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Consensus of Multiple Euler-Lagrange Systems Using One Euler-
Lagrange System’s Velocity Measurements
Shan Cheng*, Li Yu, Dongmei Zhang, and Jinchen Ji

Abstract: This brief paper studies the stationary consensus of multiple Euler-Lagrange systems with nonlinear pro-
tocols. Two consensus protocols are given to guarantee that positions and velocities of multiple Euler-Lagrange
systems reach consensus. Proposed protocols need only the relative position measurements and the velocity mea-
surements of one Euler-Lagrange system. Finally, numerical simulations are given to illustrate the theoretical
results.
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1. INTRODUCTION

Consensus problems of multiple Euler-Lagrange (EL)
systems have been intensively investigated in recent years.
This research interest is mainly because that EL systems
can describe a large class of mechanical systems, includ-
ing autonomous vehicles, power systems, walking robots,
robotic manipulators and rigid bodies [1–4].

Various distributed controllers were proposed to tackle
the consensus control problems of multiple EL systems.
By using Lyapunov theory and Matrosov theory, three dis-
tributed controllers were proposed to demonstrate the sta-
bility of networked EL systems [5]. The authors in [6]
proposed a model-independent cross-coupled controller
for position synchronization of multi-axis motions. Con-
sidering the effects of communication delays, the proto-
cols with time-delays were studied in [7–10]. The con-
sensus algorithms for multiple EL systems without us-
ing neighbors’ velocity information were presented in
[11–13]. Some consensus algorithms for heterogeneous
EL systems were developed in [14, 15]. The authors in
[16–18] studied the consensus problem of networked EL
systems, in which the parametric uncertainties were con-
sidered. The leader-following consensus of multiple EL
systems was also studied recently [19].

Related to the consensus of networked EL systems are
the consensus problems in multi-agent systems [20–27].
Under the assumption that the velocity of the active leader
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can not be measured in real time, distributed observers
were designed for leader-following control in [20]. The
consensus algorithms for double-integrator dynamics in
four cases were proposed in [21]. Using local informa-
tion, the authors in [22] presented the leader-following
consensus protocols for both fixed and switching inter-
action topologies. The nonlinear protocols for leader-
less and leader-following were developed in [23]. The
authors in [24] developed a thermodynamic framework
for addressing consensus problems for nonlinear multi-
agent systems with switching topologies. In [25], some
sufficient conditions guaranteeing exponential consensus
for directed networks were presented. The reference
[26] studied the second-order leader-following consensus
problem of nonlinear multi-agent systems without assum-
ing that the interaction diagraph is strongly connected or
contains a directed spanning. Two protocols, which make
all agents asymptotically reach consensus while accom-
plishing some tasks, were introduced in [27].

It is well known that retrieval of the velocity informa-
tion of all EL systems is generally difficult in practical
situations due to technology limitations and external en-
vironment conditions. For example, in order to save cost,
space and weight, some EL systems are not equipped with
velocity sensors [11]. Hence, these EL systems can not
obtain any velocity information, and the protocols pro-
posed in [6] and [7] can not be implemented. On the other
hand, some EL systems may miss velocity information un-
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der special environments, or the obtained velocity mea-
surements are inaccurate [28, 29]. By introducing an aux-
iliary system, an observer or a distributed filter, consen-
sus algorithms without velocity measurements were de-
rived in [11–13]. However, these control strategies make
consensus protocols complex and improve the control
costs. In order to deal with above problems, this paper
presents two simple consensus protocols, in which only
one EL systems’s velocity measurements and relative po-
sition measurements between EL systems are needed, to
solve the consensus problems of multiple EL systems.

In addition, the nonlinear factor inevitably exists as a
nonlinear function of a variable between EL systems in
the measurements. For instance, due to the limitation of
observational technique and the inaccuracy of model pa-
rameters, the velocity q̇i of the EL system may be un-
observable in some cases, and a nonlinear function f (q̇i)
of the velocity q̇i can be observed [24, 25]. On the other
hand, since EL systems are always subjected to some un-
certain nonlinear factors, the relative position h(q j − qi)
can be measured instead of q j −qi during information ex-
change. Accordingly, in order to achieve high control per-
formance, nonlinear control protocols should be consid-
ered in the consensus problem of multiple EL systems.

The main contribution of this paper is to provide two
simple consensus protocols, in which only relative posi-
tion information between EL systems and one EL sys-
tem’s velocity information are needed, to guarantee that
all interconnected EL systems reach stationary consensus.
The proposed protocol can also solve the tracking prob-
lem for multiple EL systems where only one EL system
knows the desired position. The rest of the paper is orga-
nized as follows. Section 2 states the problem formula-
tions. Section 3 gives the main consensus results of mul-
tiple EL systems. Two simulation examples are given to
show the effectiveness of the proposed control algorithms
in Section 4. Finally, Section 5 presents a brief conclusion
to this paper.

Some mathematical notations to be used throughout this
paper are given below. Let R define a set of real numbers;
Rm×1 be the m-dimensional real column vector; Rm×m be
the set of m×m real matrices; and n̄ = {1,2, · · · ,n} be
an index set. λm(A) and λM(A) represent the minimum
and maximum eigenvalues of matrix A, respectively. ∥x∥
denotes the Euclidean norm of vector x. For any func-
tion f : R≥0 → Rm, the L∞-norm is defined as ∥ f∥∞ =
supt≥0 ∥ f (t)∥, and the L2-norm as ∥ f∥2

2 =
∫ ∞

0 ∥ f (t)∥2 dt.
The L∞ spaces are defined as the sets f : R≥0 → Rm :
∥ f∥∞ < ∞ and R≥0 → Rm : ∥ f∥2 < ∞. A ⪰ 0 denotes that
matrix A is positive definite.

2. PROBLEM FORMULATIONS

Consider n EL systems described by the following
equations

Mi(qi)q̈i +Ci(qi, q̇i)q̇i +Gi(qi) = τi + ιi, i ∈ n̄, (1)

where qi = (qi1, · · · ,qim)
⊤ ∈ Rm×1 is the vector of general-

ized coordinates, Mi(qi)∈Rm×m is the symmetric positive-
finite inertial matrix, Ci(qi, q̇i)q̇i ∈ Rm×1 is the vector of
Coriolis and centrifugal torques, Gi(qi) is the gravitational
torques and it is compensated [5], [8]. τi + ιi ∈ Rm is the
vector for torques produced by the actuators associated
with the ith EL system.

The control objective is to design protocol τi + ιi which
can guarantee that positions and velocities of all EL sys-
tems in (1) achieve stationary consensus, namely, lim

t→∞
∥qi

− q j∥ = 0, lim
t→∞

∥q̇i∥ = 0, i, j ∈ n̄. The protocol ιi is used

to compensate the effects of Gi(qi) on the dynamics, so
choose ιi = Gi(qi). Control input τi is introduced to sat-
isfy the objective of the consensus control of system (1) as
defined above. The design of τi is as follows:

(i) Suppose that τ1 for the EL system, labeled as 1, is
−B f (q̇1)+ c12 h(q2 −q1). Matrix B = diag(b1(t),b2(t),
· · · ,bm(t)) is symmetric positive definite and satisfies that
0 < b ≤ bi(t) < +∞, ḃi(t) is bounded. Communication
link c12 = c21 > 0 denotes the connection between the first
and the second EL system. Nonlinear function f and h
satisfy the following Hypothesis 1 and Hypothesis 2, re-
spectively.

(ii) For i = 2, · · · ,n−1, suppose that τi for the EL sys-
tem, labeled as i, is ci,i−1 h(qi−1 − qi)+ ci,i+1 h(qi+1 − qi),
in which ci,i−1 = ci−1,i > 0 denotes there is a connection
between the ith and the (i−1)th EL system.

(iii) Similarly, suppose that τn for the EL system, la-
beled as n, is cn,n−1h(qn−1−qn) where cn,n−1 = cn−1,n > 0.
Based on above discussions, the protocol τi+ ιi is given as

τi + ιi =


−B f (q̇1)+ c12h(q2 −q1)

+G1(q1), i = 1,
ci,i−1h(qi−1 −qi)+ ci,i+1h(qi+1 −qi),

+Gi(qi), i = 2, · · · ,n−1,
cn,n−1h(qn−1 −qn)+Gn(qn), i = n.

(2)

Remark 1: Control protocol (2) has the following fea-
tures. Firstly, only relative position measurements be-
tween two neighbored EL systems and the velocity mea-
surements of the first EL system are required. This is dif-
ferent from existing protocols in [3] and [5]. Secondly,
protocol (2) does’t need auxiliary systems [11], or a dis-
tributed filter and an observer [12]. Furthermore, in order
to better reflect some real situations, the nonlinear infor-
mation change is considered in protocol (2).

Protocol (2) has some limitations or drawbacks. Firstly,
system (1) will take a longer time to achieve consensus
since only the first EL system can obtain the velocity mea-
surements. Secondly, system (1) has the non-uniform rate
of convergence among EL systems. In other word, since
the other n−1 EL systems don’t obtain the velocity mea-
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surements, the first EL system has higher convergence rate
than the others.

Now some fundamental properties for system (1) will
be presented.

Property 1: Assume that 0 ≺ λm(Mi(qi))I ⪯ Mi(qi) ≺
λM(Mi(qi))I ≺ ∞, ∥Ci(qi, q̇i)∥ ≤ kc∥q̇i∥, kc > 0.

Property 2: Under an appropriate definition of the
matrix Ci(qi, q̇i), Ṁi(qi)− 2Ci(qi, q̇i) is skew-symmetric.
Therefore, for a given vector r ∈ Rm, it is easy to verify
that r⊤(Ṁi(qi)−2Ci(qi, q̇i))r = 0.

Property 3 [7]: Consider a mechanical system of the
form (1). Assume that q̇i, q̈i ∈ L∞, then the time derivative
of its Coriolis matrix Ci(qi, q̇i) is bounded.

Two hypotheses and two lemmas are needed in the sub-
sequent analysis.

Hypothesis 1: (1) fl(z) = 0 ⇔ z = 0.
(2) fl(z1)− fl(z2)

z1−z2
≥ k > 0, ∀z1 ̸= z2 ∈ R.

(3) fl(z) is continuously differentiable function, and f ′l (z)
denotes the differentiation with respect to z.

Hypothesis 2: (1) hl(−z) =−hl(z), ∀z ∈ R.
(2) hl(z) = 0 ⇔ z = 0.
(3) (z j − zi)hl(z j − zi)> 0, ∀z j ̸= zi ∈ R.
(4) hl(z) is continuously differentiable function.

Lemma 1 [30]: If w : R → R is a uniformly continu-
ous function for t ≥ 0 and if lim

t→∞

∫ t
0 |w(λ )|dλ exists and is

finite, then lim
t→∞

w(t) = 0.

Lemma 2 [30]: Let t → g(t) be a differentiable func-
tion with a finite limit as t → ∞. If ġ(t) is uniformly con-
tinuous, then lim

t→∞
ġ(t) = 0.

3. POSITIONS OF EL SYSTEMS REACH
CONSENSUS

In this section, the control protocols to guarantee that
all EL systems asymptotically reach stationary consensus
is derived based on the Lyapunov stability theory and the
Barbǎlat lemma.

Theorem 1: Consider system (1) with protocol (2) and
assume that Hypotheses 1-2 hold. Then, lim

t→∞
∥q j−qi∥= 0,

lim
t→∞

∥q̇i∥= 0, i, j ∈ n̄.

Proof: Select the Lyapunov function candidate

V (qi, q̇i) =
1
2

n

∑
i=1

q̇⊤i Mi(qi)q̇i

+
n−1

∑
i=1

m

∑
l=1

ci,i+1

∫ qi+1,l−qil

0
hl(s)ds.

In the following proof, we have used the fact that Ṁi(qi)−

2Ci(qi, q̇i) is skew-symmetric, and the equality
n−1
∑

i=1
ci,i+1

(q̇i+1 − q̇i)
⊤h(qi+1 −qi) =

n
∑

i=2
ci−1,iq̇⊤i h(qi −qi−1)−

n−1
∑

i=2

ci,i+1 q̇⊤i h(qi+1 −qi)− c12 q̇⊤1 h(q2 −q1) =
n−1
∑

i=2
ci−1,i q̇⊤i h(qi

−qi−1)−
n−1
∑

i=2
ci,i+1 q̇⊤i h(qi+1 −qi)+ cn−1,n q̇⊤n h(qn −qn−1)

− c12 q̇⊤1 h(q2 −q1).
Differentiating V (qi, q̇i) with respect to time along the

solution of (1) yields

V̇ =
n

∑
i=1

q̇⊤i Mi(qi)q̈i +
1
2

n

∑
i=1

q̇⊤i Ṁi(qi)q̇i

+
n−1

∑
i=1

m

∑
l=1

ci,i+1 hl(qi+1,l −qil)(q̇i+1,l − q̇il)

= q̇⊤
1

(
−C1(q1, q̇1)q̇1 −B f (q̇1)+ c12 h(q2 −q1)

)
+ q̇⊤n

(
−Cn(qn, q̇n)q̇n + cn,n−1 h(qn−1 −qn)

)
+

n−1

∑
i=2

q̇⊤i Mi(qi)q̈i +
1
2

q̇⊤
1 Ṁ1(q1)q̇1

+
1
2

q̇⊤
n Ṁn(qn)q̇n +

1
2

n−1

∑
i=2

q̇⊤i Ṁi(qi)q̇i

+
n−1

∑
i=1

ci,i+1 (q̇i+1 − q̇i)
⊤h(qi+1 −qi)

=
1
2

q̇⊤1
(
Ṁ1(q1)−2C1(q1, q̇1)

)
q̇1 +

1
2

q̇⊤n
(
Ṁn(qn)

−2Cn(qn, q̇n)
)
q̇n + q̇⊤1

(
−B f (q̇1)+ c12h(q2

−q1)
)
+ cn,n−1 q̇⊤

n h(qn−1 −qn)+
n−1

∑
i=2

q̇⊤
i(

−Ci(qi, q̇i)q̇i + ci,i−1 h(qi−1 −qi)+ ci,i+1

×h(qi+1 −qi)
)
+

1
2

n−1

∑
i=2

q̇⊤i Ṁi(qi)q̇i +
n−1

∑
i=2

ci−1,i

× q̇⊤i h(qi −qi−1)−
n−1

∑
i=2

ci,i+1 q̇⊤i h(qi+1 −qi)

+ cn−1,n q̇⊤
n h(qn −qn−1)− c12 q̇⊤1 h(q2 −q1)

= −q̇⊤
1 B f (q̇1)≤−bkq̇⊤

1 q̇1. (3)

The inequality (3) is obtained based on the property of
fl(z) and the property of matrix B.

We can conclude from inequality (3) that V̇ (qi, q̇i) ≤ 0
and

∫ t
0 bkq̇⊤1 q̇1 ds ≤V (qi(0), q̇i(0))−V (qi, q̇i). Hence,

lim
t→∞

∫ t
0 bkq̇⊤1 q̇1 ds exists and is finite. Note that M1(q1)q̈1

=−C1(q1, q̇1)q̇1−B f (q̇1)+c12 h(q2−q1) and Property 1,
we get that 2q̇⊤1 q̈1 is bounded. By applying Lemma 1, we
have lim

t→∞
∥q̇1∥ = 0 since q̇⊤1 q̇1 is uniformly continuous in

time.
Furthermore, taking the derivative on both sides

of equality M1(q1)q̈1 = −C1(q1, q̇1)q̇1 − B f (q̇1) +
c12 h(q2 − q1), we get that Ṁ1(q1)q̈1 + M1(q1)

d
dt q̈1 =

− d
dt C1(q1, q̇1)q̇1−C1(q1, q̇1)q̈1− d

dt (B f (q̇1))+c12
d
dt h(q2−

q1). Using the fact that Ṁ1(q1) =C1(q1, q̇1)+C⊤
1 (q1, q̇1),

q̇1, q̈1 ∈ L∞ together with Property 1, Property 3 and Hy-
potheses 1-2 allows us to conclude that d

dt q̈1 is bounded.
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By applying Lemma 2, we have lim
t→∞

∥q̈1∥ = 0 since q̈1 is
uniformly continuous in time. Taking the limit as t → ∞
on both sides of equality ∥M1(q1)q̈1 +C1(q1, q̇1)q̇1∥ =
∥−B f (q̇1) + c12h(q2 − q1)∥ gives rise to the expression
lim
t→∞

∥M1(q1)q̈1 +C1(q1, q̇1)q̇1∥= lim
t→∞

∥−B f (q̇1)+ c12

h(q2 −q1)∥. We can conclude that lim
t→∞

∥q2 −q1∥= 0 from

lim
t→∞

∥q̈1∥ = 0, lim
t→∞

∥q̇1∥ = 0 and the properties of f , h,

M1(q1) and C1(q1, q̇1). It is easy to see that q̇2 − q̇1 is
uniformly continuous in time, so lim

t→∞
∥q̇2 − q̇1∥ = 0. As a

result, it follows that lim
t→∞

∥q̇2∥= 0.

By following the similar analysis, we can get the result
lim
t→∞

∥q̈2∥ = 0 and lim
t→∞

∥q2 − q3∥ = 0. Then, the same
method of analysis can be used to get the final results
lim
t→∞

∥q̇i∥= 0, lim
t→∞

∥qi −qi−1∥= 0, namely, lim
t→∞

∥q j −qi∥=
0, i, j ∈ n̄.

Remark 2: Protocol τi is only one of protocols to
solve the consensus problem of system (1), and we are
looking for some other protocols. In protocol τi, when the
first EL system’s velocity information is measurable, sys-
tem (1) can reach consensus. In other situations, we can
not determine the convergence of system (1) due to the
complexity of the analysis.

4. POSITIONS OF EL SYSTEMS CONVERGE TO
THE DESIRED POSITION

In Section 3, system (1) can achieve consensus under
protocol (2). However, in that case we only know that
q1 = q2 =, · · · ,= qn as t → ∞, and don’t know where the
position qi converge. In order to guarantee that the state qi

in system (1) converges to a desired position q0, namely,
q1 = q2 =, · · · ,= qn = q0 as t → ∞, we need to design
another protocol, which can be denoted by τ∗

i + ι∗i .
Similarly, the input ι∗i is used to compensate the effects

of Gi(qi) on the dynamics, so choose ι∗i = Gi(qi). The
protocol τ∗

i + ι∗i is chosen as

τ∗
i + ι∗i =



−B f (q̇1)+ c12h(q2 −q1)
+G1(q1), i = 1,

ci,i−1h(qi−1 −qi)+ ci,i+1h(qi+1 −qi),
+Gi(qi), i = 2, · · · ,n−1,

cn,n−1h(qn−1 −qn)
+cn0h(q0 −qn)+Gn(qn), i = n.

(4)

In protocol (4), the state q0 ∈ Rm denotes the desired po-
sition state. Here, cn0 > 0 denotes that only the nth EL
system knows the stationary position q0 directly.

Theorem 2: Consider system (1) with protocol (4) and
assume that Hypotheses 1-2 hold. Then, lim

t→∞
∥qi−q0∥= 0,

lim
t→∞

∥q̇i∥= 0, i ∈ n̄.

Proof: Let q̂i = qi − q0, then system (1) with protocol

τ∗
i + ι∗i can be written as

M1(q1) ¨̂q1 +C1(q1, q̇1) ˙̂q1 =−B f ( ˙̂q1)
+c12 h(q̂2 − q̂1),

Mi(qi) ¨̂qi +Ci(qi, q̇i) ˙̂qi = ci,i−1 h(q̂i−1 − q̂i)
+ci,i+1 h(q̂i+1 − q̂i), i = 2,3, · · · ,n−1,

Mn(qn) ¨̂qn +Cn(qn, q̇n) ˙̂qn = cn,n−1 h(q̂n−1 − q̂n)
−cn0 h(q̂n).

(5)

Select the Lyapunov function as

V (q̂i, ˙̂qi) =
1
2

n

∑
i=1

˙̂q⊤i Mi(qi) ˙̂qi + cn0

m

∑
l=1

∫ q̂nl

0
hl(s)ds

+
n−1

∑
i=1

m

∑
l=1

ci,i+1

∫ q̂i+1,l−q̂il

0
hl(s)ds.

Differentiating V (q̂i, ˙̂qi) with respect to time along the so-
lution of (5) yields

V̇ =
n

∑
i=1

˙̂q⊤i Mi(qi) ¨̂qi +
1
2

n

∑
i=1

˙̂q⊤i Ṁi(qi) ˙̂qi

+
n−1

∑
i=1

m

∑
l=1

ci,i+1 hl(q̂i+1,l − q̂il)( ˙̂qi+1,l − ˙̂qil)

+ cn0

m

∑
l=1

hl(q̂nl) ˙̂qnl

= ˙̂q⊤1
(
−C1(q1, q̇1) ˙̂q1 −B f ( ˙̂q1)+ c12 h(q̂2 − q̂1)

)
+ ˙̂q⊤n

(
−Cn(qn, q̇n) ˙̂qn + cn,n−1 h(q̂n−1 − q̂n)

− cn0 h(q̂n)
)
+

n−1

∑
i=2

˙̂q⊤i Mi(qi) ¨̂qi

+
1
2

˙̂q⊤1 Ṁ1(q1) ˙̂q1 +
1
2

˙̂q⊤
n Ṁn(qn) ˙̂qn

+
1
2

n−1

∑
i=2

˙̂q⊤i Ṁi(qi) ˙̂qi +
n−1

∑
i=1

ci,i+1 ( ˙̂qi+1 − ˙̂qi)
⊤

×h(q̂i+1 − q̂i)+ cn0 ˙̂q⊤n h(q̂n)

=
1
2

˙̂q⊤1
(
Ṁ1(q1)−2C1(q1, q̇1)

) ˙̂q1 +
1
2

˙̂q⊤n
(
Ṁn(qn)

−2Cn(qn, q̇n)
) ˙̂qn + ˙̂q⊤1

(
−B f ( ˙̂q1)c12

× h(q̂2 − q̂1)
)
+ cn,n−1 ˙̂q⊤n h(q̂n−1 − q̂n)

+
n−1

∑
i=2

˙̂q⊤
i

(
−Ci(qi, q̇i) ˙̂qi + ci,i−1 h(q̂i−1 − q̂i)

+ ci,i+1 h(q̂i+1 − q̂i)
)
+

1
2

n−1

∑
i=2

˙̂q⊤i Ṁi(qi) ˙̂qi

+
n−1

∑
i=2

ci−1,i ˙̂q⊤
i h(q̂i − q̂i−1)−

n−1

∑
i=2

ci,i+1 ˙̂q⊤i h(q̂i+1

− q̂i)+ cn−1,n ˙̂q⊤
n h(q̂n − q̂n−1)− c12 ˙̂q⊤

1 h(q̂2 − q̂1)

= − ˙̂q⊤
1 B f ( ˙̂q1)≤−bk ˙̂q⊤1 ˙̂q1.

By following a similar analysis presented in Theorem 1,
one has lim

t→∞
∥ ˙̂qi∥ = 0, lim

t→∞
∥q̂i − q̂i−1∥ = 0. Note that ¨̂qn is
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uniformly continuous in time, then lim
t→∞

∥ ¨̂qn∥ = 0. Taking

the limit as t → ∞ on both sides of ∥Mn(qn) ¨̂qn +Cn(qn, q̇n)
× ˙̂qn∥ = ∥cn,n−1 h(q̂n−1 − q̂n)− cn0 h(q̂n)∥, and noting the
Property 1, Hypothesis 2 and lim

t→∞
∥q̂n−1 − q̂n∥= 0, it gives

that lim
t→∞

∥q̂n∥= 0, namely, lim
t→∞

∥qi −q0∥= 0, i ∈ n̄.

5. NUMERICAL SIMULATIONS

In this section, numerical simulations consisting of
three identical two-link manipulators are performed to
show the effectiveness of the proposed protocols. The dy-
namics of the two-link manipulators are given as follows
[1]:

M(q1)q̈1 +C(q1, q̇1)q̇1 = τ1,

where

M(q1) =

[
H11 H12

H21 H22

]
,q1 =

[
q11

q12

]
,τ1 =

[
τ11

τ12

]
,

C(q1, q̇1) =

[
−dq̇12 −d(q̇11 + q̇12)
dq̇11 0

]
,

with H11 = a1+2a3 cosq12+2a4 sinq12, H12 =H21 = a2+
a3 cosq12 +a4 sinq12, H22 = a2, d = a3 sinq12 −a4 cosq12,
a1 = I1 +ml l2

c1 + Ie +mel2
ce +mel2

1 , a2 = Ie +mel2
ce, a3 =

mel1lce cosδe, a4 = mel1lce sinδe.
In the following simulations, the parameters remain un-

changed and can be chosen as ml = 1, l1 = 1, me = 2, δe =
π
6 , I1 = 0.12, lc1 = 0.5, Ie = 0.25, lce = 0.6, f (q̇1) = q̇1,
h(z) = z+ 0.5sin(z), matrix B = diag(3,4), c12 = c21 =
c23 = c32 = c, c30 = 0.5. The initial conditions for three
manipulators are chosen as (q11,q12, q̇11, q̇12)

⊤ = (−0.21,
−0.22,0.28,0.29)⊤, (q21,q22, q̇21, q̇22)

⊤ = (−0.02,0.31,
−0.33,0.2)⊤ and (q31,q32, q̇31, q̇32)

⊤ = (−0.4,0.26,0.27,
−0.3)⊤.

Example 1: In this case, we consider three manipula-
tors with protocol (2) and c = 1:

M(q1)q̈1 =−C(q1, q̇1)q̇1 −Bq̇1 + ch(q2 −q1),
M(q2)q̈2 =−C(q2, q̇2)q̇2 + ch(q1 −q2)

+ch(q3 −q2),
M(q3)q̈3 =−C(q3, q̇3)q̇3 + ch(q2 −q3).

(6)

Fig. 1 shows the consensus process of qi1 and qi2, i =
1,2,3, in system (6). Fig. 2 illustrates that the velocities
q̇i1 and q̇i2, i = 1,2,3, in system (6) converge to zero. We
can see from Figs. 1-2 that three two-link manipulators
can reach stationary consensus.

Example 2: Under protocol (4), we consider three ma-
nipulators with the desired state (q01,q02, q̇01, q̇02)

⊤ = (1,
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Fig. 1. Consensus of qi1 and qi2 in (6).
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Fig. 2. Derivatives of qi1 and qi2 in (6) converge to 0.

0.8,0,0)⊤ and c = 3:
M(q1)q̈1 =−C(q1, q̇1)q̇1 −Bq̇1 + ch(q2 −q1),
M(q2)q̈2 =−C(q2, q̇2)q̇2 + ch(q1 −q2)

+ch(q3 −q2),
M(q3)q̈3 =−C(q3, q̇3)q̇3 + ch(q2 −q3)

+c30h(q0 −q3).

(7)

Fig. 3 shows that qi1 and qi2, i = 1,2,3 in system (7)
converge to 1 and 0.8, respectively. Fig. 4 shows that q̇i1

and q̇i2 in system (7) converge to 0. Figs. 3-4 illustrate that
the states of three manipulators in system (7) approach
(1,0.8,0,0)⊤.

Furthermore, let two manipulators get velocity informa-
tion in system (7) and the parameters remain unchanged.
So, we get the following controlled system:

M(q1)q̈1 =−C(q1, q̇1)q̇1 −Bq̇1 + ch(q2 −q1),
M(q2)q̈2 =−C(q2, q̇2)q̇2 −Bq̇2 + ch(q1 −q2)

+ch(q3 −q2),
M(q3)q̈3 =−C(q3, q̇3)q̇3 + ch(q2 −q3)

+c30h(q0 −q3).

(8)

Figs. 5-6 show that the states of three manipulators in sys-
tem (8) approach (1,0.8,0,0)⊤ within a short period of
time. Clearly, all states in system (8) have faster conver-
gent speed than states in (7) because there are two manip-
ulators can get velocity information in (8).

It can be seen from Figs. 1-4 that there are oscillatory
transient behaviors. This happens because only the first
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Fig. 3. Joint angles qi1 and qi2 in (7) converge to 1 and 0.8,
respectively.
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Fig. 4. Derivatives of qi1 and qi2 in (7) converge to 0.

EL system can obtain velocity measurements and dissi-
pates the energy. This oscillatory transient behaviors can
be reduced by two ways. Firstly, let more EL systems
have velocity gains in practical applications. For example,
let the first and the last EL systems obtain velocity mea-
surements in protocol (2) or (4). System (8) and Figs.5-6
show this case. Secondly, choose suitable velocity gain
matrix B= diag(b1(t),b2(t), · · · ,bm(t)) by numerical sim-
ulations.

6. CONCLUSIONS

The consensus of multiple EL systems with nonlinear
control protocols, in which only relative position informa-
tion between EL systems and one EL system’s velocity
information are needed, has been studied. Two protocols
were given to solve the consensus problems of networked
EL systems. Numerical simulations were used to illus-
trate the theoretical results. In future work, we focus on
some other topologies and derive convergence conditions
to guarantee that the networked EL systems reach consen-
sus with given topologies.
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