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Abstract: This paper presents an implementation and experimental validation of trajectory tracking and fault detec-
tion algorithm for sensors and actuators of Automatic Guided Vehicle (AGV) system based on multiple positioning
modules. Firstly, the system description and the mathematical modeling of the differential drive AGV system are
described. Secondly, a trajectory tracking controller based on the backstepping method is proposed to track the
given trajectory. Thirdly, a fault detection algorithm based on the multiple positioning modules is proposed. The
AGV uses encoders, laser scanner, and laser navigation system to obtain the position information. To understand
the characteristics of each positioning module, their modeling are explained. The fault detection method uses two or
more positioning systems and compares them using Extended Kalman Filter (EKF) to detect an unexpected devia-
tion effected by fault. The pairwise differences between the estimated positions obtained from the sensors are called
as residue. When the faults occur, the residue value is greater than the threshold value. Fault isolation is obtained
by examining the biggest residue. Finally, to demonstrate the capability of the proposed algorithm, it is applied
to the differential drive AGV system. The simulation and experimental results show that the proposed algorithm
successfully detects the faults when the faults occur.

Keywords: Automatic guided vehicle, extended Kalman filter, fault detection, multiple positioning.

NOMENCLATURE

(XC,YC,θC): AGV pose in global coordinates frame
vcx, vcy: linear velocities in local coordinate

frame
ωc: angular velocity of AGV
T : sampling time
(XR,YR,θR): reference position and orientation
vR, θR: reference linear and angular velocities

of AGV
e1, e2, e3: tracking error in local coordinate of

AGV
k1, k2, k3: control gains
uc =
[vxc ωc]

T :
output controller

r: wheel radius
b: distance between the wheels and the

geometric center of AGV
(XE , YE , θE): AGV position and orientation

obtained from the encoder position
uE =
[∆ϕ1 ∆ϕ2]

T :
input for encoder model

∆ϕ1, ∆ϕ2: changes of right and left wheel
rotation angles
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QE: process noise covariance for
encoder

kr, kl : error constants related to encoders
(XL, YL, θL): AGV position and orientation

obtained from the laser position
module

uL =
[∆xL ∆yL ∆θL]

T :
input for laser positioning model

∆xL, ∆yL, ∆θL: changes in x and y direction and
orientation

QL: process noise covariance for laser
positioning

kx, ky, kθ : error constants related to laser
positioning

(XN ,YN ,θN): AGV position and orientation
obtained from the NAV position
module

nx, ny, nθ : error constants related to NAV
positioning

xik: state vector
wik−1: process noise at previous time

k−1
vik: observation noises at current time

k
fi(·): process nonlinear vector function

c⃝ICROS, KIEE and Springer 2016
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hi(·): observation nonlinear vector function
zik: output vector at current time k
ỹik: measurement innovation at current

time k
si: residue
T h: threshold value

1. INTRODUCTION

Automatic Guided Vehicles (AGVs) are the load car-
riers that travel along the given path with precisely con-
trolled acceleration and deceleration on the floor of work
environment without manual operator or driver. Typical
application of AGVs is the transportation of raw material
and finished goods in the industries to support the pro-
duction lines and the storage. Since the AGVs work auto-
matically, their reliability and safety are the crucial factors
to be considered. Therefore, many fault detection algo-
rithms were proposed to increase the safety and reliability
of AGVs. The fault detection algorithm helps user to de-
tect faults and prevents serious damage in the AGVs. The
main purpose to develop the fault detection algorithm is to
detect faults as quick as possible with the minimum false
alarms [1].

There are several approaches developed to make the
fault detection algorithm for different applications. As
in [2], the fault detection algorithm based on local model
neural networks was proposed to deal with the absence of
a mathematical model. For the known mathematical mod-
eling, [3, 4] proposed the fault detection algorithm based
on unknown input PI observer. The adaptive fault detec-
tion algorithm for the stuck actuator was proposed by [5].
Robust fault detection filter based on H∞ model matching
was proposed by [6, 7]. However, these algorithms only
worked for linear systems. For nonlinear systems, fault
detection and isolation scheme were proposed by [8, 9].
In [9, 10], a particle filter was used for the fault detection
and isolation. It could be used for nonlinear, non-Gaussian
and multi-modal distributions. However, the computa-
tional costs for these algorithms were high. Moreover, a
real-time model based sensor fault detection algorithm for
unmanned ground vehicles was proposed by [11] which
have used multiple sensors such as GPS, IMU sensor and
encoders. However, this method was operated only on the
sensor level.

Therefore, to deal with these problems, this paper pro-
poses an improved fault detection algorithm for the AGV
based on multiple positioning modules with known math-
ematical model and low computational cost. In this pa-
per, the fault detection method uses two or more position-
ing systems and compares them using Extended Kalman
Filter (EKF) to detect unexpected deviation effected by
fault. The EKF is comparatively faster than the particle
filter [12]. Residue is obtained from the pairwise differ-
ences between the estimated positions obtained from sen-

sors. When the faults occur, the residue value is greater
than the threshold value. Fault isolation is obtained by
examining the biggest residue.

2. SYSTEM DESCRIPTION

The system description of the AGV system is shown in
Fig. 1. The AGV dimension is 60 x 100 x 190 cm. This
system uses differential wheel drive system. Two driving
wheels are mounted on the left and right sides of the AGV,
and are driven by two BLDC motors. Two passive castor
wheels are installed in front and back sides to support the
AGV.

The electrical system description is shown in Fig. 2.
The laser navigation system NAV-200 is used as a po-
sitioning sensor with the accuracy of ±25 mm and is
mounted on the top of the AGV. The laser measurement
system LMS-151 is used to measure the distance between
the robot and the landmark positions and is attached in
front of the AGV. Two incremental encoders are attached
on the left and right wheels to count the rotations of the

Fig. 1. Mechanical system description.

Fig. 2. Electrical system description.
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wheels. Industrial PC as the main controller is placed in-
side the AGV platform. A touch screen monitor is used as
an input and display device and is placed on the back side
of AGV. The batteries for power supply are placed in the
middle of AGV.

3. MATHEMATICAL MODEL

A system modeling for the AGV system is shown in
Fig. 3. Kinematic equation of nonholonomic differential
drive type of AGV system as shown in Fig. 3 can be ex-
pressed as follows:

xC =
∫

ẋCdt, (1)

ẋC =

 ẊC

ẎC

θ̇C

=

 cosθC −sinθC 0
sinθC cosθC 0

0 0 1

 vcx

vcy

ωc

 ,

(2)
or in discrete type XC

YC

θC


k

=

 XC

YC

θC


k−1

+

 cos(θC) −sin(θC) 0
sin(θC) cos(θC) 0

0 0 1

 vcxT
vcyT
ωcT


k

,

(3)

where xC is posture vector of AGV, (XC,YC) is AGV po-
sition coordinate in global coordinates frame X0Y , θC is
AGV orientation, vcx and vcy are linear velocities in local
coordinate frame, ωc is angular velocity of AGV, T is sam-
pling time. Normally, the value of vcy is zero because the
AGV can’t move in perpendicular direction to the orienta-
tion of AGV under no slipping condition and pure rolling

Fig. 3. System modeling.

condition. As a result, the second column of rotation ma-
trix in (2) can be omitted.

4. CONTROLLER DESIGN

The purpose of this section is to design a trajectory
tracking controller for the AGV to track the reference
position (XR(t),YR(t))and the reference orientation θR(t)
with the reference linear velocity vR(t) and the angular
velocityωR(t). As shown in Fig. 3, the tracking error vec-
tor and its time derivative are defined as follows:

e(t) =

 e1

e2

e3


=

 cosθC sinθC 0
−sinθC cosθC 0

0 0 1

 XR −XC

YR −YC

θR −θC

 , (4)

ė(t) =

 ė1

ė2

ė3

=

 cose3 0
sine3 0

0 1

[
vR

ωR

]

+

 −1 e2

0 −e1

0 1

[
vcx

ωc

]
. (5)

To guarantee the stability of the system, Lyapunov func-
tion is chosen as:

V0 =
1
2

e2
1 +

1
2

e2
2 +

1
k2
(1− cose3) for k2 > 0, (6)

and its derivatives becomes

V̇0 =e1ė1 + e2ė2 +
1
k2
(sine3)ė3

=e1(−vxc + vR cose3)

+
1
k2
(sine3)(ωR −ωc + k2e2vR).

(7)

To achieve V̇0 ≤ 0, the control law uc is chosen as fol-
lows:

uc =

[
vxc

ωc

]
=

[
vR cose3 + k1e1

ωR + k2vRe2 + k3 sine3

]
. (8)

The schematics diagram of the proposed controller is
shown in Fig. 4.

Fig. 4. Schematic diagram of the proposed controller.
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5. POSITIONING MODULES

The term positioning module is used for the sensors or
algorithms that provide position estimation. In this pa-
per, three positioning modules are used for the AGV as
follows: encoders, laser scanner LMS-151, and laser nav-
igation system NAV-200. In the extended Kalman filter
(EKF), process model, process noise covariance and mea-
surement noise covariance are the important parameters.
Therefore, in this section, modeling of each positioning
module is presented, and its noise covariance is defined.

5.1. Encoder positioning module modeling
The encoder positioning for differential drive type of

AGV is based on the accumulation of wheel rotation.
Therefore, small measurement errors will cause drift after
passing through the integration. The mathematical model
of encoder positioning module can be expressed as XE

YE

θE


k|k−1

=

 XE

YE

θE


k−1

+

 cos(θE) −sin(θE) 0
sin(θE) cos(θE) 0

0 0 1

  ∆xE

0
∆θE


k

, (9)

[
∆xE

∆θE

]
=

r
2

[
1 1
1
b − 1

b

][
∆ϕ1

∆ϕ2

]
, (10)

where r is the wheel radius, b is the distance between the
wheels and the geometric center of the AGV. The input for
this model is chosen as uE =

[
∆ϕ1 ∆ϕ2

]T , where ∆ϕ1

and ∆ϕ2 are the changes of right and left wheel rotation
angles.

The process noise covariance is given as

QEk−1 =

[
kr |∆ϕ1| 0

0 kl |∆ϕ2|

]
, (11)

where kr and kl are error constants related with encoders.
The fault in encoder is caused by slip, calibration error,

communication error, and damage on the sensor.

5.2. Laser scanner positioning module modeling
For the laser scanner positioning module, Simultane-

ous Localization and Mapping (SLAM) algorithm [13] is
adopted based on location of the landmarks as shown in
Fig. 5. In this paper, ‘metal rod’ landmarks are used for
the experiment. Firstly, landmarks are detected as shown
in Fig. 5(a). As the AGV moves, the encoder data change
and the AGV new position is predicted by the EKF pre-
diction step based on encoder data as shown in Fig. 5(b).
Secondly, landmarks are detected from the AGV new po-
sition as in Fig. 5(c). The AGV then associates these land-
marks with observations of landmarks that are previously
observed. Re-observed landmarks are used to update the

(a) (b) (c)

(d) (e)

Fig. 5. Laser scanner positioning modeling.

AGV position using EKF update step as shown in Fig.
5(d). The real position, the encoder position and the es-
timated position of the AGV are shown in Fig. 5(e).

The position estimation will drift because of the integra-
tion, matching error, noise and numerical errors with ac-
cumulated overtime. The mathematical modeling of laser
scanner positioning module can be given as XL

YL

θL


k|k−1

=

 XL

YL

θL


k−1

+

 cos(θL) −sin(θL) 0
sin(θL) cos(θL) 0

0 0 1

  ∆xL

∆yL

∆θL


k

.

(12)

The input for this model is defined by uL =[
∆xL ∆yL ∆θL

]T .
The process noise covariance is

QLk−1 =

 kx 0 0
0 ky 0
0 0 kθ

 , (13)

where kx, ky and kθ are error constants. Equation (12) is
reasonable model because SLAM error is independent of
the robot direction. The error depends on the difference
between current scanning result and previous scanning re-
sult. Communication error, sensor damage and singular-
ity are several example of faults related with laser scanner
when the AGC moves on the long corridor or open space.

5.3. NAV-200 positioning module modeling
Using triangulation method, the NAV-200 positioning

sensor obtains the AGV position. Reflectors are posi-
tioned around the environment and their locations are
given to the sensor as shown in Fig. 6. The sensor then cal-
culates its position in the environment from the observed
positions of the reflectors [14].

Unlike another positioning module, the NAV-200 is a
position sensor. Therefore, the position data can be ob-
tained directly through serial data communication without
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Fig. 6. NAV-200 positioning module modeling.

any further calculation. However, the position obtained
from this sensor also have error caused by measurement
noise. The mathematical modeling of the NAV-200 posi-
tioning module including measurement noise can be given
as follows: XN

YN

θN


k|k−1

=

 XN

YN

θN


k

+

 nx

ny

nθ


k

. (14)

The fault related with the NAV-200 is caused by communi-
cation error, insufficient number of reflectors, singularity,
etc.

6. FAULT DETECTION ALGORITHM

The flowchart of the fault detection algorithm is shown
in Fig. 7. The EKF calculates the measurement probabil-
ity distribution of the AGV position for nonlinear models
driven by Gaussian noise. Using the probability distribu-
tion of innovation obtained from the EKF, it is possible
to test whether the measured data are fit with the mod-
els or not. When the faults occur, the models will not be
valid and the innovation will not be Gaussian and white.
The residue calculation estimates the residue from pair-
wise differences between the estimated positions obtained
from the positioning modules. Fault isolation is obtained
by examining the biggest residue. Finally, from the Table
2 as shown in the next section, the fault position is known.

6.1. Extended Kalman Filter
Kalman filter theory provides a method to calculate

measurement probability for linear model driven by Gaus-
sian noise. Since the proposed system is nonlinear, the
EKF is used.

In [15], a convergence analysis of the EKF as an ob-
server for nonlinear deterministic discrete systems was
done. It shows that the EKF converges locally for a broad
class of nonliniear system. If the initial estimation error
of the filter is not too large, the error goes to zero expo-
nentially as time goes to infinity. In this paper, the initial
estimation error is assumed to be zero.

Fig. 7. Flowchart of the proposed fault detection algo-
rithm.

In the EKF, the state transition model and the observa-
tion model are not linear functions of the state but may
be differentiable functions as follows:{

xik = fi(xik−1,uik−1)+wik−1

zik = hi(xik)+vik,
(15)

where xik is the state vector at time k, wik−1 is the process
noise at previous time k−1 and vik is the observation noise
at time k which are assumed to be zero mean multivariate
Gaussian noises with covariance Qik and Rik at time k,
respectively. fi(·) is the process nonlinear vector function,
hi(·) is the observation nonlinear vector function, and zik

is the output vector current time k.
In this paper, the state equation f (·) can be obtained

from 3 cases such as: (9) for encoder positioning mod-
ule, (12) for laser scanner positioning module and (14) for
NAV-200 position module. For the measurement model,
zik is used as the following equation:

zik = xik +vik. (16)

The EKF consists of two steps as follows:

• Prediction step:{
x̂ik|k−1 = fi(x̂ik−1|k−1,uik−1)

Pik|k−1 = Fik−1Pik−1|k−1FT
ik−1 +WikQik−1WT

ik
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Table 1. Extended Kalman Filter test condition.

Test Estima-
tion

Input

State
Equation

Measure-
ment

EKF
output

T1 Controller
+ LMS

uc (3) XL, YL,
θL

ỹ1k S1k

T2 Encoder +
LMS

uE (9) XL, YL,
θL

ỹ2k S2k

T3 Controller
+

encoder

uc (3) XE , YE ,
θE

ỹ3k S3k

T4 Controller
+ NAV

uc (3) XN , YN ,
θN

ỹ4k S4k


Fik−1 =

∂ fi

∂xi

∣∣∣∣
x̂k−1|k−1,uk−1

Wik =
∂ fi

∂ui

∣∣∣∣
x̂ik−1|k−1,uik−1

,

(17)

where x̂ik|k−1 is the predicted state estimate at time k,
and Pik|k−1 is the predicted covariance matrix estimate
at time k.

• Update step:

ỹik = zik −h(x̂ik|k−1)

Sik = HikPik|k−1HT
ik +Rik

Kik = Pik|k−1HT
ik (Sik)

−1

x̂ik|k = x̂ik|k−1 +Kikỹik ỹik = zik −hi(x̂ik|k−1)

Pik|k = (I−KikHik)Pik|k−1

Hik =
∂hi

∂xi

∣∣∣∣
xik|k−1

,

(18)

where ỹik is the measurement innovation at time k,
zik is the output vector from estimation at time k,
hi(x̂ik|k−1) is the measurement result, Sik is the inno-
vation covariance at time k, Rikis the measurement
noise covariance at time k, Kik is the Kalman gain at
time k, x̂ik|k is the updated state estimation at time k,
and Pik|k is the updated covariance matrix estimation
at time k.

This paper implements multiple EKFs with multiple in-
dependent state vectors. Pairwise of positioning modules,
as shown in Table 1, are tested using Kalman filter.

6.2. Residue calculation

From the EKF, the measurement innovation ỹik and the
innovation covariance Sik can be obtained. To check the
residue measurement, Mahalanobis distance [16] is used.
The residue (si)k at time k can be calculated as follows:

(si)k = (ỹT
i S−1

i ỹi)k for i = 1,2,3,4. (19)

Table 2. Fault isolation with respect to residue.

Fault
Test N F1 F2 F3 F4

Nor-
mal Encoder

BLDC
mo-
tor

Laser
scan-
ner

NAV

T1
Controller
+ laser
scanner
(LMS)

0 0 X X 0

T2

Encoder
+ laser
scanner
(LMS)

0 X 0 X 0

T3
Controller

+
encoder

0 X X 0 0

T4 Controller
+ NAV

0 0 0 0 X

* 0 means normal, X means fault.

If the value of si is larger than threshold value T h, one of
the pairwise sensors is fault condition as follows [17]:

Fault condition

{
normal 0 if si < T h

fault X if si > T h.
(20)

The threshold value determines how system is sensitive
to the fault. The existence of model uncertainty and distur-
bances such as noise can cause a false alarm. Therefore, it
is important to design a threshold to accommodate uncer-
tainties in the model that would help in minimizing false
alarms and missed detections. In this paper, the threshold
value is predetermined and constant based on empirical
data.

6.3. Fault isolation
Finally, to isolate the fault, 4 test conditions have been

setup as shown in Table 2. The residue values above the
threshold value are examined, and then matched with the
Table 2 showing the relation between residues and faults.
Several fault conditions are considered as follows:

• In normal condition (N), all positioning modules pro-
vide correct position. Therefore, all tests are normal
since all residues are less than the threshold value.

• When the encoder is broken (F1), all tests related with
encoder such as test T2 and test T3 have the fault re-
sults since the positioning from encoder is false and
the resulting residue from both tests T2 and T3 are
greater than the threshold value.
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• When the BLDC motor is broken (F2), all tests re-
lated with controller such as test T1 and test T3 have
the fault results since the positioning from controller
is false and the resulting residue from both tests T1
and T3 are greater than the threshold value.

• When laser scanner is broken (F3), all tests related
with laser scanner such as test T1 and test T2 have
the fault result since positioning from laser scanner is
false. The resulting residue from both tests T1 and T3
are greater than the threshold value.

• When NAV-200 is broken (F4), the NAV would not
provide the correct position. Therefore, the residue
from test T4 is greater than the threshold value.

7. EXPERIMENTAL RESULT

To verify the effectiveness of the proposed fault detec-
tion algorithm, several experiments has been conducted.
Table 3 shows the parameters and their initial values for
the experiment.

During the experiments, the AGV follows the given
trajectory. The experimental environment is a corridor
surrounded by walls and windows. The algorithm was
run in realtime on industrial computer installed inside the
AGV. In the experiment, the sensor outputs are observed
at 10Hz. The fault data and any other information are
saved inside industrial computer during experiment and
can be copied after experiment is finished. The proposed
algorithm is tested during several conditions T1, T2, T3,
and T4. During the experiment, the trajectories from each
test such as controller + laser scanner (LMS), Encoder +
laser scanner (LMS), Encoder + controller, and controller
+ NAV 200 can be observed. The residue of each test
can also be obtained and it is compared with the threshold
value T h. In this experiment, the threshold value T h is
chosen as 500.

7.1. Normal condition
The experimental results for normal condition are

shown in Fig. 8 and Fig. 9. Fig. 8 shows that trajectory
tracking results in several conditions T1, T2, T3, and T4
obtained from each positioning module fused by EKF are
almost similar since fault condition doesn’t exist. There-
fore, the residue values shown in Fig. 9 are less than the
threshold value T h.

Table 3. Parameters and initial values.

Parameter Value Parameter Value
r 0.07 m (k1,k2,k3) (0.5,20,0.1)
b 0.60 m (XC,YC,θC)t=0 (0m,1.5m,0◦)

kr,kl (0.02,0.02) kx, ky, kθ (0.01,0.01,0.001)

Fig. 8. Trajectory tracking in normal condition.

Fig. 9. Residue in normal condition.

7.2. Encoder fault

The experimental results for the encoder fault are shown
in Fig. 10 and Fig. 11. To resemble the encoder fault con-
dition, at t = 20 s, the controller stops receiving the data
from encoders. Therefore, the encoder positioning mod-
ules does’t provide the positioning data anymore. Fig. 10
shows the trajectory tracking when the encoder fault hap-
pens. In Fig. 11, the residue values of encoder + laser
scanner (LMS) and controller + encoder are increased
over the threshold value at t = 21.6 s. From the Table
2, it can easily be observed that the encoder fault happens.
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Fig. 10. Trajectory tracking at encoder fault condition.

Fig. 11. Residue at encoder fault condition.

7.3. BLDC motor fault
The experimental results for the BLDC motor fault are

shown in Fig. 12 and Fig. 13. The fault condition can be
obtained by turning off the motors when the AGV moves.
Fig. 13 shows that since the motor stops at t = 25 s, the
residue values of controller + laser scanner (LMS) and
controller + encoder are increased over the threshold value
at t = 26.2 s. From the Table 2, it can easily be observed
that the BLDC motor fault happens.

7.4. Laser scanner fault
The experimental results for the laser scanner (LMS)

fault are shown in Fig. 14 and Fig. 15. The fault condition
can be obtained by pulling the sensor’s power connection

Fig. 12. Trajectory tracking at BLDC motor fault.

Fig. 13. Residue at BLDC motor fault.

when the AGV moves at t = 30 s.
Since the laser scanner doesn’t provide any data, the

SLAM positioning cannot provide new position data.
Therefore, as shown in Fig. 15, the residue values of con-
troller + laser scanner (LMS) and Encoder + laser scanner
(LMS) are over the threshold value at t = 31.2 s.

7.5. NAV fault
The experimental results for NAV fault are shown in

Fig. 16 and Fig. 17. The fault condition can be obtained
by pulling of the power connection of the sensor when the
AGV moves at t = 35 s. Since the NAV sensor doesn’t
provide any data, as shown in Fig. 17, the residue value of
controller + NAV is increased and over the threshold value
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Fig. 14. Trajectory tracking at laser scanner fault.

Fig. 15. Residue when laser scanner fault.

at t = 36.1 s.

8. CONCLUSION

This paper proposed an implementation and experimen-
tal validation of fault detection algorithm for the Auto-
matic Guided Vehicle (AGV) system based on multiple
positioning modules using EKF. The experimental results
in normal condition and fault condition showed that the
proposed algorithm successfully detected the fault con-
ditions with the computational time of 125 ms. The al-
gorithm calculated the residue of each pairs positioning
modules based on EKF. Depending on residue values, the
fault conditions were detected. In the future, this system

Fig. 16. Trajectory tracking at NAV-200 fault.

Fig. 17. Residue at NAV-200 fault.

can be improved so that it can detect more than one fault
at a time.
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