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Abstract: This paper studies the leader-following consensus problem for heterogeneous multi-agent 

systems composed of linear second-order integrator agents and nonlinear Euler-Lagrange agents in two 

aspects. The consensus problem of heterogeneous multi-agent systems is discussed with unknown ve-

locities, time-varying disturbances and packet dropout by introducing extended state observer. Suffi-

cient conditions are established to ensure that all following agents could reach consensus with a virtual 

leader, which provide the allowable upper bound of packet drop rate. Numerical simulations are pre-

sented to illustrate the theoretical results. 
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consensus, packet dropout. 

 

1. INTRODUCTION 

 

Research on multi-agent consensus has attracted much 

attentions in the past two decades due to it’s broad 

applications [1-3]. A key problem for the consensus of 

multi-agent systems is to design a networked control 

protocol such that all the agents could be able to reach an 

agreement using the shared data only through local 

communications. Up to now, the consensus protocols 

have been obtained for both linear and nonlinear multi-

agent systems.  

The consensus problem of first-, second- and high-

order linear multi-agent systems is primarily studied, 

please refer to [4-7] and the references therein. For those 

linear dynamics, the consensus control under various 

network environments has been studied in many papers 

[8-11]. Based on the researches of linear multi-agent 

systems, there are many literatures focus on the nonlinear 

agent dynamics [12-14]. It is noted that all the above 

works deal with homogeneous multi-agent systems, i.e., 

it is assumed that each subsystem has the same dynamics. 

Actually, the dynamics of the agents coupled with each 

other may be different when different kinds of agents 

share common goals in some practical applications [15]. 

For example, in the multi-robot systems, due to common 

goal and dynamic environments, some robots should be 

modeled by linear second-order integrator equation and 

others should be modeled by Euler-Lagrange (EL) 

equation, then new coordination protocols need to be 

developed [16].  

Up to now, the consensus problem of heterogeneous 

multi-agent system has gained tremendously progress in 

the literatures [16,17]. However, there are few papers 

take time-varying disturbances, unknown velocities and 

packet dropout into consideration for the consensus of 

heterogeneous multi-agent systems. It is known that the 

multi-agent systems in the network require intercommu-

nication for sharing knowledge by which to make control 

decisions. But during the information exchange, packet 

dropout which may degrade the control performance and 

even destabilize the entire system inevitably exists [18]. 

Furthermore, the velocities of agent are not usually 

measured and the agent is always subject to external 

disturbances. Both the two issues make it difficult to 

achieve ideal consensus performance for heterogeneous 

multi-agent systems. All of these motivated us for the 

study in this paper.  

ESO is a particular observer firstly proposed by Han in 

[19]. Unlike traditional linear or nonlinear observers, the 
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ESO estimates the effect of uncertainties, unmodeled 

dynamics and external disturbances acting on the system 

as an extended state of the original system, and thus we 

are able to cancel total disturbances in the controller 

design [20]. Therefore, we will apply ESO to deal with 

the unknown velocities and time-varying disturbances. 

Motivated by the above discussions, the consensus 

problems for heterogeneous multi-agent systems 

composed of second-order agents and nonlinear EL 

agents are considered in this paper. The main 

contributions of this paper are threefold. First, the 

consensus case with packet dropout for heterogeneous 

multi-agent systems composed of second-order agents 

and nonlinear EL agents is firstly studied in this paper. 

Second, a particular observer ESO is designed to deal 

with the problem of consensus control for heterogeneous 

multi-agent systems with unknown velocities and time-

varying disturbances. Finally, in the proof of controller 

design with packet dropout, the weak infinitesimal 

operator L  method is introduced to deal with the 

consensus case with packet dropout.  

Notation: In the following, if not explicitly stated, 

matrices are assumed to have compatible dimensions. 

The shorthand 
1 2

diag{ , , , }
N

M M M�  denotes a diagonal 

matrix with diagonal blocks 
1 2
, , , .

N
M M M…  ⋅� �  is 

the Euclidean norm of a vector. : ( , ),R = −∞ ∞
0
:

>
�  

(0, ),= ∞
0
: [0, ).

≥
= ∞�  n

�  denotes the n-dimensional 

Euclidean space. For any function 
0

: ,
nf

≥
→� �  the 

L∞-norm is defined as 
0

,
t

f fsup
≥

= | |� �  and the L2-

norm as 2 2

2
0

.f f dt
∞

= | |∫� �  The L∞ and L2 spaces are 

defined as the sets 
0

{ : }nf f
≥ ∞

→ : < ∞� � � �  and { :f  

0 2
},n f

≥
→ : < ∞� � � �  respectively. ( )σ ⋅  is the set of 

singular values of a matrix, with the maximum singular 

value ( )σ ⋅  and the minimum singular value ( ).σ ⋅  ⊗  

is the standard Kronecker product. IN is the identity 

matrix with dimension N. The symmetric terms in a 

symmetric matrix are denoted by *. The notation x y→  

means that there exists a constant ε such that x y−� �  

ε≤  with 0.ε ≥  

 

2. BACKGROUND AND PROBLEM 

FORMULATION 

 

2.1. Heterogeneous multi-agent systems 

Consider a heterogeneous system composed of m 

second-order agents and n – m EL agents. Suppose that 

in addition to the n agents, called followers hereafter, 

there exists a virtual leader, labeled as agent d, with a 

time-varying position xd and velocity vd. We assume that 

d
x L

∞
∈  and .

d
v L

∞
∈  Then, the ith second-order agent 

is given by 

( ) ( )

( ) ( ), ,

i i

i i m

x t v t

v t t iτ

=⎧
⎨

= ∈⎩

�

� I
 (1) 

where {1, , }.
m

m…�I  ( ) ,pix t ∈� ( ) p
iv t ∈�  and ( )

i
tτ  

p
∈�  are the position, velocity and control input, 

respectively. Furthermore, the dynamics of the ith EL 

agent is given by 

,

( ) ( )

( ) ( , ) ( ) ( ),

i i m n

i i i i i i i i ext i

x t v t i

M x v C x v v t tτ τ

= , ∈ /⎧⎪
⎨

+ = +⎪⎩

�

�

I I
 (2) 

where {1, , },
n

n…�I ( ) ,pix t ∈� ( ) ,piv t ∈� ( ) p
i tτ ∈�  

and 
,

( ) p
ext i tτ ∈�  are the position, velocity, control input 

and external disturbance, respectively. ( ) p p
i iM x

×

∈�  

is the general inertia matrix and ( ) p p
i i iC x v

×

, ∈�  is the 

matrix of Coriolis and centrifugal forces. 

 

2.2. Graph theory 

In this paper, we use a graph to describe the informa-

tion exchanging between followers and the leader. The 

interaction topology of information exchanged between n 

followers is usually modeled by a graph ( , ),=G V E  

where 
1

{ , , }
N

v v= �V  is a finite nonempty set of 

nodes and = ×E V V  is a set of edges of the graph. 

( )
i j
v v, ∈E  means that node i and node j can exchange 

information between them. Denote the adjacency or 

connectivity matrix as [ ]
ij

A a=  with 0
ij
a >  if ( , )j jv v  

E∈  and 0
ij
a =  otherwise. Note that 0.

ii
a =  The set 

of neighbors of a node vi is { : ( , ) },
i j j i

N v v v E= ∈  i.e., 

the set of nodes with arcs incoming to vi. Define the in-

degree matrix as a diagonal matrix 
1 2

diag{ }
N

D d d d= �  

with ,

i
i ijj N

d a
∈

=∑  which is the weighted in-degree 

of node i. The graph Laplacian matrix is ,L D A= −  

which has all row sums equal to zero. A digraph has a 

spanning tree, if there is a node (called the root), such 

that there is a directed path from the root to every other 

node in the graph. When G  contains a spanning tree, 

the Laplacian matrix has a single zero eigenvalue and the 

corresponding eigenvector is the vector of ones 1.  

Moreover, all the other non-zero eigenvalues are in the 

open right half plane [21]. Furthermore, define the 

pinning matrix of graph G  as 
1 2

diag{ }
N

B b b b= �  

with 0,
i
b ≥ 0

i
b >  if and only if there exists an edge 

from the leader to the ith following node and 0
i
b >  for 

at least one i. The leader is represented by vertex d and 

information is exchanged between the leader and the 

followers which are in the neighbors of leader. Then, we 

have a graph ,G  which consists of graph ,G  vertex d 

and edges between the leader and its neighbors. In this 

paper, we make the assumption regarding G  as 

follows: 

Assumption 1: The communication graph G  is 

fixed, directed and contains a spanning tree. 

 

3. MAIN RESULTS 

 

The consensus control problem confronted in this 

paper is to design control protocols for all the agents in 

G  such that the states of all agents are consensus to the 

leader, i.e., one requires 

lim and lim , 1, , .
i d i d

t t

x x v v i n

→∞ →∞

→ → ∀ ∈ ⋅⋅⋅  (3) 
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3.1. Consensus with unknown velocities and time-

varying disturbances 

In this section, we considered the consensus problem for 

heterogeneous multi-agent systems with unknown 

velocities and time-varying disturbances. Define the 

local neighborhood consensus error for the ith agent as 

1
( ) ( ),

i

i ij j i i d i

j N

e a x x b x x

∈

= − + −∑  

2
( ) ( ),

i

i ij j i i d i

j N

e a v v b v v

∈

= − + −∑  

where aij is the element of connectivity matrix A, and bi 

> 0 is the pinning gains. It satisfies that bi > 0 for at least 

one i. Then, the global error vector for network G  is 

1

2

(( ) )( 1 ),

(( ) )( 1 ),

p n d

p n d

e L B I x x

e L B I v v

= − + ⊗ − ⊗

= − + ⊗ − ⊗

 (4) 

where 
1 11 21 1

[ ] ,
T T T T

n
e e e e= �

2 12 22 2
[ ] ,

T T T T

n
e e e e= �  L is the 

graph Laplacian matrix of networked system, B =  

1 2
diag{ , , , }

n
b b b…  and it presents the communication 

relationship between leader and followers. Under 

Assumption 1, it is known that all the eigenvalues of 

matrix ( )L B− +  have negative real part according to 

the above discussions in graph theory, i.e., matrix 

( )L B− +  is stable. For the time-varying disturbances of 

EL agents, the following assumption is presented: 
 

Assumption 2: There exists a function f (t) which is 

infinite approximate the actual external disturbance 

torque 
,

.

ext i
τ  Furthermore, the differential of f (t) is 

assumed to be bounded. 

 

To achieve consensus expressed as (3), ESO is 

introduced to estimate the unknown disturbances and 

unknown velocity information of agents. Let 
1

,
i i
x x=  

2
.

i i
x v=  Then, design the observer for ith second-order 

agent as 

1 1 1

1 2 1 1

2 2 1

ˆ ,

ˆ ˆ ,

ˆ .

i i i

i i i i

i i i i

r x x

x x r

x r

β

β τ

= −⎧
⎪

= −⎨
⎪

= − +⎩

�

�

 

where 
1

ˆ

i
x  and 

2
ˆ

i
x  are estimations of states 

1i
x  and 

2
,

i
x  respectively, parameters 

1i
β  and 

2i
β  are the 

regulable gain constants. For the EL agents, let 
1

,
i i
x x=  

2i i
x v=  and the extended state variable 1

3
( )

i i i
x M x

−

=  

,

[ ( , ) ].
i i i i ext i

C x v v τ− +  Under Assumption 2, assuming 

3
,

i i
x h=�  the system (2) is rewritten as 

1 2

1

2 3 1

3

,

( ) ,

.

i i

i i i i i

i i

x x

x x M x

x h

τ
−

=⎧
⎪

= +⎨
⎪ =⎩

�

�

�

 (5) 

Note that hi is bounded according to Properties 1 and 4 in 

[22] under Assumption 2, i.e., there exists a constant αi 

such that .

i i
h α≤� �  From (5), the ESO designed for ith 

EL system (2) is given as 

1 1 1

1 2 1 1

1

2 3 2 1 1

3 3 1

ˆ ,

ˆ ˆ ,

ˆ ˆ ( ) ,

ˆ ,

i i i

i i i i

i i i i i i i

i i i

r x x

x x r

x x r M x

x r

β

β τ

β

−

= −⎧
⎪

= −⎪
⎨

= − +⎪
⎪

= −⎩

�

�

�

 (6) 

where 
1
ˆ ,
i
x

2
ˆ

i
x  and 

3
ˆ

i
x  are estimations of states 

1
,

i
x  

2i
x  and 

3
,

i
x  respectively, parameters 

1
,

i
β

2i
β  and 

3i
β  are the regulable gain constants. Through regulating 

1
,

i
β

2i
β  and 

3i
β  appropriately, 

1
ˆ ,
i
x

2
ˆ

i
x  and 

3
ˆ

i
x  can 

be considered as the approximations of the correspond-

ing states 
1
,

i
x

2i
x  and 

3
,

i
x  respectively. Letting 

2i
r  

2 2
ˆ ,
i i
x x= −

3 3 3
ˆ ,

i i i
r x x= −  and differentiating 

1
,

i
r

2i
r  

and 
3i

r  with respect to time, the following dynamical 

equation is obtained according to (5) and (6), 

1 2 1 1

2 3 2 1

3 3 1

,

,

.

i i i i

i i i i

i i i i

r r r

r r r

r r h

β

β

β

= −⎧
⎪

= −⎨
⎪ = − −⎩

�

�

�

 

With the estimate information, define the synchroni-

zation signal of the ith agent as 

( )2 1

1
ˆ ,

i i i i

i

e eη
ρ

= + Ξ  (7) 

where ,

i
i ij ij N

a bρ
∈

= +∑ i
Ξ  is a positive p-dimension-

al diagonal matrix and 

2 2 2 2
ˆ ˆ ˆ ˆ( ) ( ).

i

i ij j i i d i

j N

e a x x b v x

∈

= − + −∑  

Based on the above discussions, the control protocols 

for heterogeneous multi-agent systems composed of (1) 

and (2) are designed as follows: 

2

1
ˆ ˆ( ) ,

i

i i i ij j i d i i m

i j N

t e a v b v K iτ η
ρ

∈

⎛ ⎞
⎜ ⎟= Ξ + + + , ∈
⎜ ⎟
⎝ ⎠

∑ I�
�

�  

2

1
ˆ ˆ( ) ( )

i

i i i i i ij j i d

i j N

t M x e a v b vτ
ρ

∈

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= Ξ + +

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ �

�  

3( )[ ], / ,ˆ ii i i i m n
M x K ix η+ − + ∈

� I I  (8) 

where 
i

K�  is a positive p-dimensional matrix and ˆ

jv = 

2
ˆ .jx  Note that the derivative of ˆ

jv  can be calculated 

by numerical differentiation. Then, it is obtained that 

2 2 2

1
( )

i

i i ij j i i i

i j N

a r r b rη
ρ

∈

⎡ ⎤
= Ξ − − +⎢ ⎥

⎢ ⎥⎣ ⎦
∑�  

2 1
.

i i i i n
r K iβ η+ − ∈I  (9) 

For (9), we construct the following Lyapunov candidate 

function as 

,

T
V y Ny=  (10) 

where 
1 2 1 2 3

[ ]
T T T T T T T

m m m
y r r r r rη=  and 
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1
0 0 0 0 0

2

1 1
0 0 0

2 2

1
0 0 0

2

1 1 1

2 2 2

1 1

2 2

1

2

m m m

m m

m

P

C F

G

N

H J Q

R S

W

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥∗ −
⎢ ⎥
⎢ ⎥
⎢ ⎥∗ ∗
⎢ ⎥

= ⎢ ⎥
⎢ ⎥∗ ∗ ∗ −
⎢ ⎥
⎢ ⎥
∗ ∗ ∗ ∗ −⎢ ⎥

⎢ ⎥
⎢ ⎥
∗ ∗ ∗ ∗ ∗⎢ ⎥⎢ ⎥⎣ ⎦

 

with 
1 11 21 1

[ ] ,
T T T T

n
r r r r= �

2 12 22 2
[ ]

T T T T

n
r r r r= �  and 

1 ( 1)1 1 2 ( 1)2 2
[ ] , [ ] ,

T T T T T T

m m n m m n
r r r r r r

+ +
= =� �  

1 2 1 2
diag{ , , , }, diag{ , , , },

n n
P P P P G G G G= =� �  

1 2 1 2
diag{ , , , }, diag{ , , , },

n n
C C C C F F F F= =� �  

1 2 1 2
diag{ , , , }, [ ] ,

T T T T

m m m n n
J J J J η η η η

+ +
= =� �  

1 1
diag{ , , }, diag{ , , },

m m n m m n
S S S H H H

+ +
= =� �  

1 1
diag{ , , }, diag{ , , },

m m n m m n
Q Q Q R R R

+ +
= =� �  

1 2
diag{ , , , },

m m m n
W W W W

+ +
= �  

in which Pi, Ci, Fi, Gi, Hi, Ji, Qi, Ri, Si and Wi for 

1, ,i n= �  are positive p-dimensional matrices. There-

fore, V is positive definite when N > 0 is satisfied. 

Taking the derivative of V with respect to t, we have 

2 2 2

1

1
( )

i

n
T
i i i ij j i i i

ii j N

V P a r r b rη
ρ

= ∈

⎡ ⎤⎡ ⎤
⎢ ⎥= Ξ − − +⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑ ∑�  

2 1 1 1 2 1

1 1

[ ] ( )
n n

T T

i i i i i i i i i i i i

i i

P r K r C F rη β η β β

= =

+ − − −∑ ∑�  

2 2 1 2 1 2

1 1

( )
n n

T T

i i i i i i i i i i

i i

r F r r C G F rβ β
= =

− + − +∑ ∑  

1 1 3 2 1 2 2

1 1

( )
n n

T T

i i i i i i i i i i i

i m i m

r H Q J r r J rβ β β
= + = +

− + − −∑ ∑  

1 1 3 2 2

1

( )
n

T

i i i i i i i i i

i m

r H J S R rβ β β
= +

+ + + −∑  

3 3 2 3

1 1 1

n n n

T T T

i i i i i i i i i

i m i m i m

r S r r S h r W h
= + = + = +

− − −∑ ∑ ∑  

1 1 2 3 3

1

( )
n

T

i i i i i i i i i i

i m

r F J Q S W rβ β β
= +

+ − − − + −∑  

2 3 1

1 1

( ) .
n n

T T

i i i i i i i i

i m i m

r G Q R r r Q h
= + = +

+ + + −∑ ∑  

It follows that 

,

T T

m
V y My y l= − −
�  (11) 

where 

0 0 0 ( ) ( ) ( ) ,
T

T T T
m m m m m m m
l Q h S h W h⎡ ⎤= ⎣ ⎦  

2

1
(1,3) 0 0 0

2

(2,2) (2,3) 0 0 0

0 0 0

(4,4) (4,5) (4,6)

(5,6)
m

m

PK P

FM

J

S

β
⎡ ⎤

−⎢ ⎥
⎢ ⎥
∗⎢ ⎥

⎢ ⎥∗ ∗= ⎢ ⎥
∗ ∗ ∗⎢ ⎥

⎢ ⎥∗ ∗ ∗ ∗⎢ ⎥
⎢ ⎥∗ ∗ ∗ ∗ ∗⎣ ⎦

�

 

with 
1 2

[ ]
T T T T

m m m n
h h h h

+ +
= �  and 

11
(1,3) ( ) ( ),

2
P D B L B

−

= − + Ξ +  

1 2
(2,2) ,C Fβ β= −   

2 1

1
(2,3) ( ),

2
C G Fβ β= − − +  

1 3 2
(4,4) ,

m m m m m m
H Q Jβ β β= + −  

1 3 2

1
(4,5) ( ),

2
m m m m m m m

H J S Rβ β β= − + + −  

1 2 3

1
(4,6) ( ),

2
m m m m m m m m

F J Q S Wβ β β= − − − − + −  

1
(5,6) ( ),

2
m m m

G Q R= − + +  

1 2
diag{ , , , },

n
K K K K=
� � � �

�   
1 2

diag{ , , , },
n

Ξ = Ξ Ξ Ξ�  

1 11 1
diag{ , , },

n
β β β= �   

2 12 2
diag{ , , }

n
β β β= �  

with 
1

diag{ , , }
m m n

F F F
+

= �  and 

1 ( 1)1 ( 2)1 1
diag{ , , , },

m m m n
β β β β

+ +
= �  

2 ( 1)2 ( 2)2 2
diag{ , , , },

m m m n
β β β β

+ +
= �  

3 ( 1)3 ( 2)3 3
diag{ , , , }.

m m m n
β β β β

+ +
= �  

Theorem 1: Considering the heterogeneous multi-

agent systems composed of second-order system (1) and 

EL system (2) under Assumptions 1 and 2, by choosing τi 

as (8), if there exist appropriate ESO parameters 
1
,

i
β  

2
,

i
β

3i
β  and positive matrices Pi, Ci, Fi, Gi, Hi, Ji, Qi, Ri, 

Si and , 1, ,
i

W i n∀ ∈ �  such that the LMIs 0N >  and 

0M >  given by (10) and (11), respectively, are 

satisfied, then the consensus in the sense of (3) is 

achieved. 

 

Proof: According to (11), we have 0V ≤�  if M is 

positive definite and ( ) .
m max d

y l M Bσ> =� � � �  Fur-

thermore, from (10), it is obtained that 

2 21 1
( ) ( ).

2 2
y N V y Nσ σ≤ ≤� � � �  

Following [23], one can draw the conclusion that for any 

initial value 
0

( ),y t  there exists a time T0 such that 

0 0
( ) ( ) / ( ) , .y t N N Bd t t Tσ σ≤ ∀ ≥ +� �  (12) 

By definition of y(t), (12) implies that ( )tη  and 
2
( )r t  

are uniformly ultimately bounded (UUB). According to 
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(4) and (7), as ( )L B− +  is stable, we have lim ( )
t i

v t
→∞

 

( )
d
v t→  and lim ( ) ( ),

t i d
x t x t

→∞
→  i.e., the consensus 

in the sense of (3) is reached.  � 

 

3.2. Consensus with unknown velocities, time-varying 

disturbances and packet dropout 

During information transmission among agents, the data 

packet dropout is inevitably exists and it might be 

potential sources to the instability and poor performance 

of multi-agent systems. Therefore, the consensus 

problem for heterogeneous multi-agent systems with 

unknown velocities, time-varying disturbances and 

packet dropout is considered in this section. Specifically, 

the consensus protocols for heterogeneous multi-agent 

systems (1)-(2) under the influences of packet dropout 

are rewritten as follows: 

2 1

3 2 1

ˆ( ) , ,

ˆ ˆ( ) ( )[ ], / ,

i i i i i m

i i i i i i i i m n

t e e i

t M x x e e i

γ γ

γ γ

τ

τ

= Δ +Π ∈

= − + Δ +Π ∈

I

I I
 (13) 

where ∆i and Пi are positive p-dimensional matrices, and 

1

1

( ) ( ) ( ) ( ),
n

i ij ij j i id i d i

j

e t a x x t b x x
γ

γ γ

=

= − + −∑  

2

1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
n

i ij ij j i id i d i

j

e t a v v t b v v
γ

γ γ

=

= − + −∑  

in which γij (t) is a binary random variable characterizing 

the fading property of the channel ( , ) .i j ε∈  It is 

assumed that γij (t) is independent of both the time index t 

and spatial index , ,i j  and identically distributed for 

each t and ( , ) .i j ε∈  Note that the distribution of γij (t) 

is given by ( ( ) 1) 1 ( ( ) 0)
ij ij
t tγ λ γ= = = − =P P  for all 

( , )i j ε∈  and t. λ  is called recovery rate in the rest of 

the paper. For the consensus case with packet dropout in 

this section, we construct the Lyapunov candidate 

function 
1 2

V V V= +  with  

1 1 1 2 2 1 2

1 1
,

2 2

T T T
V e Ze e Pe e Ee= + +  

2 1 1 1 2 2 2

1 1 1

1 1

2 2

n n n

T T T

i i i i i i i i i

i i i

V r C r r F r r G r

= = =

= − +∑ ∑ ∑  

1 1 1 2

1 1

1

2

n n

T T

i i i i i i

i m i m

r H r r J r

= + = +

+ −∑ ∑  

1 3 2 2

1 1

1

2

n n

T T

i i i i i i

i m i m

r Q r r R r

= + = +

+ +∑ ∑  

2 3 3 3

1 1

1
,

2

n n

T T

i i i i i i

i m i m

r S r r W r

= + = +

− +∑ ∑  

where ,Z ,P ,E ,
i

C ,
i

F ,
i

G ,
i

H ,
i
J ,

i
Q ,

i
R

i
S  and 

i
W  

are positive definite matrices with appropriate dimension. 

Then the Lyapunov function V can be changed as 

1 2
,

T
V V V y yN

∗

= + =  (14) 

where 
1 2 1 2 1 2 3

[ ]
T T T T T T T T

m m m
y e e r r r r r=  and 

*

1 1
0 0 0 0 0

2 2

1
0 0 0 0 0

2

1 1
0 0 0

2 2

1
0 0 0

2

1 1 1

2 2 2

1 1

2 2

1

2

m m m

m m

m

N

Z E

P

C F

G

QJH

R S

W

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥∗
⎢ ⎥
⎢ ⎥
⎢ ⎥∗ ∗ −
⎢ ⎥
⎢ ⎥
⎢ ⎥∗ ∗ ∗
⎢ ⎥
⎢ ⎥
∗ ∗ ∗ ∗ −⎢ ⎥

⎢ ⎥
⎢ ⎥
∗ ∗ ∗ ∗ ∗ −⎢ ⎥

⎢ ⎥
⎢ ⎥
∗ ∗ ∗ ∗ ∗ ∗⎢ ⎥⎢ ⎥⎣ ⎦

 

with 
1 2

diag{ , , , }
m m m n

W W W W
+ +

= �  and 

1 2
diag{ , , , },

n
C C C C= �  

1 2
diag{ , , , },

n
F F F F= �  

1 2
diag{ , , , },

n
G G G G= �  

1
diag{ , , },

m m n
H H H

+
= �  

1
diag{ , , },

m m n
J J J

+
= �  

1
diag{ , , },

m m n
Q Q Q

+
= �  

1
diag{ , , },

m m n
R R R

+
= �  

1
diag{ , , }.

m m n
S S S

+
= �  

From (14), V is positive definite if *

0N >  is satisfied. 

Then, the weak infinitesimal operator L  of (14) with 

packet dropout process is given by 

0

1
( ) lim { [ ( ) | ( )] ( )}

,

h

TT

m

V E V t h V t V t
h

y My ly

→

= + −

= − +

L
 (15) 

( ( ) ) ( ( ) ) 0 0

( ) ( ) ( ) ,

T T

m d d

T
T T T

m m m m m m

l E L B v P L B v

Q h S h W h

⎡= − + − +⎣

⎤
⎦

� �

2 1

(1,1) (1,2) 0 (1,4)

(2,2) 0 (2,4)

1
(3,3) ( )

2
C G F

M
F

β β

⎡
⎢ ∗⎢
⎢

∗ ∗ − − +⎢
⎢=

∗ ∗ ∗⎢
⎢ ∗ ∗ ∗ ∗⎢
⎢ ∗ ∗ ∗ ∗
⎢

∗ ∗ ∗ ∗⎢⎣

 

 

0 0 0

0 0 0

0 0 0

0 0 0

(5,5) (5,6) (5,7)

(6,7)

( )

m

m

J

S I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥∗
⎥

∗ ∗ − ⎥⎦

,  (16) 

where 
m
l  and M  are shown as (16) with 
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(1,1) ( ) 1/ 2( ( )) ( ( )),T
E L B E L B E L Bλ= + Π − + +  

(1,2) 1/ 2( ( ) ( ) ),Z P L B E L Bλ λ= − − + Π − + Δ  

(1,4) 1/ 2( ( ) ( ) ),T
E L B L Bλ= − + + Δ  

1
(2,2) ( ) ( ( )) ( ( )),

2

T
P L B E P L B P L Bλ= + Δ − − + +  

(2,4) ( ) ( ) ,T
P L B L Bλ= + + Δ  

1 2
(3,3) ,C Fβ β= −  

1 3 2
(5,5) ,

m m m m m m
H Q Jβ β β= + −  

1 3 2
(5,6) 1/ 2( ),

m m m m m m m
H J S Rβ β β= − + + −  

(6,7) 1/ 2( ),
m m m

G Q R= − + +  

1 2 3
(5,7) 1/ 2( )

m m m m m m m m
F J Q S Wβ β β= − − − − + −  

with 

1
diag{ , , },

m m n
G G G

+
= �  

1
diag{ , , }.

m m n
F F F

+
= �  

Utilizing Schur complement, 0M >  is equal to 

* *

11 12*

*

22

,

M M
M

M

⎡ ⎤
= ⎢ ⎥

∗⎢ ⎥⎣ ⎦
 (17) 

where *

11
,M M=

*

22 99 99
M I

×
=  and 

*

12

(1,1) 0 0 0 0 0 0

(2,2) 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

M

∗

∗

⎡ ⎤
⎢ ⎥

∗⎢ ⎥
⎢ ⎥

∗ ∗⎢ ⎥
= ⎢ ⎥∗ ∗ ∗
⎢ ⎥

∗ ∗ ∗ ∗⎢ ⎥
⎢ ⎥∗ ∗ ∗ ∗ ∗
⎢ ⎥

∗ ∗ ∗ ∗ ∗ ∗⎢ ⎥⎣ ⎦

 

with ( )1

2
(1,1) ( ) ,R L B

∗

= + ( )1

2
(2,2) ( ) .P L B

∗

= +  

 

Theorem 2: Consider the heterogeneous multi-agent 

systems composed of second-order system (1) and EL 

system (2) under Assumptions 1 and 2. Design τi as (13). 

If there exist appropriate ESO parameters 
1
,

i
β

2
,

i
β

3i
β  

and positive matrices ,Z ,P ,E ,
i

C ,
i

F ,
i

G ,
i

H ,
i
J ,

i
Q  

,
i

R
i

S  and , 1, ,
i

W i n∀ ∈ �  such that the LMIs *

0N >  

and *

0M >  given by (14) and (17), respectively, are 

satisfied, then the consensus in the sense of (3) is 

achieved. 

Proof: From (15) and (17), we have ( ) 0V ≤L  if 
*

M  is positive definite and ( ) .
m max d

y l M Bσ> =� � � �  

Furthermore, according to (14), we have 

2 * 2 *1 1
( ) ( ).

2 2
y N V y Nσ σ≤ ≤� � � �  

Following [23], one can draw the conclusion that for any 

initial value 
0

( ).y t  There exists a time T0 such that 

* *

0 0
( ) ( ) / ( ) , .y t N N Bd t t Tσ σ≤ ∀ ≥ +� �  (18) 

By definition of ( ),y t  (18) implies that e1(t) and e2(t) 

are UUB. According to (4), as ( )L B− +  is stable, it is 

obtained that lim ( ) ( )
t i d

v t v t
→∞

→  and lim ( )
t i

x t
→∞

→  

( ),
d
x t  i.e., the consensus in the sense of (3) is reached. 

This completes the proof. � 

 

4. NUMERICAL EXAMPLES 

 

In this section, we give an example to illustrate the 

effectiveness of the theoretical results in Theorem 2. It is 

noticed that the result of Theorem 1 is a special case of 

Theorem 2 without packet dropout. Consider the 

heterogeneous systems composed of three second-order 

integrator agents and three EL agents with a virtual 

leader, and the model is shown as 

( ) ( ),

( ) ( ), {1,2,3},

i i

i i

x t v t

v t t iτ

=⎧
⎨

= ∈⎩

�

�

 

and 

,

( ) ( ), {4,5,6},

( ) ( , ) ( ) ( ).

i i

i i i i i i i i ext i

x t v t i

M x v C x v v t tτ τ

= ∈⎧⎪
⎨

+ = +⎪⎩

�

�

 (19) 

Note that the dynamics of EL agents is similar to those in 

[22]. Therefore, we chose inertial matrices 
/ ,s c i

J
2

kg m⋅  

and the external disturbances 
,ext i

d N m,⋅ 4,5,6i∀ =  

which are the parameters of (19) as 

/ ,4
diag{17,12,9},

s c
J =  ,4 [2.22.22.2] ,

T

ext
d =  

/ ,5
diag{14,13,10},

s c
J =  ,5 [1.41.41.4] ,

T

ext
d =  

/ ,6
diag{20,10,9},

s c
J =  

,6

[0.80.80.8] .
T

ext
d =  

All of these parameters are set to be 10%-80% of 

accuracy of spacecrafts’ real values [22] and the agents 

considered herein are 3-dimensional systems. Moreover, 

, , 1, 2,3
ij ij
x v j∀ =  are the jth elements of xi and vi, 

respectively. 

The communication topology is shown in Fig. 1. It is 

noted that the directed graph for all followers 1 to 6 is 

connected and the virtual leader is a neighbor of follower 

1. In this section, the leader’s reference is set to be 

[sin(0.1 ), sin(0.1 ), sin(0.1 )]
T

d
x t t t= rad. In the follow-

ing, we use xij and vij to denote the jth element of xi and vi, 

respectively. For simplicity, only tracking trajectories of 

first and second elements of states xi and vi are given out. 

Note that it is enough to illustrate the theorem results in 

this paper. 

 

 

Fig. 1. Communication topology. 
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Remark 1: In this paper, we select the same reference 

signals in 3-dimensional space for the simplicity of 

simulation. Note that according to the proof of Theorems 

above, the leader’s reference xd can be in any form as 

long as it satisfies xd∈L
∞
 and it’s differential 

d
v L

∞
∈ . 

Therefore, the reference signals in 3-dimensional space 

can be also different. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. Consensus with unknown velocities, time-varying 

disturbances and packet dropout. 

Simulation results regarding the consensus case with 

packet dropout are implemented in this section. Accord-

ing to the proposed results in Theorem 2, we choose 

diag{2,2,2},
i

Δ = diag{2,2,2},
i

Π = 1,2,3,4,5,6i∈  and 

the ESO parameters are chosen as 
1

diag{20,
i

β =  

20,20},  
2

diag{150,150,150},
i

β =  
3

diag{500,500,
i

β =  

500}, 4,5,6.i∈  Moreover, we obtain the allowable 

minimum recovery rate 0 6λ = .  in network .G  Figs. 

2(a) and 2(b) show the first elements of states xi and vi 

for all the agents, respectively. Similar results are shown 

in Figs. 2(c) and 2(d) for the second elements of states xi 

and vi. 

From Fig. 2, we know that the heterogeneous multi-

agent system (1)-(3) with consensus protocol (13) can 

solve the consensus problem with unknown velocities, 

time varying disturbances and packet dropout. For the 

chattering occurs in simulation results, it is due to the 

existence of packet dropout, which cause the loss of 

information in communication links and thus deteriorate 

the controller’s performance. It is important to note that 

with the minimum recovery rate λ = 0.6, the consensus of 

heterogeneous multi-agent systems are still achieved. 

Then, it implies that the controller proposed in Theorem 

2 has capability to deal with the problem of packet 

dropout. 

 

5. CONCLUSION 

 

In this paper, we have studied the leader-following 

consensus problem for heterogeneous multi-agent 

systems composed of linear second-order integrator 

agents and nonlinear EL agents. By introducing ESO, the 

consensus protocols which allow for unknown velocities 

and time-varying disturbances have been proposed for 

the both cases with and without packet dropout in this 

paper. Sufficient conditions which provide the allowable 

upper bound of packet drop rate have been obtained to 

ensure that all following agents could reach consensus 

asymptotically with a leader. Finally, simulation results 

have been shown to illustrate the effectiveness of the 

proposed results. Up to now, little attention has been paid 

on the consensus problem for heterogeneous multi-agent 

systems with time-varying delays, which is an common 

problem need to be solved. Therefore, our future work 

will focus on the consensus control for heterogeneous 

multi-agent systems with time delays.  
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