marginal and when the ZMP leaves the
support polygon, the system becomes unstable. Hence,
the cost function can be defined as the ZMP distance from
the boundaries of the support polygon. Moreover, in or-
der to optimize the energy consumption, the biped robot
must be able to perform the control objectives with the
least expenditure control inputs. To achieve this aim, the
expression of the consumption energy should be consid-
ered in the cost function. Therefore, the cost function in
the predictive control for the SSP and DSP is defined as

C(k) =
Np

∑
j=1

Q
(

eDZMP(k+ j|k)− eDZMPmin

eDZMPmax − eDZMPmin

)

+
Nc

∑
j=1

τ T (k+ j|k)Rτ (k+ j|l), (5)

where

DZMP =
∣∣∣w

2
− xZMP

∣∣∣ , (6)

in which w and DZMP are the foot length and the ZMP error
(i.e., the ZMP distance from the boundaries of the support
polygon), respectively, R is a positive definite and con-
stant matrix and Q is a positive and constant coefficient,
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[DZMPmin ,DZMPmax ] is the interval variation of the ZMP er-
ror, Np and Nc are the prediction and control horizons, re-
spectively, xZMP is the horizontal position of the ZMP, and
τ is the torque vector. Moreover, the notation τ (k+ j|k)
indicates the value of τ at instant k+ j predicted at instant
k.

3.2. Constraints
As it was previously mentioned, in the proposed method

in this paper, no predefined path is defined for the biped
robot and the trajectory generation is performed on-line.
The ascending and descending stairs and their restrictions
can be expressed in the form of a set of constraints. There-
fore, different constraints should be defined for each phase
of the walking. These are explained in the followings.

3.2.1 DSP constraints
In this phase, both legs are on the ground and the robots

body moves forward slowly. For this phase, the physical,
motion and energy optimization constraints are defined as
follows:

1) The joint variables are bounded by the lower and up-
per limits as

θimin ≤ θi ≤ θimax (i = 1,2,4,5). (7)

2) Since the biped robot is a mobile robot, it is difficult
to provide high torques to the joints. Therefore, the con-
troller must comply with the limitations of the actuators.
Moreover, from the practical point of view, the control in-
puts are in a pre-specified range. Hence,

τimin ≤ τi ≤ τimax (i = 1,2, ...,5). (8)

3) The biped robot must move only forward, which re-
quires that the horizontal speed of the center of the mass
(COM) must be positive

ẋCOM ≥ 0. (9)

4) From the view point of the natural human walking,
it is desired that the torso is kept directly upward or oscil-
lates slightly around the upright position

θmin ≤ θ3 ≤ θmax. (10)

5) One desired feature of the biped gait in DSP is
to minimize the vertical oscillation of the gravity center,
which requires to minimize the vertical motion of the hip
joint

yhmin ≤ yh ≤ yhmax . (11)

3.2.2 SSP constraints
During the SSP, the free end of the swing leg is in for-

ward motion, moving from the back of the body towards
front of it. It should be mentioned that the free end of the

swing leg does not follow through a symmetric path when
ascending or descending stairs.

For a smooth and natural walking in this phase, it is
necessary to satisfy the following constraints:

1) The first four constraints are similar to the DSP con-
straints.

2) The horizontal velocity of the free end of the swing
leg must satisfy the following constraint:

ẋe ≥ βminẋCOM sin
(

ye − y0

2(Hm − y0)
π
)
,

ẋe ≤ βmaxẋCOM sin
(

ye − y0

2(Hm − y0)
π
)
,

(12)

where ẋe and ẋCOM are the horizontal velocity of the tip of
the swing leg and the center of the mass, respectively. and
Hm is the maximum height of the tip of the swing leg rel-
ative to the stance leg. In the first part of the motion, y0 is
equal to the height of the first stair and in the second part,
it is equal to the height of the destination stair. Moreover,
xe and ye are the horizontal and vertical position of the tip
of the swing leg, respectively, βmin and βmax and are the
designing parameters.

3) Based on the diagram in Fig. 2, during the taking
off, the vertical velocity of the free end of the swing leg
should be positive and during landing it should be negetive
and adapt to the robot COM velocity.

ẏe ≥ δ sin(|xe − xb|π)sin
(

ye − y0

2(Hm − y0)
π
)
, xe ≤ xb,

ẏe ≤ δ sin(|xe − xb|π)sin
(

ye − y0

2(Hm − y0)
π
)
, xe ≥ xb,

(13)

where xb and ye are the horizontal position of the stance
leg and the vertical velocity of the tip of the swing leg,
respectively, and δ is a designing parameter. It can be
observed from (13) that when the tip of the swing leg
contacts the ground, the velocity is zero, which leads to
a softer impact.

4) During the stairs climbing, the swing leg may hit the
edge of the stair (Fig. 3). To solve this problem, the fol-
lowing constraint should be satisfied:

IF ye ≤ yedge THEN d > 0, (14)

where yedge and d are shown in Fig. 2.
5) During descending the stairs, in order to avoid colli-

sion of the tip of the swing leg with the edge of the front
step (Fig. 3), the following constraint should be satisfied:

IF xdi f f ≥ 0 THEN r > 0, (15)

where xdi f f and r are shown in Fig. 3.
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Fig. 2. Constraint on the swing leg in ascending stairs.

Fig. 3. Constraint on the swing leg in descending stairs.

4. IDENTIFICATION OF DYNAMIC MODEL

The MPC performance greatly depends on the system
model. However, in practical applications, accurate mod-
eling using the exact analytical methods is impractical, es-
pecially for complex nonlinear systems such as the biped
robots. Moreover, when there are some parameter uncer-
tainties in the robot or the structure of the prediction model
is different from that of the real biped robot, the robot may
become unstable. Hence, in order to cope with these is-
sues, it is necessary to use an adaptive mechanism to iden-
tify the systems parameters. It is well known that Neu-
ral Networks (NNs) are universal approximators. That is,
NNs can be used to approximate any nonlinear function
with desired accuracy. In this paper, Radial-Basis Func-
tion (RBF) NNs are used to identify adaptively the model
of the biped robot. In this way, the MPC controller be-
comes robust against changes in the system and the en-
vironment. To predict the outputs of the robot over the
prediction horizon, a cascade of RBFNNs are used. This

Fig. 4. Cascade of NNs to predict the outputs of system
over the prediction horizon.

means that the output of the NN at each step is used as
input to the next NN (Fig. 4).

In the control strategy, one RBFNN is used to predict
the position or velocity of each joint of the robot. There-
fore, two NNs are designated for every joint of the robot.
Hence, 10 NNs are needed for a 5 DOF robot. The in-
puts to every NN are the angular position and velocity of
all five joints and the torque of the corresponding joint at
the current sampling time. The output of the NN is the
predicted angular position or velocity of the correspond-
ing joint at the next sampling time. Since the biped robot
is inherently an unstable system, the NNs might require
some mild off-line training in order to become familiar
with the behavior of the robot when working on-line.

The structure of a typical RBFNN is shown as Fig. 5,
where x = [x1,x2, ...,xn]

T is the input vector. Assuming
there are m neurons in the hidden layer, the value of the
Gaussian function h j for the jth neuron can be obtained as

h j = exp

(
−
∥x− c j∥

2b2
j

)
, j = 1,2, ...,m, (16)

where c j = [c j1,c j2, ...,x jn]
T is the center of the jth neuron

in m-dimensional space, and b j > 0 represents the width
of the Gaussian function.

The output of the RBFNN is the weighted sum of the
Gaussian function

yRBF = w1h1 +w2h2 + · · ·+wmhm, (17)

where w = [w1,w2, ...,wm]
T is weight vector. To train the

network parameters using the gradient descent algorithm,
the following instantaneous performance index is defined
first:

E(k) =
1
2
(y(k)− yRBF(k))2. (18)
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Fig. 5. The structure of a typical RBFNN.

Fig. 6. Guassisn functions of torso NNs (position and ve-
locity) at the end of off-line training phase.

Then, the free parameters of the RBFNN are updated ac-
cording to the following equations [24]:

w j(k) = w j(k−1)+∆w j(k),

b j(k) = b j(k−1)+∆b j(k),

c ji(k) = c ji(k−1)+∆c ji(k)

∆w j(k) =−η
∂E
∂w j

= η(y(k)− yRBF(k)), (19)

∆b j(k) =−η
∂E
∂b j

= η(y(k)− yRBF(k))w jh j
∥x− c j∥2

b3
j

,

∆c ji(k) =−η
∂E
∂c ji

= η(y(t)− yRBF(k))w j
x j − c ji

b2
j

,

where η ∈ [0,1] is the learning rate. During the off-line
training, all network parameters are trained. However,
during the on-line training, in order to reduce the computa-
tion time, only the weights in the output layer are trained.
The off-line training is performed using 400 input-output

Fig. 7. Weights of torso NN for prediction of angular po-
sition at the end of off-line training phase.

Fig. 8. Weights of torso NN for prediction of angular ve-
locity at the end of off-line training phase.

data that are gathered using the computed torque method.
Fig. 6 shows the Gaussian functions and Figs. 7 and 8
show the weights of the output layer of NNs for the torso
at the end of the off-line training phase.

5. STABILITY ANALYSIS

The stability of the biped locomotion can be ana-
lyzed using the Lyapunov direct method or Poincaré map.
Since walking is a periodic motion, the Lyapunov stability
method provides only stability in single step of the robot,
whereas the Poincaré map shows stability of the robot in
general. However, using the Poincaré map method for a
highly nonlinear system such as the biped robots is not
very straightforward. Both of these methods are presented
in the sequel. The general equation of a biped robot with n
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DOF can be expressed in the form of a nonlinear discrete-
time system as

x(k+1) = f(x(k),u(k)), (20)

where x(k) ∈ Rn×1 and u(k) ∈ Rn×1 are the control input
and state vector of the system, respectively, f is a nonlin-
ear discrete function that has an equilibrium point at the
origin (f(0,0) = 0). The nonlinear optimization problem
can be defined as the following cost function and the set
of constraints for a biped robot:

u∗ = arg
U

min(C(k)) (21)

such that

C(k) =
Np

∑
j−1

Q
(

eDZMP(k+ j|k)− eDZMPmin

eDZMPmax − eDZMPmin

)

+
Nc

∑
j=1

uT (k+ j|k)Ru(k+ j|k), (22)

x(k|k) = x(k) = x0,

y(k+ j+1|k) = h(x(k+ j|k)),
xmin ≤ x(k+ j|k)≤ xmax,

umin ≤ u(k+ j|k)≤ umax,

where x = [θ1, ...,θn, θ̇1, ..., θ̇n]
T is the angular position

and velocity vector and u = [u1, ...,un]
T is the control in-

put.

5.1. Lyapunov method
For a biped robot, the Lyapunov function can be defined

as

V (x(k)) =
Np

∑
j=1

L(x∗(k+ j|k))

=
Np

∑
j=1

(
eDZMP(k+ j|k)− eDZMPmin

eDZMPmax − eDZMPmin

)
, (23)

where x∗ is the optimal solution of the optimization prob-
lem in (22); other parameters were defined in (5). Due
to the constraints on the states and inputs, it may not be
possible to study the globally stability of the biped robot
using the Lyapunov method. Hence, the stability region
for the predictive control is defined as follows. Throughut
this paper, the notation a(m|n) indicates the value of a at
instant m predicted at instant n.

Definition 1: The stability region for the predictive
control problem is defined as a set in which for every
x(k) ∈ χ there exists a control signal u(k) ∈ v such that
[25]{

x(k+1) ∈ χ,
L(x(k+2|k))−L(x(k+1|k))≤ 0.

(24)

Theorem 1: Consider the NMPC problem for the sys-
tem (20) with the cost function (5). The closed-loop sys-
tem is locally stable within the stability region and around
the origin if{

x∗(k|k) = x(k) ∈ χ ∀k,

X∗(k|k) = [x∗(k+1|k), ...,x∗(k+Np|k)] ∈ χ.
(25)

Proof: The first difference of V (x(k)) in (23) is

∆V (x(k)) =V (x(k))−V (x(k−1))

=
Np

∑
j=1

{L(x∗(k+ j+1|k+1))

−L(x∗(k+ j|k))} . (26)

After solving the optimization problem at time instant k,
the obtained optimal control sequence over the prediction
horizon is

U∗(k|k) = [u∗(k|k), ...,u∗(k+Np|k)]T . (27)

The first element of U∗(k|k) is applied to the system at
time instant k+1; hence

x(k+1) = x∗(k+1|k). (28)

The new control sequence at time instant k+1 will be

Ũ(k+1|k+1) = [ũ(k+1|k+1), ..., ũ(k+Np|k+1)]T ,

ũ(k+ i|k+1) = u∗(k+ i|k); i = 1, ...,Np. (29)

The control sequence Ũ(k+1|k+1) is not necessarily the
optimal control sequence. The state vector corresponding
to the control sequence Ũ(k+1|k+1) with the initial state
of the system x(k+1) is equal to

X̃(k+1|k+1)

= [x̃(k+2|k+1), ..., x̃(k+Np +1|k+1)] . (30)

The Lyapunov function corresponding to X̃(k+1|k+1) is
defined as

Ṽ (x̃(k+1)) =
Np

∑
j=1

L(x̃(k+ j+1|k+1)). (31)

Therefore, Ṽ (x̃(k+ 1)) is not necessarily optimal at time
instant k+1 and one can conclude that

V (x(k+1))≤ Ṽ (x̃(k+1)). (32)

Thus,

∆V (x(k))≤ Ṽ (x̃(k+1))−V (x(k)). (33)

Moreover,{
x̃(k+ i|k+1) = x∗(k+ i|k); i = 2, ...,Np,

x̃(k+Np +1|k+1) = f(x∗(k+Np|k),u∗(k+Np|k)) .
(34)
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Substituting (34) into (33) yields

∆V (x(k))

≤
Np

∑
j=1

L(x̃(k+ j+1|k+1))−
Np

∑
j=1

L(x∗(k+ j|k)) .

(35)

Therefore,

∆V (x(k))≤L(x̃(k+Np +1|k+1))

+
Np−1

∑
j=1

L(x̃(k+ j+1|k+1)) (36)

−
Np

∑
j=2

L(x∗(k+ j|k)−L(x∗(k+1|k))) .

Using (29) and (34), (36) can be written as

∆V (x(k))≤ L(x̃(k+Np +1|k+1))−L(x∗(k+1|k)) .
(37)

Hence,

∆V (x(k))≤ L(f(x∗(k+Np|k)))−L(x∗(k+1|k)) .
(38)

Equation (38) can be written in a simple form as

∆V (x(k))≤ LNp −L0, (39)

where L0 and LNp are the value of the nonlinear function
L(·) at the beginning and end of the optimization process
over the prediction horizon. According to Definition 1,
inequality LNp < L0 is satisfied for a predictive control.
Therefore,

∆V (x(k))≤ 0. (40)

Thus, ∆V (x(k)) is negative within the region χ and based
on the Lyapunov stability theory, the closed-loop system
is locally stable. □

5.1.1 Poincaré map method
In this section, the globally stability analysis of the

biped locomotion is analyzed using the Poincaré map.
This method can be used for stability analysis of the con-
tinuous dynamical systems that exhibits periodic or quasi-
periodic behavior. The Poincaré map is the return of one
point on the Poincaré section to the next point on this sec-
tion. For a continuous dynamical system, the Poincaré
map is the intersection of the periodic orbit in the state
space with Poincaré section [26]. In this way, the stability
study of the periodic orbit of a continuous dynamical sys-
tem reduces to a discrete dynamical system with lower-
dimensional state space, which has equilibrium points.
This discrete system has the same stability property as the
original system.

5.1.2 Poincaré map for biped robot
For a walking robot, a natural selection of the Poincaré

section can be the walking surface (i.e., the ground),
where the impact takes place. Hence, the Poincaré map
for a biped robot is the intersection of the walking surface
with the periodic orbit of the state variables. The stability
of this orbit was studied in the previous section using the
Lyapunov method. However, the biped robots are hybrid
dynamical systems with SSP, impact, and DSP. In the DSP,
both leg of the biped robot have contact with the ground
and the robot is more stable. Therefore, one can study
only the stability of the biped robot in the SSP and im-
pact phase [19, 21]. Systems with impulse effects can be
used to study the biped locomotion. These systems have a
continuous phase that are described by a differential equa-
tion, and a discrete phase. To define a control system with
impulse effects, consider a nonlinear control system rep-
resented as

ẋ = f(x)+g(x)u, (41)

where x and u are the state and control input vectors, re-
spectively, and f(·) and g(·) are known and nonlinear func-
tions. A control system with impulse effects has the fol-
lowing form:

Σ :

{
ẋ = f(x)+g(x)u, x− ̸∈ S,

x+ = ∆(x−), x− ∈ S,
(42)

where S is the impact surface and x− and x+ are the state
vector right before and after the impact, respectively. To
obtain the state space form for the biped robot, the system
state vector is defined as

x =
[
θT , θ̇T ]T , (43)

where θ and θ̇ are the angular position and velocity of the
joints, respectively. The dynamic equation for the biped
robot in the SSP is expressed as

D(θ)θ̈+H(θ, θ̇)θ̇+G(θ) = τ . (44)

The state-space form of the differential equation (44) can
be written as follows:

ẋ =

[
θ̇

D−1(θ)
(
−H(θ, θ̇)θ̇−G(θ)

) ]+[ 0
D−1(θ)

]
τ .

(45)

In order to present the dynamic equation of the biped robot
to form a system with impulse effects, the functions f and
g should be written in the following form:

f(x) =
[

θ̈
D−1(θ)

(
−H(θ, θ̇)θ̇−G(θ)

) ] ,
g(x) =

[
0

D−1(θ)

]
. (46)
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Moreover, the impact map can be written as

θ̇+ = θ̇−

+D−1(θ)J(θ)
[

J(θ) D−1(θ) JT (θ)
]−1

(−Jθ̇−).
(47)

In the impact phase, it is assumed that only the angular
velocity of the joints change. Therefore, the state vector
after the impact can be written as

x+ = ∆(x−) =
[

∆(θ−)
∆(θ−, θ̇−)

]
=

[
1

∆(θ−, θ̇−)

]
,

(48)

where

∆(θ−, θ̇−) = θ̇−

+D−1(θ)JT (θ)
[

J(θ) D−1(θ) JT (θ)
]−1

(−Jθ̇−).
(49)

The impact surface can be defined as

S = {x | ye(θ) = 0, xe(θ)> xb} , (50)

where [xe(θ),ye(θ)]
T is the coordinate of the tip of the

swing leg and xb is the horizontal position of the stance
leg. Each step of the biped locomotion consists of an SSP
and leg-support-exchange event. First, the Poincaré map
is calculated for each phase. Then, the Poincaré map for a
complete step can be obtained by combining them.

By defining z = [θT , θ̇T ]T . (44) can be written as a first
order system as

ż =
[

θ̇
D−1(θ)

(
τ −H(θ, θ̇)θ̇−G(θ)

) ]= f(z),

(51)

where z0 = z(0) =
[
θT (0), θ̇T (0)

]T
is the initial condition

of the system. Then, the Poincaré map P1 for the SSP is
as follows [22]:

P1 =

[
θ−

θ̇−

]
=
∫ [

θ̇
D−1(θ)

(
τ −H(θ, θ̇)θ̇−G(θ)

) ] ,
(52)

where [θ−, θ̇−]T is a 10× 1 vector that represents the an-
gular position and velocity of the joints right before the
impact, respectively. The integral in (52) can be solved by
any suitable numerical method.

When the tip of the swing leg touches the ground, the
impact occurs and only the angular velocities change.
Therefore, the angular positions and velocities right after
the impact can be written as[

θ+

θ̇+

]

=

[
θ−

θ̇−+D−1(θ)JT (θ)
[
J(θ) D−1(θ) JT (θ)

]−1
(−Jθ̇−)

]
.

(53)

After the impact, the roles of the swing and stance legs
exchange. Then, by relabeling the links, the same set of
equations of motion can be used for both left and right
legs. The positions and velocities of the joints at the end
of each step are used as the initial conditions for the next
step. The following matrix performs this transformation:

R =



0 0 0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0 0 0


.

(54)

Therefore, the second part of the Poincaré map (P2) can
be expressed as

P2 = R
[

θ+

θ̇+

]
= R

[
θ−

θ̇−+D−1(θ)JT (θ)
[
J(θ) D−1(θ) JT (θ)

]−1
(−Jθ̇−)

]
.

(55)

Combining P1 and P2, the Poincaré map (P) for a com-
plete step of the biped locomotion can be expressed as
[22]

P

= R
[

θ−

θ̇−+D−1(θ)JT (θ)
[
J(θ) D−1(θ) JT (θ)

]−1
(−Jθ̇−)

]
.

(56)

In order to examine the stability of the biped locomo-
tion, the fixed point of the Poincaré map in (56) should
be inspected. This fixed point can be calculated using nu-
merical integration methods. One way to determine the
stability of this fixed point is to find the eigenvalues of
the linearized Poincaré map. In other words, in order to
have a stable system, all the eigenvalues of the linearized
Poincaré map, evaluated around the fixed point, should be
inside the unit circle.

However, in the proposed method, there is no prede-
fined path for the biped robot to find the fixed point of
the Poincaré map. This is because the walking pattern of
the robot using the proposed method can be considered as
quasi-periodic [27]. In other words, the impact does not
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Fig. 9. Phase plane of the second and fourth joints.

happen at the exact same point (x+) on the impact surface
(S) during walking of the robot. Fig. 9 shows the phase
plane for the second and fourth (i.e., the knee) joints of the
robot when ascending the stairs. This is a directed graph
and each cycle indicates one complete gait of the robot.
The red-dashed lines indicate the transition from the ini-
tial state to the periodic movement of the robot. The rest of
the walking patterns are similar but not the same. That is
why it is considered as quasi-periodic orbits. This is due
to the nature of the proposed method, which adaptively
defines the gait of the robot based on the constraints of the
robot as well as the environment. In this way, the robot
walks more naturally and closer to the humans walking.

To evaluate the fixed point of the Poincaré map, we have
to find an average of several repetitions of walking. For
this reason, the robot has walked up and down the stairs
for fifty times with different initial conditions. The states
of the robot are recorded right before the impact occurs.
The Poincaré fixed point is the average of these recorded
data. The fixed point x∗ = [θ∗−, θ̇∗−], for ascending and
descending the stairs are as follows:

for ascending the stairs:

θ∗− = [0.4900,−0.2740,0.0290,1.0470,−0.3731]T ,
(57)

θ̇∗− = [−0.0138,0.8431,0.1523,−0.6550,−0.1283]T ,
(58)

for descending the stairs:

θ∗− = [1.0048,−0.2834,0.0173,0.4351,−0.3098]T ,
(59)

θ̇∗− = [0.1011,1.2504,0.1130,−1.3333,0.0504]T .
(60)

Next, the Poincaré map P is linearized around the fixed
point x∗ = [θ∗−, θ̇∗−]

δxk+1 = Aδxk, (61)

where the 10×10 matrix A is the Jacobian of the Poincaré
map and is computed as follows [21]:

A =
[

A1 A2 ... An
]
,

A j =
P(x∗+∆xi)−P(x∗−∆xi)

2∆xi
, i = 1, ...,10,

(62)

where the ith element of ∆xi is defined as{
∆xi = ∆θi, i = 1, ...,5,

∆xi = ∆θ̇i, i = 6, ...,10.
(63)

Considering ∆xi = 0.05, matrix A can be computed. The
eigenvalues of the Jacobian matrix A for ascending the
stairs are

λ1 =−0.7254, λ2 =−0.5464,

λ3,4 =−0.0264± j 0.0804,

λ5,6 = 0.4710± j 0.3619, (64)

λ7 = 0.9353, λ8,9 = 0.7099± j 0.0562,

λ10 = 0.5956,

and for descending the stairs they are equal to

λ1,2 =−0.6319± j 0.2820,

λ3,4 =−0.0112± j 0.0756,

λ5,6 = 0.6549± j 0.3766, λ7 = 0.7273, (65)

λ8,9 = 0.6032± j 0.0735, λ10 = 0.5540,

which show that all eigenvalues of A for the discontinuous
Poincaré map are inside the unit circle for walking up and
down the stairs. Hence, the closed-loop system is globally
stable.
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6. SIMULATION RESULTS

This section presents simulation results on the biped
robot in ascending and descending the stairs. For model
prediction, the RBFNNs (Section 3) are employed. The
physical parameters of the robot are given in Table 1.
Table 2 shows the minimum and maximum of the con-
straints. Other parameters are as follows:

Foot Length = 0.2 m, Np = 5, Nc = 4, Q = 100,

R = 0.01I, ∆t = 30 ms, δ = 1.5, ZMPmin = xb,

ZMPmax = xb +0.2.

The value of Q and R are selected in order for both terms
in (5) to have almost the same effect on the cost function.
Other parameters (β , δ , Np, and Nc) are selected for the
best performance of the proposed method.

The nonlinear constraint optimization problem in the
NMPC is solved using the fmincon function in the MAT-
LAB optimization toolbox. This function is based on the
Sequential Quadratic Programming (SQP). The SQP is an
iterative technique in which the objective is replaced by a
quadratic approximation and the constraints by linear ap-
proximations [28].

In the first part of simulations, the height and depth of
all stairs are the same and equal to 0.35 m and 0.2 m, re-
spectively. Moreover, the dynamic differential equation
of the biped robot is used as the predictor model in the
NMPC. The simulation results are shown in Figs. 10 to 13.
Fig. 10 shows the stick diagram of the biped robot in as-
cending and descending the stairs and walking on a flat
surface. Fig. 11 shows that the horizontal position of the
ZMP moves forward and is within the support polygon at
all times in the SSP as well as in the DSP. Therefore, the
biped robot is dynamically balanced. The vertical and hor-
izontal position of the swing and stance legs are shown in
Figs. 12 and 13, respectively.

Most papers on the subject of this manuscript assume
a fixed height and depth for all strairs, which is not the
case in reality. Even if they are fixed, their value should
be measured a priori and given to the control algorithm
before the robot can walk. On the other hand, in this pa-
per, there are no predefined gait for the proposed control
method. This means that the robot can climb stairs with
different heights and depths. In other words, using the
proposed method, the robot does not need to known the
trajectory in advance and just real-time information from
the stairs that are obtained from the sensors (e.g., cameras)
suffices to control the robot in ascending and descending
random stairs. This situation can aslo be considered as
walking on rough terrains.

Fig. 14 shows the flexibility of the proposed method for
the on-line trajectory generation in climbing the stairs with
defferent heights and depths. Figs. 15, 16 and 17 show the
horizontal position of the ZMP and the horizontal and ver-
tical position of the right and left legs, respectively, which

Table 1. Physical parameters of 5-DOF biped.

Link Length
(m)

Mass
(kg)

Inertia
(kgm2)

Location of
COM (m)

1, 5 0.54 3.7 0.5 0.285
2, 4 0.5 8.55 0.5 0.31

3 0.7 25 0.5 0.4

Table 2. Minimum and maximum values of variables.

Variable Minimum Maximum
θ1 0◦ 30◦

θ2 −60◦ 0◦

θ3 −3◦ 3◦

θ4 0◦ 80◦

θ5 −80◦ 0◦

Ti −350Nm 350Nm
β 4 15

Fig. 10. Stick diagram of biped robot in ascending and de-
scending the stairs.

show the success of the proposed method in climbing ran-
dom stairs. Fig. 18 shows that the joint torques are within
the saturation limits (±350 Nm ). Fig. 19 shows the hor-
izontal velocity of the COM. As this figure shows, during
the fourth step (i.e., when the stair height is high), the con-
troller decreases the velocity of the robot in order to main-
tain the stability. The dynamic walking of the robot can
be observed from this figure. It should be mentioned that
the velocity of the robot is not predefined and the con-
troller determines it based on the physical constraints of
the robot. In this way, walking of the robot is more natu-
ral and closer to the human walking.

Next, the performance of the NMPC is investigated in
the presence of robots uncertainties and external distur-
bances. In this case, the RBFNN is employed for model
prediction. For robots uncertainty, a 30% increase in the
mass and inertia of the torso link is considered. For exter-
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Fig. 11. Horizontal position of ZMP.

Fig. 12. Vertical position of the right and left legs.

nal disturbance, a 100 Nm impact torque is applied to the
torso for 0.15 sec.

In order to show the vital role of the NNs, first the dy-
namic equations of the robot are used as the prediction
model. As Figs. 20 and 21 show, the biped robot is not
able to keep its stability and eventually falls down. To
solve this problem, the RBFNN is used as the prediction
model in the NMPC. In this case, the prediction model is
able to adapt itself to the changes in the robot as well as in
the environment (Fig. 22). Fig. 23 shows the horizontal
position of the ZMP in the presence of uncertainty in the
model of the robot. As this figure shows, the ZMP remains
in the stable area. The horizontal position of the ZMP and
the joint torques, when the external disturbance is exerted
on the robot, are shown in Figs. 25 and 26, respectively.

In [5], for generating a stable trajectory, the desired
ZMP is considered in the middle of the stance leg. Then,
according to the relationship between the position of the

Fig. 13. Horizontal position of the right and left legs.

Fig. 14. Stable climbing stairs with different heights and
depths.

COM and the ZMP, the trajectory of the COM in the hori-
zontal direction is obtained by solving a second order dif-
ferential equation. Moreover, by adjusting the length of
the inverted pendulum, the ZMP error is reduced. In their
method, the duration and length of each gait are fixed.
Therefore, the biped robot is not able to climb the stairs
with different height and depth. Hence, if the environ-
ment or the length and depth of the stairs change, the biped
robot is not able to adapt itself to the new environment. In
addition, the robot moves very slowly such that it can be
considered as a static motion.

7. CONCLUSION

This paper proposed a nonlinear model predictive con-
trol scheme for a five-DOF biped robot for dynamic walk-
ing up and down the stairs. The main advantage of the
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Fig. 15. Horizontal position of ZMP in climbing stairs
with different heights and depths.

Fig. 16. Horizontal position of right and left legs in climb-
ing stairs with different heights and depths.

proposed method is that it does not require any prede-
fined trajectory and the motion of the robot is expressed
in the form of a cost function and some constraints for as-
cending and descending the stairs. Therefore, the trajec-
tory generation is performed online. In other words, the
motion of the biped robot can mimic the natural humans
walking. Another advantage of the proposed method is
that the length step is not fixed and the controller speci-
fies it as robot involves in walking. Therefore, the robot
can walk over stairs with different heights and depths. It
was shown that the NMPC is a model-based scheme and
to improve the performance of the controller, an accurate
model of the robot is required. To this end, the RBFNN
was used to model the robot dynamics accurately and the
performance of the neuro-NMPC controller in the pres-

Fig. 17. Vertical position of right and left legs in climbing
stairs with different heights and depths.

Fig. 18. Joint torques in climbing stairs with different
heights and depths.

ence of the robots uncertainties and external disturbances
was examined. The stability analysis of the closed-loop
system was studied using the Lyapunov method and the
Poincaré map. Simulating examples showed good per-
formance of the proposed controller for climbing random
stairs and coping with uncertainties in the system and ex-
ternal disturbances as well.
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