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Geometric Control of a Quadrotor UAV Transporting a Payload 

Connected via Flexible Cable 

 

Farhad A. Goodarzi*, Daewon Lee, and Taeyoung Lee 

 

Abstract: We derived a coordinate-free form of equations of motion for a complete model of a quadro-

tor UAV with a payload which is connected via a flexible cable according to Lagrangian mechanics on 

a manifold. The flexible cable is modeled as a system of serially-connected links and has been consi-

dered in the full dynamic model. A geometric nonlinear control system is presented to asymptotically 

stabilize the position of the quadrotor while aligning the links to the vertical direction below the qua-

drotor. Numerical simulation and experimental results are presented and a rigorous stability analysis is 

provided to confirm the accuracy of our derivations. These results will be particularly useful for ag-

gressive load transportation that involves large deformation of the cable. 
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1. INTRODUCTION 

 

Unmanned aerial vehicles (UAV) have been studied 

for different applications such as surveillance or mobile 

sensor networks as well as for educational purposes. 

Quadrotors are one kind of these UAVs which are very 

popular due to their dynamic simplicity, maneuverability 

and high performance. Areal transportation of a cable-

suspended load has been studied traditionally for 

helicopters [1,2]. Recently, small-size single or multiple 

autonomous vehicles are considered for load transpor-

tation and deployment [3-6], and trajectories with 

minimum swing and oscillation of payload are generated 

[7-9]. 

Safe cooperative transportation of possibly large or 

bulky payloads is extremely important in various 

missions, such as military operations, search and rescue, 

mars surface explorations and personal assistance. 

However, these results are based on the common and 

restrictive assumption that the cable connecting the 

payload to the quadrotor UAV is always taut and rigid. 

Also, the dynamic of the cable and payload are ignored 

and they are considered as bounded disturbances to the 

transporting vehicle. Therefore, they cannot be applied to 

aggressive, rapid load transportations where the cable is 

deformed or the tension along the cable is low, thereby 

restricting its applicability. As such, it is impossible to 

guarantee safety operations. It is challenging to incor-

porate the effects of a deformable cable, since the 

dimension of the configuration space becomes infinite. 

Finite element approximation of a cable often yields 

complicated equations of motion that make dynamic 

analysis and controller design extremely difficult. 

Recently, a coordinate-free form of the equations of 

motion for a chain pendulum connected a cart that moves 

on a horizontal plane is presented according to Lagra-

ngian mechanics on a manifold [10]. This paper is an 

extension of the prior work of the authors in [11]. By 

following the similar approach, in this paper, the cable is 

modeled as an arbitrary number of links with different 

sizes and masses that are serially-connected by spherical 

joints, as illustrated at Fig. 1. The resulting configuration 

manifold is the product of the special Euclidean group 

for the position and the attitude of the quadrotor, and a 

number of two-spheres that describe the direction of each 

link. We present Euler-Lagrange equations of the 

presented quadrotor model that are globally defined on 

the nonlinear configuration manifold. 

The second part of this paper deals with nonlinear 

control system development. Quadrotor UAV is under-

actuated as the direction of the total thrust is always 

fixed relative to its body. By utilizing geometric control 

systems for quadrotor [12-14], we show that the hanging 

equilibrium of the links can be asymptotically stabilized 

while translating the quadrotor to a desired position. In 

contrast to existing papers where the force and the 

moment exerted by the payload to the quadrotor are 

considered as disturbances, the control systems proposed 

in this paper explicitly consider the coupling effects 

between the cable/load dynamics and the quadrotor 

dynamics. 

Another distinct feature is that the equations of motion 

and the control systems are developed directly on the 

nonlinear configuration manifold in a coordinate-free 

fashion. This yields remarkably compact expressions for 

the dynamic model and controllers, compared with local 

coordinates that often require symbolic computational 
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tools due to complexity of multibody systems. Further-

more, singularities of local parameterization are 

completely avoided to generate agile maneuvers in a 

uniform way. 

Compared with preliminary results in [11], this paper 

presents a rigorous Lyapunov stability analysis to 

establish stability properties without any timescale 

separation assumptions or singular perturbation, and a 

new nonlinear integral control term is designed to 

guarantee robustness against unstructured uncertainties 

in both rotational and translational dynamics. In short, 

the main contribution of this paper is presenting a 

nonlinear dynamic model and a control system for a 

quadrotor UAV with a cable-suspended load, that 

explicitly incorporate the effects of deformable cable. 

This paper is organized as follows: A dynamic model 

is presented at Section 2 and control systems are 

developed at Sections 3 and 4. The desirable properties 

of the proposed control system are illustrated by a 

numerical example at Section 5, followed by experi-

mental results at Section 6. 

 

2. DYNAMIC MODEL OF A QUADROTOR WITH 

A FLEXIBLE CABLE 

 

Consider a quadrotor UAV with a payload that is 

connected via a chain of n links, as illustrated at Fig. 1. 

The inertial frame is defined by the unit vectors 

1
[1;0;0],e =

2
[0;1;0],e =  and 3

3
[0;0;1] ,e = ∈�  and the 

third axis e3 corresponds to the direction of gravity. 

Define a body-fixed frame 
1 2 3

{ , , }b b b
� � �

 whose origin is 

located at the center of mass of the quadrotor, and its 

third axis 
3
b
�

 is aligned to the axis of symmetry. 

The location of the mass center, and the attitude of the 

quadrotor are denoted by 3
x∈�  and (3)R∈SO  re-

spectively, where the special orthogonal group is (3)SO  
3 3

3 3
{ | , det[ ] 1}.T
R R R I R

×

×
= ∈ = =�  A rotation matrix 

represents the linear transformation of a representation of 

a vector from the body-fixed frame to the inertial frame. 

The dynamic model of the quadrotor is identical to 

[12]. The mass and the inertia matrix of the quadrotor are 

denoted by m∈�  and 3 3
,J

×

∈�  respectively. The 

quadrotor can generates a thrust 3

3
fRe− ∈�  with 

respect to the inertial frame, where f ∈�  is the total 

thrust magnitude. It also generates a moment 3
M ∈�  

with respect to its body-fixed frame. The pair ( )f M,  is 

considered as control input of the quadrotor. 

Let 2

i
q ∈S  be the unit-vector representing the 

direction of the i-th link, measured outward from the 

quadrotor toward the payload, where the two-sphere is 

the manifold of unit-vectors in 3
,�  i.e., 2 3{ |q= ∈�S  

1}.q =� �  For simplicity, we assume that the mass of 

each link is concentrated at the outboard end of the link, 

and the point where the first link is attached to the 

quadrotor corresponds to the mass center of the 

quadrotor. The mass and the length of the i -th link are 

defined by mi and ,
i
l ∈�  respectively. Thus, the mass 

of the payload corresponds to mn. The corresponding 

configuration manifold of this system is given by 
3 2(3) ( ) .n× ×�SO S  

Next, we show the kinematics equations. Let 3
Ω∈�  

be the angular velocity of the quadrotor represented with 

respect to the body fixed frame, and let 3

i
ω ∈�  be the 

angular velocity of the i-th link represented with respect 

to the inertial frame. The angular velocity is normal to 

the direction of the link, i.e., 0.
i i
q ω⋅ =  The kinematics 

equations are given by 

ˆ ,R R= Ω
�  (1) 

ˆ ,
i i i i i
q q qω ω= × =�  (2) 

where the hat map 3 (3)ˆ⋅ : →� so  is defined by the 

condition that x̂y x y= ×  for any 3
, ,x y∈�  and it 

transforms a vector in 3
�  to a 3 3×  skew-symmetric 

matrix. More explicitly, it is given by 

3 2

3 1

2 1

0

ˆ 0

0

a a

a a a

a a

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 (3) 

for 3

1 2 3
[ , , ] .

T
a a a a= ∈�  The inverse of the hat map is 

denoted by the vee map 3(3) .∨ : → �so  

Throughout this paper, the 2-norm of a matrix A is 

denoted by ,A� �  and the dot product is denoted by 

.

T
x y x y⋅ =  Also 

min
( )λ ⋅  and 

max
( )λ ⋅  denotes the 

minimum and maximum eigenvalue of a square matrix 

respectively, and 
m

λ  and 
M

λ  are shorthand for 
m

λ =  

( )
m

Jλ  and ( ).
M M

Jλ λ=  

 

2.1. Lagrangian 

We derive the equations of motion according to 

Lagrangian mechanics. The kinetic energy of the 

quadrotor is given by 

21 1

2 2
QT m x J= + Ω ⋅ Ω�� � . (4) 

 

Fig. 1. Quadrotor UAV with a cable-suspended load. 

Cable is modeled as a serial connection of 

arbitrary number of links (only 5 are illustrated).
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Let 3

i
x ∈�  be the location of mi in the inertial frame. It 

can be written as 

1

.

i

i a a

a

x x l q

=

= +∑  (5) 

Then, the kinetic energy of the links are given by 

2

1 1

1 1

2

1 1

1

2

1

2

1
.

2

n i

L i a a

i a

n n n

i a i i

i i a i

n i

i a a

i a

T m x l q

m x x m l q

m l q

= =

= = =

= =

= +

= + ⋅

+

∑ ∑

∑ ∑∑

∑ ∑

� �� �

� � �� �

�� �

 (6) 

From (4) and (6), the total kinetic energy can be written 

as 

2
00 0

1

, 1

1

2

1 1
,

2 2

n

i i

i

n
T

ij i j

i j

T M x x M q

M q q J

=

=

= + ⋅

+ ⋅ + Ω Ω

∑

∑

� � �� �

� �

 (7) 

where the inertia values 
00 0
, ,

i ij
M M M ∈�  are given 

by 

00 0 0 0

1

max{ , }

n n

i i a i i i

i a i

n

ij a i j

a i j

M m m M m l M M

M m l l

= =

=

= + , = , = ,

⎧ ⎫⎪ ⎪
= ⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑

∑

 (8) 

for 1 ,i≤ .j n≤  The gravitational potential energy is 

given by 

3 3

1

3 00 3

1

,

n

i i

i

n n

a i i

i a i

V mgx e m gx e

m gl e q M ge x

=

= =

= − ⋅ − ⋅

= − ⋅ − ⋅

∑

∑∑

 (9) 

From (7) and (9), the Lagrangian is .L T V= −  

 

2.2. Euler-Lagrange equations 

Coordinate-free form of Lagrangian mechanics on the 

two-sphere 2
S  and the special orthogonal group (3)SO  

for various multibody systems has been studied in 

[15,16]. The key idea is representing the infinitesimal 

variation of (3)R∈SO  in terms of the exponential map 

0
ˆ| exp ( )

d
R R

d
ε

δ εη
ε

=

= = ˆRη  (10) 

for 3
.η ∈�  The corresponding variation of the angular 

velocity is given by .δ η ηΩ = +Ω×� . Similarly, the 

infinitesimal variation of 2

i
q ∈S  is given by 

i i i
q qδ ξ= ×  (11) 

for 3

i
ξ ∈�  satisfying 0.

i i
qξ ⋅ =  This lies in the 

tangent space as it is perpendicular to qi. Using these, we 

obtain the following Euler-Lagrange equations. 

 

Proposition 1: Consider a quadrotor with a cable 

suspended payload whose Lagrangian is given by (7) and 

(9). The Euler-Lagrange equations on 3 2(3) ( )n× ×� SO S  

are as follows: 

00 0 3 00 3

1

Re ,

n

i i x

i

M x M q f M ge

=

+ = − + + Δ∑�� ��  (12) 

2
0

1(15)

2 2
3

ˆ

ˆ ,

n

ii i i i ij j

j
j i

n

ii i i a i i

a i

M q q M x M q

M q q m gl q e

=

≠

=

⎛ ⎞
− +⎜ ⎟

⎜ ⎟
⎝ ⎠

= − −

∑

∑

�� �� ��

�� �

 (13) 

ˆ ,
R

J J MΩ+Ω Ω = + Δ�  (14) 

where Mij is defined at (8). Therefore 
x

Δ  and 3

R
Δ ∈�  

are fixed disturbances applied to the translational and 

rotational dynamics of the quadrotor respectively. 

Equations (12) and (13) can be rewritten in a matrix form 

as follows: 

00 01 02 0

2 2 2

1 10 11 3 12 1 1 1 1

2 2 2

22 20 21 2 22 3 2 2

2 2 2

0 1 2 3

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

n

n

n

n
n n n n n n nn

M M M M x

q M M I M q M q q

qq M M q M I M q

qq M M q M q M I

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦− − −⎢ ⎥⎣ ⎦

� ��

� ��

���

�� � � �

���

3 00 3

2 2

1 11 1 1 1 31

2 2

2 22 2 2 2 32

2 2

3

ˆ

.ˆ

ˆ

x

n

a
a

n

a
a

n nn n n n n

fRe M ge

q M q m gl q e

q M q m gl q e

q M q m gl q e

=

=

− + + Δ⎡ ⎤
⎢ ⎥
− −⎢ ⎥

⎢ ⎥
= ⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

∑

∑

�� �

�� �

�

�� �

 (15) 

Or equivalently, it can be written in terms of the angular 

velocities as 

00 01 1 02 2 0

1 10 11 3 12 1 2 1 1 1

2 20 21 2 1 22 3 2 2 2

0 1 1 2 32

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

n n

n n

n n

n n n n n n nn n

M M q M q M q x

q M M I M q q M q q

q M M q q M I M q q

q M M q q M q M Iq

ω

ω

ω

− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦

���

��

��

� � � � �

��

2

0 3 00 31

2

1 1 1 1 32 1

2

2 2 2 2 31 2 2

1 2

31

ˆ ˆ

,ˆ ˆ

ˆ ˆ

n

j j j xj

n n

j j j aj a

n n

j j j aj j a

n

nj j n j n n nj

M q fRe M ge

M q q m gl q e

M q q m gl q e

M q q m gl q e

ω

ω

ω

ω

=

= =

= , ≠ =

−

=

⎡ ⎤− + + Δ
⎢ ⎥
⎢ ⎥

+⎢ ⎥
⎢ ⎥

= +⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎢ ⎥
⎣ ⎦

∑

∑ ∑

∑ ∑

∑

� �

� �

� �

�

� �

 (16) 

.

i i i
q qω= ×�  (17) 
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Proof: See Appendix A.1.         � 
 

These provide a coordinate-free form of the equations of 

motion for the presented quadrotor UAV that is 

uniformly defined for any number of links n, and that is 

globally defined on the nonlinear configuration manifold. 

Compared with equations of motion derived in terms of 

local coordinates, such as Euler-angles, these avoid 

singularities completely, and they provide a compact 

form of equations that are suitable for control system 

design. 

However, the presented finite element model may not 

capture the certain dynamic characteristics of the actual 

cable dynamics represented by partial differential 

equations. Designing a control system for such infinite-

dimensional system is beyond the scope of this paper. 

 

3. CONTROL SYSTEM DESIGN FOR A 

SIMPLIFIED DYNAMIC MODEL 

 

3.1. Control problem formulation 

Let 3

d
x ∈�  be a fixed desired location of the 

quadrotor UAV. Assuming that all of the links are 

pointing downward, i.e., 
3
,

i
q e=  the resulting location 

of the payload is given by 

3

1

.

n

n d i

i

x x l e

=

= +∑  (18) 

We wish to design the control force f and the control 

moment M such that this hanging equilibrium con-

figuration at the desired location becomes asymptotically 

stable. 

 

3.2. Simplified dynamic model 

For the given equations of motion (12) for x, the 

control force is given by –fRe3. This implies that the total 

thrust magnitude f can be arbitrarily chosen, but the 

direction of the thrust vector is always along the third 

body-fixed axis. Also, the rotational attitude dynamics of 

the quadrotor is not affected by the translational 

dynamics of the quadrotor or the dynamics of links. 

To overcome the under-actuated property of a 

quadrotor, in this section, we first replace the term –fRe3 

of (12) by a fictitious control input 3
,u∈�  and design 

an expression for u to asymptotically stabilize the desired 

equilibrium. This is equivalent to assuming that the 

attitude R of the quadrotor can be instantaneously 

controlled. The effects of the attitude dynamics are 

incorporated at the next section. Also 
x

Δ  is ignored in 

the simplified dynamic model. In short, the equations of 

motion for the simplified dynamic model considered in 

the section are given by 

00 0 00 3

1

n

i i

i

M x M q u M ge

=

+ = +∑�� ��  (19) 

and (13). 

 

3.3. Linear control system 

The fictitious control input is designed from the 

linearized dynamics about the desired hanging equi-

librium. The variation of x and u are given by 

00 3
, .

d
x x x u u M geδ δ= − = −  (20) 

From (11), the variation of qi from the equilibrium can 

be written as 

3i i
q eδ ξ= × ,

 (21) 

where 3

i
ξ ∈�  with 

3
0.

i
eξ ⋅ =  The variation of ωi is 

given by 3
δω∈�  with 

3
0.

i
eδω ⋅ =  Therefore, the 

third element of each of 
i

ξ  and 
i

δω  for any equilib-

rium configuration is zero, and they are omitted in the 

following linearized equation, i.e., the state vector of the 

linearized equation is composed of 2
,

T

i
C ξ ∈�  where 

3 2

1 2
[ , ] .C e e

×

= ∈�  

 

Proposition 2: The linearized equations of the simpli-

fied dynamic model (19) and (13) can be written as 

follows: 

( )uδ+ = + , ,Mx Gx B x x�� �g  (22) 

where ( ),x x�g  corresponds to the higher order terms 

where 2 3
[ ] ,

T n
qxδ

+

= , ∈x x �
2 3 2 3

,

n n+ × +
∈M � ∈G  

2 3 2 3
,

n n+ × +
�

2 3 3
,

n+ ×
∈B �  and (22) can equivalently be 

written as 

3 3 2

2 3

3

2 3

0 0

0

( )
0

xx xq n

q n qq qqx qq

n

x x

I
u

δ δ

δ

×

×

×

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤
= + , ,⎢ ⎥
⎣ ⎦

M M

x G xM M

x x

��

��

�g

 

where the corresponding sub-matrices are defined as 

1

00 3

[ ; ; ],
T T

q n

xx

C C

M I

ξ ξ= …

= ,

x

M

 

01 3
ˆ[

xq
M e C= −M

02 3
ˆM e C− �

0 3̂
],nM e C−  

11 2 12 2 1 2

21 2 22 2 2 2

1 2 2 2 2

1 2 2

1

,

diag .

T
qx xq

n

n
qq

n n nn

n

qq a n n

a

M I M I M I

M I M I M I

M I M I M I

m gl I m gl I
=

= ,

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
= , ,⎢ ⎥

⎣ ⎦
∑

M M

M

G

�

�

� � �

�

�

 

Proof: See Appendix A.2.         � 

 

For the linearized dynamics (22), the following control 

system is chosen 

3

1

( )
i i

n
T T

x x q i i

a

x x

u k x k x k C e q k C

K K

ω
δ δ δ δω

=

= − − − × −

= − −

∑

x x

�

�

�

�

 (23) 
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for controller gains 
13 3 2 3 2

[ , , ]
n

x x q q
K k I k I k I

× ×
= … ∈  

3 (3 2 )n× +

�  and 3 (3 2 )

13 3 2 3 2
[ , , ] .

n

n
x x

K k I k I k I
ω ω

× +

× ×
= … ∈

� �

�  

Provided that (22) is controllable, we can choose the 

controller gains ,
x

K
x

K
�

 such that the equilibrium is 

asymptotically stable for the linearized equation (22). 

Then, the equilibrium becomes asymptotically stable for 

the nonlinear Euler Lagrange equation (19) and (13) [17]. 

The controlled linearized system can be written as 

1 1
( )z z= + , ,x x�� A Bg  (24) 

where 4 6

1
[ ]

T n
z

+
= , ∈x x� �  and the matrices ∈A  

4 6 4 6n n+ × +

�  and 4 6 2 3n n+ × +

∈�B  are defined as 

1 1

1

0
,

( ) ( )

0
.

x x

I

K K
− −

−

⎡ ⎤
= ⎢ ⎥

− + −⎢ ⎥⎣ ⎦

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

M G B M B

M

�

A

B

 (25) 

We can also choose K
x

 and K
x�

 such that A  is 

Hurwitz. Then for any positive definite matrix Q∈  
4 6 4 6

,

n n+ × +
�  there exist a positive definite and sym-

metric matrix 4 6 4 6n n

P
+ × +

∈�  such that T
P P+ =A A  

Q−  according to [17,Theorem 3.6]. 

 

4. CONTROLLER DESIGN FOR A QUADROTOR 

WITH A FLEXIBLE CABLE 

 

The control system designed in the previous section is 

generalized to the full dynamic model that includes the 

attitude dynamics. The central idea is that the attitude R 

of the quadrotor is controlled such that its total thrust 

direction –Re3 that corresponds to the third body-fixed 

axis asymptotically follows the direction of the fictitious 

control input u. By choosing the total thrust magnitude 

properly, we can guarantee that the total thrust vector   

–fRe3 asymptotically converges to the fictitious ideal 

force u, thereby yielding asymptotic stability of the full 

dynamic model. 

 

4.1. Controller design
 

Consider the full nonlinear equations of motion, let 
3

A∈�  be the ideal total thrust of the quadrotor system 

that asymptotically stabilize the desired equilibrium. 

From (20), we have 

00 3

00 3
( ) ,

x x z

A M ge u

K K K e M gesat
σ

δ= +

= − − − +
x

x x
�

�

 (26) 

where the following integral term 2 3n

e
+

∈�  is added to 

eliminate the effect of disturbance 
x

Δ  in the full 

dynamic model 

1
0
( ) ( ) ,

t
T

e P z dτ τ= ∫ B  (27) 

where 
1

3 (3 2 )

3 3 2 3 2
[ , , ]

n

n

z z z z
K k I k I k I

× +

× ×
= … ∈�  is an 

integral gain. For a positive constant ,σ ∈�  a 

saturation function [ ]satσ σ σ: → − ,�  is introduced as 

if

( ) ifsat

if .

y

y y y

y
σ

σ σ

σ σ

σ σ

>⎧
⎪

= − ≤ ≤⎨
⎪− < −⎩

 

If the input is a vector ,

n

y∈�  then the above satur-

ation function is applied element by element to define a 

saturation function ( ) : [ , ]n n

sat y
σ

σ σ→ −�  for a vector. 

It is also assumed that an upper bound of the infinite 

norm of the uncertainty is known 

,
x

δ
∞

Δ ≤� �  (28) 

for positive constant δ. The desired direction of the third 

body-fixed axis 2

3
c

b ∈S  is given by 

3
.

c

A
b

A
= −

� �
 (29) 

This provides a two-dimensional constraint for the 

desired attitude of quadrotor, and there is additional one-

dimensional degree of freedom that corresponds to 

rotation about the third body-fixed axis, i.e., yaw angle. 

A desired direction of the first body-fixed axis, namely 
2

1d
b ∈S  is introduced to resolve it, and it is projected 

onto the plane normal to 
3
.

c

b  The desired direction of 

the second body-fixed axis is chosen to constitute an 

orthonormal frame. More explicitly, the desired attitude 

is given by 

2

3 1 3 1

32

3 1 3 1

ˆ ˆ

, , ,
ˆ ˆ
c d c d

c

c d c d

c

b b b b
R b

b b b b

⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦� � � �

 (30) 

which is guaranteed to lie in (3)SO  by construction, 

assuming that 
1d
b  is not parallel to 

3c
b  [13]. The desired 

angular velocity 3

c
Ω ∈�  is obtained by the attitude 

kinematics equation 

( ) .T

c c c
R R

∨

Ω = �  (31) 

Next, we introduce the tracking error variables for the 

attitude and the angular velocity ,
R
e

3
e
Ω
∈�  as fol-

lows [18]: 

1
( ) ,

2

T T

R c c
e R R R R

∨

= −  (32) 

.

T

c c
e R R
Ω
= Ω − Ω  (33) 

The thrust magnitude and the moment vector of 

quadrotor are chosen as 

3
,f A Re= − ⋅  (34) 

ˆ( ),

R R I I

T T

c c c c

M k e k e k e J

J R R R R

Ω Ω
= − − − +Ω× Ω

− Ω Ω − Ω
�

 (35) 

where ,
R
k ,k

Ω
 and 

I
k  are positive constants and the 

following integral term is introduced to eliminate the 

effect of fixed disturbance 
R

Δ  

2
0

( ) ( ) ,
t

I R
e e c e dτ τ τ

Ω
= +∫  (36) 

where c2 is a positive constant. 
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4.2. Stability analysis
 

Proposition 3: Consider control inputs f, M defined in 

(34) and (35). There exist controller parameters and gains 

such that, (i) the zero equilibrium of tracking error is stable 

in the sense of Lyapunov; (ii) the tracking errors ,
R
e  

,e
Ω

,x x�  asymptotically converge to zero as t →  ;∞  

(iii) the integral terms eI and e are uniformly bounded. 

Proof: See Appendix A.3.         � 

 

By utilizing geometric control systems for quadrotor, we 

show that the hanging equilibrium of the links can be 

asymptotically stabilized while translating the quadrotor 

to a desired position. The control systems proposed 

explicitly consider the coupling effects between the 

cable/load dynamics and the quadrotor dynamics. We 

presented a rigorous Lyapunov stability analysis to 

establish stability properties without any timescale 

separation assumptions or singular perturbation, and a 

new nonlinear integral control term is designed to 

guarantee robustness against unstructured uncertainties 

in both rotational and translational dynamics. 

 

5. NUMERICAL EXAMPLE 

 

The desirable properties of the proposed control 

system are illustrated by a numerical example. Properties 

of a quadrotor are chosen as 

0 5kgm = . ,  2 2
diag[0 557 0 557 1 05] 10 kgmJ

−

= . , . , . × .  

Five identical links with 5,n = 0 1kg,
i

m = .  and 
i
l =  

0 1m.  are considered. Controller parameters are selected 

as follows: 12 8,
x
k = . 4 22,

v
k = . 0 65,

R
k = . 0 11,k

Ω
= .  

1 5,
I
k = .

1 2
0 7.c c= = .  Also 

q
k  and k

ω
 are defined as 

[11.01,6.67,1.97,0.41,0.069],

[0.93,0.24,0.032,0.030,0.025].

q
k

k
ω

=

=

 

The desired location of the quadrotor is selected as 

3 1
0 .

d
x

×
=  The initial conditions for the quadrotor are 

given by 

(0) [0.6; 0.7;0.2],x = −   
3 1

(0) 0 ,x
×

=�  

3 3
(0) ,R I

×
=   

3 1
(0) 0 .

×
Ω =  

The initial direction of the links are chosen such that the 

cable is curved along the horizontal direction, as 

illustrated at Fig. 4(a), and the initial angular velocity of 

each link is chosen as zero. The following two fixed 

disturbances are included in the numerical simulation. 

[0.03, 0.02, 0.01] ,
T

R
Δ = −  

[ 0.0125, 0.0125, 0.01] .
T

x
Δ = −  

We considered two cases for this numerical simulation 

to compare the effect of the proposed integral term in the 

presence of disturbances as follows: (i) with integral 

term and (ii) without integral term, to emphasize the 

effect of the integral term. The simulation results for 

each case are illustrated at Figs. 2 and 3, respectively. 

The corresponding maneuvers of the quadrotor and the 

links for the second case are illustrated at Fig. 4. 

Figs. 2(a) and 3(a) show the attitude error function 

defined as 

1
( , ) tr[ ],

2

T

d c
R R I R Rψ = −  (37) 

which represents the difference between the desired 

attitude and the actual attitude of the quadrotor. It is 

shown that there is a steady state error for the first case 

without the integral control term, but the error is 

eliminated at Fig. 3(a) for the second case. Next, we 

define the two following error cumulative variables to 

show the stabilizing performance for all links: 

3

1

,

n

q i

i

e q e

=

= −∑ � �   
1

,

n

i

i

e
ω

ω

=

=∑ � �  (38) 

and the results of numerical simulation for these error 

functions are presented in 2(b) and 3(b) for each case. 

The initial errors for the links are quite large, but they 

converge to zero nicely. For the first case, there exist a 

small steady state error in both ew and eq. Figs. 2(e) and 

3(e) show the desired location of the quadrotor (dashed 

line) and the actual location (solid like) for each case. 

 

 
(a) Attitude error function 

ψ. 

(b) Direction error eq and 

angular velocity error 

eω for links. 

 
(c) Quadrotor angular vel-

ocity Ω:blue, Ωd:red. 

(d) Control force u. 

 
(e) Quadrotor position. (f) Quadrotor velocity. 

Fig. 2. Stabilization of a payload connected to a quadro-

tor with 5 links without Integral term. 
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These numerical examples verifies that under the 

proposed control system, all of the position and attitude 

of the quadrotor, the direction of links, and the location 

of the payload asymptotically converge to their desire 

values, and the presented integral terms are effective in 

eliminating steady state errors caused by disturbances. 

 

 
(a) Attitude error function. (b) Direction error eq and 

angular velocity error

eω for links. 

 
(c) Quadrotor angular vel-

ocity Ω:blue, Ωd:red. 

(d) Control force u. 

 
(e) Quadrotor position. (f) Quadrotor velocity. 

Fig. 3. Stabilization of a payload connected to a quadro-

tor with 5 links with integral term. 

 

(a) t = 0. (b) t = 0.2. (c) t = 0.35. (d) t = 0.40. (e) t= 0.42.

(f) t =0.45. (g) t = 0.5. (h) t = 0.6. (i) t = 0.7. (j) t = 0.8.

(k) t = 0.9. (l) t = 1.3. (m) t = 1.5. (n) t = 2.0. (o) t= 10.0.

Fig. 4. Snapshots of the controlled maneuver. 

6. EXPERIMENTAL RESULTS 

 

Experimental results of the proposed controller are 

presented in this section. A quadrotor UAV is developed 

with the following configuration as illustrated at Fig. 5: 

• Gumstix Overo computer-in-module (OMAP 600 

MHz processor), running a non-realtime Linux 

operating system. It is connected to a ground station 

via WIFI. 

• Microstrain 3DM-GX3 IMU, connected to Gumstix 

via UART. 

• BL-CTRL 2.0 motor speed controller, connected to 

Gumstix via I2C. 

• Roxxy 2827-35 Brushless DC motors. 

• XBee RF module, connected to Gumstix via UART. 

 

The weight of the entire UAV system is 0.791 kg 

including one battery. A payload with mass of 
1

m =  

0 036 kg.  is attached to the quadrotor via a cable of 

length 
1

0 7m.l = .  The length from the center of the 

quadrotor to each motor rotational axis is d =  

0 169 ,athrmm.  the thrust to torque coefficient is 
f

c
τ

=  

0 1056m.  and the moment of inertia is [0.56,0.56,J =  
2 2

1.05] 10 kgm .
−

×  The angular velocity is measured 

from inertial measurement unit (IMU) and the attitude is 

estimated from IMU data. Position of the UAV is 

measured from motion capture system (Vicon) and the 

velocity is estimated from the measurement. Ground 

computing system receives the Vicon data and send it to 

the UAV via XBee. The Gumstix is adopted as micro 

computing unit on the UAV. It has two main threads, 

 

 
(a) Hardware configuration. 

 

(b) Quadrotor with a suspended payload. 

Fig. 5. Hardware development for a quadrotor UAV. 
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Vicon thread and IMU thread. The Vicon thread receives 

the Vicon measurement and estimates linear velocity of 

the quadrotor and runs at 30Hz. In IMU thread, it 

receives the IMU measurement and estimates the angular 

velocity. Also, control outputs are calculated at 120Hz in 

this thread. 

Two cases are considered and compared. For the first 

case, a position control system developed in [14], for 

quadrotor UAV that does not include the dynamics of the 

payload and the link, is applied to hover the quadrotor at 

the desired location, and the second case, the proposed 

control system is used. 

Experimental results are shown at Figs. 6 and 7. The 

position of the quadrotor and the payload is compared 

with the desired position of the quadrotor at Fig. 6, and 

the deflection angle of the link from the vertical direction 

are illustrated at Fig. 7. It is shown that the proposed 

control system reduces the undesired oscillation of the 

link effectively, compared with the quadrotor position 

control system (a short video of the experiments is 

available at http://youtu.be/RyTmWVbgt34.) 

There are several disturbances and modeling errors in 

this experimental setup, such as errors in mass properties 

of the quadrotor, processing and communication delay of 

the motion capture systems, and ground effects of air 

flow. Therefore, these experimental illustrate robustness 

of the proposed control system with respect to various 

forms of uncertainties and disturbances. Generalizing the 

presented control system for advanced nonlinear 

adaptive or robust controls are relegated to future 

investigation. 

 

7. CONCLUSIONS 

 

Euler-Lagrange equations have been used for the 

quadrotor and the chain pendulum to model a flexible 

cable transporting a load in 3D space. These derivations 

developed in a remarkably compact form which allows 

us to choose arbitrary number and any configuration of 

the links. We developed a geometric nonlinear controller 

to stabilize the links below the quadrotor in the 

equilibrium position from any chosen initial condition. 

We expanded these derivations in such way that there is 

no need of using local angle coordinate and this 

advantageous technique signalize our derivations. 

 

APPENDIX A 

A.1. Proof for Proposition 1 

From (7) and (9), the Lagrangian is given by 

2
00 0

1 , 1

1 1

2 2

n n

i i ij i j

i i j

L M x x M q M q q

= =

= + ⋅ + ⋅∑ ∑� � � � �� �  

(a) Case I: quadrotor position control system [14]. 

(b) Case II: proposed control system for quadrotor with 

suspended payload.  

Fig. 6. Experimental results (xd: black, x: red, x+l1q1:

blue). 

 
(a) Case I: quadrotor position control system [14]. 

 
(b) Case II: proposed control system for quadrotor with 

suspended payload. 

Fig. 7. Experimental results: link deflection angles. 
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3 00 3

1

1

2

n n

T

a i i

i a i

m gl e q M ge x J

= =

+ ⋅ + ⋅ + Ω Ω∑∑ . (A.1) 

The derivatives of the Lagrangian are given by 

00 3

00 0

1

x

n

x i i

i

L M ge

L M x M q
=

= ,

= + ,∑

D

D
�

� �

 

where 
x
LD  represents the derivative of L with respect 

to x. From the variation of the angular velocity given 

after (10), we have 

( )

( ).

L J

J J

δ η η

η η

Ω
⋅ Ω = Ω⋅ +Ω×

= Ω⋅ − ⋅ Ω× Ω

D �

�

 (A.2) 

Similarly from (11), the derivative of the Lagrangian 

with respect to qi is given by 

3

3

( )

ˆ .

i

n

q i a i i i

a i

n

a i i i

a i

L q m gl e q

m gl e q

δ ξ

ξ

=

=

⋅ = ⋅ ×

= − ⋅

∑

∑

D

 

The variation of 
i

q�  is given by 

.

i i i i i
q q qδ ξ ξ= × + ×

�

�  

Using this, the derivative of the Lagrangian with respect 

to 
i
q�  is given by 

( )

0

1

0

1

0

1

0

1

ˆ

ˆ .

i

n

i i ij j iq

j

n

i ij j i i i

j

n

i i ij j i

j

n

i i ij j i

j

L q M x M q q

M x M q q q

q M x M q

q M x M q

δ δ

ξ ξ

ξ

ξ

=

=

=

=

⎛ ⎞
⋅ = + ⋅⎜ ⎟

⎜ ⎟
⎝ ⎠

⎛ ⎞
= + ⋅ × + ×⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞
= + ⋅⎜ ⎟

⎜ ⎟
⎝ ⎠

⎛ ⎞
+ + ⋅⎜ ⎟

⎜ ⎟
⎝ ⎠

∑

∑

∑

∑

D
�

� � � �

�

� � �

�

� �

� � �

 

Let G  be the action integral, i.e., 
0

.

ft

t

Ldt= ∫G  From 

the above expressions for the derivatives of the Lagran-

gian, the variation of the action integral can be written as 

0
00 0 00 3

1

0

1 1

0 3

1 1

ˆ

ˆ ˆ

( ) .

f
n

t

i i
t

i

n n

i ij j ii

i j

n n n

i i ij j a i i i

i j a i

M x M q x M ge x

M x M qq

q M x M q m gl e q

J J dt

δ δ δ

ξ

ξ

η η

=

= =

= = =

⎧ ⎫⎪ ⎪
= + ⋅ + ⋅⎨ ⎬

⎪ ⎪⎩ ⎭

⎧ ⎫⎛ ⎞⎪ ⎪
+ + ⋅⎜ ⎟⎨ ⎬⎜ ⎟

⎪ ⎪⎝ ⎠⎩ ⎭

⎧ ⎫⎛ ⎞⎪ ⎪
+ + − ⋅⎜ ⎟⎨ ⎬⎜ ⎟

⎪ ⎪⎝ ⎠⎩ ⎭

+ Ω⋅ − ⋅ Ω× Ω

∑∫

∑ ∑

∑ ∑ ∑

� � �

�

� �

� � �

�

G

 

Integrating by parts and using the fact that variations at 

the end points vanish, this reduces to 

0
00 3 00 0

1

0 3

1 1

ˆ ˆ

( )

f
n

t

i i
t

i

n n n

i i ij j a i i i

i j a i

M ge M x M q x

q M x M q m gl e q

J J dt

δ δ

ξ

η

=

= = =

⎧ ⎫⎪ ⎪
= − − ⋅⎨ ⎬

⎪ ⎪⎩ ⎭

⎧ ⎫⎛ ⎞⎪ ⎪
+ − + − ⋅⎜ ⎟⎨ ⎬⎜ ⎟

⎪ ⎪⎝ ⎠⎩ ⎭

− ⋅ Ω +Ω× Ω .

∑∫

∑ ∑ ∑

�� ��

�� ��

�

G

 

According to the Lagrange-d’Alembert principle, the 

variation of the action integral is equal to the negative of 

the virtual work done by the external force and moment, 

namely 

0
3

( ) ( ) ,
ft

x R
t

fRe x M dtδ η− − + Δ ⋅ + + Δ ⋅∫  (A.3) 

and we obtain (12) and (14). As 
i

ξ  is perpendicular to 

qi, we also have 

2

0

1

ˆ

n

i i ij j

j

q M x M q

=

⎛ ⎞
− +⎜ ⎟

⎜ ⎟
⎝ ⎠

∑�� �� + 2

3
ˆ 0

n

a i i

a i

m gl q e

=

= .∑  (A.4) 

Equation (A.4) is rewritten to obtain an explicit 

expression for .

i
q��  As 0,

i i
q q⋅ =�  we have 

i i
q q⋅ +� �  

0.
i i
q q⋅ =��  Using this, we have 

2ˆ ( ) ( ) ( ) .
i i i i i i i i i i i i
q q q q q q q q q q q q− = − ⋅ + ⋅ = ⋅ +

�� �� �� � � ��  

Substituting this equation into (A.4), we obtain (13). This 

can be slightly rewritten in terms of the angular 

velocities. Since 
i i i
q qω= ×�  for the angular velocity 

i
ω  satisfying 0,

i i
q ω⋅ =  we have 

2

2

( )

ˆ .

i i i i i i

i i i i

i i i i

q q q

q q

q q

ω ω ω

ω ω

ω ω

= × + × ×

= × −

= − −

���

� � �

� � �

 

Using this and the fact that 0,
i i
qω ⋅ =

�  we obtain (16). 

 

A.2. Proof for Proposition 2 

The variations of x, u and q are given by (20) and (21). 

From the kinematics equation ,
i i i
q qω= ×�

i
qδ �  is given 

by 

3 3 3 3
0 ( ) .

i i i i i
q e e e eδ ξ δω ξ δω= × = × + × × = ×

�

�  

Since both sides of the above equation is perpendicular 

to e3, this is equivalent to 
3 3 3 3

( ) ( ),
i i

e e e eξ δω× × = × ×
�  

which yields 

3 3 3 3
( ) ( ) .

i i
e e e eξ ξ δω δω− ⋅ = − ⋅

� �  

Since 
3

0,
i
eξ ⋅ =  we have 

3
0.eξ ⋅ =

�  As 
3

0
i

e δω⋅ =  

from the constraint, we obtain the linearized equation for 

the kinematics equation: 

i i
ξ δω= .
�  (A.5) 

Substituting these into (16), and ignoring the higher 

order terms, we obtain (22). See [19] for details. 
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A.3. Proof for Proposition 3 

We first show stability of the rotational dynamics, and 

later it is combined with the stability analysis of the 

translational dynamics of quad rotor and the rotational 

dynamics of links. 

 

a) Attitude error dynamics 

Here, attitude error dynamics for eR, eΩ are derived 

and we find conditions on control parameters to 

guarantee the boundedness of attitude tracking errors. 

The time-derivative of Je
Ω

 can be written as 

{ } ,
R R I I R

Je Je d e k e k e k e
∧

Ω Ω Ω Ω Ω
= + − − − + Δ�  (A.6) 

where 3(2 tr ) T

d d
d J JI R R= − Ω ∈�  [18]. The important 

property is that the first term of the right hand side is 

normal to eΩ, and it simplifies the subsequent Lyapunov 

analysis. 

 

b) Stability for attitude dynamics 

Define a configuration error function on (3)SO  as 

follows: 

1
tr[ ].

2

T

c
I R RΨ = −  (A.7) 

We introduce the following Lyapunov function 

2 2

2

1
( , )

2

1
.

2

R d R

R

I I

I

e Je k R R c e e

k e

k

Ω Ω Ω
= ⋅ + Ψ + ⋅

Δ
+ −

�

� �

V

 (A.8) 

Consider a domain D2 given by 

3

2 2
{( , ) (3) | ( , ) 2}.

d
D R R R ψ= Ω ∈ × Ψ < <�SO  (A.9) 

In this domain we can show that 
2
V  is bounded as 

follows [18] 

2

2 21 2 2

2

2 22 2

2

2

T I R

I

I

T I R

I

I

k
z M z e V

k

k
z M z e

k

Δ
+ − ≤

Δ
≤ + − ,

� �

� �

 (A.10) 

where 2

2
[ , ]

T

R
z e e

Ω
= ∈� � � � �  and the matrices 

21
,M  

22
M  are given by 

2

21

2

1
,

2

R M

M m

k c
M

c

λ

λ λ

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

2

222

2

2
1

2 .
2

R

M

M M

k
c

M

c

λ
ψ

λ λ

⎡ ⎤
⎢ ⎥−= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 (A.11) 

The time derivative of 
2
V  along the solution of the 

controlled system is given by 

2

2

2 2

( )

( ) .

I I R

R R I I R I

k e e k e

c e Je c e Je k e e

Ω Ω Ω

Ω Ω

= − − ⋅ − Δ

+ ⋅ + ⋅ + − Δ

� � �

� � �

V
 

We have 
2I R

e c e e
Ω

= +�  from (36). Substituting this 

and (A.5), the above equation becomes 

2 2

2 2 2

2
(( ) ).

R R R

R

k e c e Je c k e

c e Je d e k e

Ω Ω Ω

∧

Ω Ω Ω Ω

= − + ⋅ −

+ ⋅ + −

� �� � � �V
 

We have 1,
R
e ≤� �

R
e e

Ω
≤�� � � �  [18], and choose a 

constant 
2

B  such that 
2
.d B≤� �  Then we have 

2 2 2 2

T
z W z≤ − ,

�V  (A.12) 

where the matrix 2 2

2
W

×

∈�  is given by 

2
2 2

2

2

2 2

( )
2

.

( ) 2
2

R

M

c
c k k B

W
c

k B k c λ

Ω

Ω Ω

⎡ ⎤− +⎢ ⎥
= ⎢ ⎥
⎢ ⎥− + −
⎢ ⎥⎣ ⎦

 

The matrix W2 is a positive definite matrix if 

2 2

2

4
min , .

8 ( )

R m

M R M

k k
c

k k B

λ

λ λ

Ω

Ω

⎧ ⎫⎪ ⎪
< ⎨ ⎬

+ +⎪ ⎪⎩ ⎭
 (A.13) 

This implies that 

2

2 2 2
( ) ,

m
W zλ≤ −

� � �V  (A.14) 

which shows stability of attitude dynamics. 

 

c) Translational error dynamics 

We derive the tracking error dynamics and a 

Lyapunov function for the translational dynamics of a 

quadrotor UAV and the dynamics of links. Later it is 

combined with the stability analyses of the rotational 

dynamics. This proof is based on the Lyapunov method 

presented in Theorem 3.6 and 3.7 [17]. From (20), (12), 

(22), and (34), the linearized equation of motion for the 

controlled full dynamic model is given by 

3 00 3
( ) ( )

x
fRe M ge+ = − − + , + Δ ,Mx Gx B x x B�� �g  (A.15) 

and ( ),x x�g  is higher order term. The subsequent 

analyses are developed in the domain D1 

2 3 2 3 3

1
{( ) (3) |n n

D R e
+ +

Ω
= , , , ∈ × × ×x x� � � �SO  

1
1}.ψΨ < <  (A.16) 

In the domain D1, we can show that 

2 2

1

1 1
( , )

2 2
R c R
e R R e

ψ
≤ Ψ ≤ .

−

 (A.17) 

Consider the quantity 
3 3

,

T T

c
e R Re  which represents the 

cosine of the angle between 
3 3
b Re=  and 

3 3
.

c
c

b R e=  

Since 1 ( , )
c

R R−Ψ  represents the cosine of the eigen-

axis rotation angle between R
c
 and R, we have 

3 3
1 ( ) 0

T T

c c
e R Re R R≥ −Ψ , >  in D1. Therefore, the 

quantity 
3 3

1

T T
ce R Re

 is well-defined. We add and subtract 

3 3

3T T
c

f
c

e R Re
R e  to the right hand side of (A.15) to obtain 

3 00 3

3 3

c xT T

c

f
R e X M ge

e R Re

⎛ ⎞−
+ = − − + Δ⎜ ⎟⎜ ⎟

⎝ ⎠
Mx Gx B��  

 ( )+ , ,x x�g  (A.18) 
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where 3
X ∈�  is defined by 

( )3 3 3 3

3 3

( ) .
T T

c cT T

c

f
X e R Re Re R e

e R Re
= −  (A.19) 

The first term on the right hand side of (A.18) can be 

written as 

3 3

3

3 3 3 3

( )
c

cT T T T

c c

A R e Ref A
R e A

Ae R Re e R Re

⋅

− = − ⋅− = .

� �

� �
 

 (A.20) 

Substituting this and (26) into (A.18) 

( ( ) )satx x z x
K K K e X

σ

+ = − − − − + Δ
x

Mx Gx B x x
�

�� �  

 ( ).+ ,x x�g  (A.21) 

This can be rearranged as 

1 1 1

1 1

1 1

( ) ( )

( )sat

( )

x x

z

x

K K

X K e
σ

− − −

− −

− −

= − + −

− −

+ , + Δ .

x

x M G M B x M B x

M B M B

M x x M B

�

�� �

�g

 (A.22)  

Using the definitions for ,A ,B  and z1 presented before, 

the above expression can be rearranged as 

1 1
( ( ) ( ) )satz x

z z X K e

σ

= + − + , − + Δ .
x

B x x B B�� A B g  

 (A.23) 

 

d) Lyapunov candidate for translation dynamics 

From the linearized control system developed at 

section 3, we use matrix P to introduce the following 

Lyapunov candidate for translational dynamics 

1 1 1
2 ( ( ) ) .sat

eq

eT
z x

p
z Pz K d

σ

µ µ= + − Δ ⋅∫ B BV  (A.24) 

The last integral term of the above equation is positive 

definite about the equilibrium point 
eq

e p=
x

 where 

,0,0, ,

x

eq

z

p
k

⎡ ⎤Δ
= ⎢ ⎥
⎣ ⎦

�  (A.25) 

if 

,
z
kδ σ<  (A.26) 

considering the fact that sat y y
σ

=  if .y σ<  The 

time derivative of the Lyapunov function using the 

Leibniz integral rule is given by 

1 1 1 1 1
2 ( ( ) )sat

T T

z x
z Pz z Pz e K e

σ

= + + ⋅ − Δ .
x x

B B�� �V  (A.27) 

Since 
1 1

(( ) )T T T T
e P z z P= =
x
� B B  from (27), the above 

expression can be written as 

1 1 1 1 1 1
2 ( ( ) )sat

T T T

z x
z Pz z Pz z P K e

σ

= + + − Δ .
x

B B� �V B  

 (A.28) 

Substituting (A.23) into (A.28), it reduces to 

1 1 1 1
( ) 2 ( ( ))T T T

z P P z z P X= + + − + , .B x x�V A A B g  (A.29) 

Let 
3 2

2c P= ∈� � �B  and using ,

T
P P Q+ = −A A  we 

have 

1 1 1 3 1 1
2 ( )

T T
z Qz c z X z P≤ − + + , .x x

� �� �� �V Bg  (A.30) 

The second term on the right hand side of the above 

equation corresponds to the effects of the attitude 

tracking error on the translational dynamics. We find a 

bound of X, defined at (A.19), to show stability of the 

coupled translational dynamics and rotational dynamics 

in the subsequent Lyapunov analysis. Since 

3 3
( )T T

c
f A e R Re= ,� �  (A.31) 

we have 

3 3 3 3
( )T T

c c
X A e R Re Re R e≤ − .� � � �� �  (A.32) 

The last term 
3 3 3 3

( )T T

c c
e R Re Re R e−� �  represents the 

sine of the angle between 
3 3
b Re=  and 

3 3
,

c
c

b R e=  

since 
3 3 3 3 3 3 3

( ) ( ).
c c c

b b b b b b b⋅ − = × ×  The magnitude 

of the attitude error vector, 
R
e� �  represents the sine of 

the eigen-axis rotation angle between R
c
 and R. There-

fore, 
3 3 3 3

( )T T

c c R
e R Re Re R e e− ≤� � � �  in D1. It follows 

that 

3 3 3 3

1 1

( ) (2 )

{ (2 ) } 1,

T T

c c R
e R Re Re R e e

ψ ψ α

− ≤ = Ψ −Ψ

≤ − <

� � � �

�
 (A.33) 

therefore 

.

R
X A e A α≤ ≤� � � �� � � �  (A.34) 

We also use the following properties 

2

min 1 1 1
( ) .TQ z z Qzλ ≤� �  (A.35) 

Note that 
min

( )Qλ  is real and positive since Q is 

symmetric and positive definite. Then, we can simplify 

(A.30) as given 

2

1 min 1 3 1

1

( )

2 ( ).

R

T

Q z c z A e

z P

λ≤ − +

+ ,x x

� � � � �� �� �

�

V

Bg

 (A.36) 

We find an upper boundary for 

00 3
( )satx x z

A K K K e M ge
σ

= − − − + ,
x

x x
�

�  (A.37) 

by defining 

00 3 1
M ge B≤ ,� �  (A.38) 

for a given positive constant B1. We define 
max

K ,  

m
z

K ∈�  

max
max{ , },K K K=

x x�
� � � �   

m
z z

K K= ,� �  

and then the upper bound of A is given by 

max 1
( )

m
z

A K K Bσ≤ + + +x x�� � � � � �  (A.39) 

max 1 1
2 ( )

m
z

K z B Kσ≤ + + ,� �  (A.40) 

and substitute (A.40) into (A.36) 
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2

1 min 3 max 1

3 1 1 1

( ( ) 2 )

( ) 2 ( )
m

T

z R

Q c K z

c B K z e z P

λ α

σ

≤ − −

+ + + , .x x

� � �

�� �� �

V

Bg

 (A.41) 

 

e) Lyapunov candidate for the complete system 

Let 
1 2

= +V V V  be the Lyapunov function for the 

complete system. The time derivative of V  is given by 

1 2
= +

� � �V V V . (A.42) 

Substituting (A.41) and (A.14) into the above equation 

2

min 3 max 1 1

2

3 1 1 2 2

( ( ) 2 ) 2 ( )

( ) ( )
m

T

z R m

Q c K z z P

c B K z e W z

λ α

σ λ

≤ − − + ,

+ + − ,

x x
� �� �

� �� � � �

V Bg
 

 (A.43) 

and using 
2

,
R
e z≤� � � �  it can be written as 

2

min 3 max 1 1

2

3 1 1 2 2 2

( ( ) 2 ) 2 ( )

( ) ( )
m

T

z m

Q c K z z P

c B K z z W z

λ α

σ λ

≤ − − + ,

+ + − .

x x
� �� �

� �� � � �

V Bg
 

 (A.44) 

Also, the 
1

2 ( )
T
z P ,x xB �g  term in the above equation is 

indefinite. The function ( ),x x�g  satisfies 

1

1

( )
0 as 0z

z

,
→ → .

x x�� �
� �

� �

g
 (A.45) 

Then, for any 0γ >  there exists 0r >  such that 

1
( ) zγ, < ,x x�� � � �g   

1
z r∀ < ,� �  (A.46) 

so, 

2

1 2 1
2 ( ) 2 .

T
z P P zγ, ≤x x� � � � �Bg  (A.47) 

Substituting the above equation into (A.44) 

2 2

min 3 max 1 2 1

2

3 1 1 2 2 2

( ( ) 2 ) 2

( ) ( )
m
z m

Q c K z P z

c B K z z W z

λ α γ

σ λ

≤ − − +

+ + − ,

� � � � � � �

� �� � � �

V
 

 (A.48) 

we obtain 

2

2 1
2

T
z Wz P zγ≤ − + ,

� � � � �V  (A.49) 

where 2

1 2
[ ]

T
z z z= , ∈�  and 

3 1

min 3 max

3 1

2

( )
( ) 2

2
.

( )
( )

2

m

m

z

z

m

c B K
Q c K

W
c B K

W

σ
λ α

σ
λ

+⎡ ⎤
− −⎢ ⎥

⎢ ⎥=
+⎢ ⎥

−⎢ ⎥
⎣ ⎦

 (A.50) 

By using 
1

,z z≤� � � �  we obtain 

2

min 2
( ( ) 2 )W P zλ γ≤ − − .

� � � � �V  (A.51) 

Choosing 
min 2

( ( )) / 2 ,W Pγ λ< � �  ensures that �V  is 

negative semi-definite. This implies that the zero 

equilibrium of tracking errors is stable in the sense of 

Lyapunov and V  is non-increasing. Therefore all of 

error variables z1, z2 and integral control terms eI, ex are 

uniformly bounded. Also, from Lasalle-Yoshizawa 

theorem [17,Theorem 3.4], we have 0z →  as .t →∞  
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