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Sampled-data Collective Rotating Consensus for Second-order 

Networks under Directed Interaction 
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Abstract: This paper investigates collective rotating motions of second-order multi-agent systems in 

3-D under a sampled-data setting. A rotating consensus protocol was proposed and conditions on sam-

pling period, damping gain, communication topology and rotating angle such that the vehicles will 

eventually move on a straight-line path, cylindrical spirals and logarithmic, respectively, were derived. 

In particular, when the vehicles move along circular orbits, the relative radii of the orbits (respectively, 

the relative phases of the vehicles on their orbits) are equal to the relative magnitudes (respectively, the 

relative phases) of the components of a right eigenvector associated with the critical eigenvalue of the 

nonsymmetric Laplacian matrix. Simulations are performed to validate the theoretical results. 

 

Keywords: Collective motion, cooperative control, rotating consensus, sampled-data, second-order 

networks. 

 

1. INTRODUCTION 

 

Enabled by recent technological advances, the 

autonomous agents that can cooperatively perform 

complex tasks are rapidly becoming a reality. In 

particular, there have been considerable progresses 

reported in the literatures on robotics and sensor 

networks regarding as coverage control [1], surveillance 

[2], and environmental monitoring [3]. In many 

cooperative situations, all team members are required to 

reach an agreement on a common value including 

positions, phases, velocities and altitudes by negotiating 

with their neighbors. Such problems are called consensus 

and which play important roles in achieving coordinated 

behavior through local interactions.  

The topics on consensus include the dynamics of 

agents, interaction topology of the network, finite-time 

convergence, time-delays, etc. In [4], the authors showed 

that information consensus under dynamically changing 

interaction topologies can be achieved asymptotically if 

the union of the directed interaction graphs has a 

spanning tree frequently enough as the system evolves. 

By using a comparison based tool, the authors [5] studied 

the finite-time consensus for single-integrator kinematics 

with unknown inherent nonlinear dynamics. Considering 

the limited memory, computation, and communication 

capabilities of the agents, [6] studied the consensus for 

agents over finite fields which assumed that agents can 

process only values from a finite alphabet. In [7], the 

authors considered consensus for second-order networks 

that takes into account the constraints of velocity and 

proposed a distributed control law only using the 

neighbors’ positions and the each agent’s own velocity. 

In [8], a synchronized tracking control law was proposed 

for multiple agents with high-order dynamic system 

modeled by a chain form, whereas the desired trajectory 

is only available for a portion of the team members. 

Another area of interest is consensus for systems with 

unknown inherent time delays. Cui et al. [9] considered 

the consensus problem for the general high order multi-

agent systems with both the communication delay and 

input delay. Conditions were derived in [9] under which 

the consensus for these high order linear systems with 

time-varying, arbitrarily large yet bounded, and even 

unknown communication and inputs delays could be 

achieved, by the proposed state feedback and observer 

based output feedback controller. Furthermore, by only 

using the relative outputs of neighboring agents, a 

truncated reduced-order observer based protocol was 

proposed in [10] under which the consensus of high-

order linear systems under directed interaction is 

achieved. Similarly, considering the fact that physical 

state of agents is not always completely accessible 

because of environmental noise or difficulty in 

measurement, Hu et al. [11] constructed a parallel 

Luenberger observer and the output of each observer is 

designed to estimate the local control input, moreover, 

LMI-based and optimization based methods were used to 

design the controller gains and observer parameters, 

respectively. Existing research in the aforementioned 

works mainly concerns with the translational behaviors 

of the agents. In fact, a class of collective circular 

motions widely exist in nature including flocks of birds 

flying along a circular orbit, foraging ants around a piece 
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of rice, a swirling growing epiphyte colony, and panic 

escaping fish school around a predator, etc. These 

collective behaviors can be applied to formation flight of 

satellites, circular mobile sensor networks and so on. 

However, rare results are derived to generate such 

motions currently. One of the earliest contributions was 

given in [12], where circular motions are obtained with a 

virtual reference beacon. Following this line, more 

control algorithms were developed to gain collective 

stable circular motions with allowable equilibrium 

configurations [13,14]. In [13], a group of mobile agents 

were studied where each agent pursues the leading 

neighbor along the line of sight rotated by a common 

offset angle, resulting in a circular motion. In particular, 

motivated by the applications of autonomous underwater 

vehicles (AUVs) in oceanographic sampling, a novel 

rotating formation control problem was solved in [14] to 

make all agents circle around a common point with some 

special structures at an unit speed. The aforementioned 

cyclic pursuit formation controller [13,14] is based on a 

fixed network topology, especially, represented by a 

circulant matrix. The result was extended in [15] by 

introducing a rotation matrix to an existing second-order 

consensus protocol and the conditions under which 

rendezvous, circular patterns, and logarithmic spiral 

patterns can be achieved were derived, however, the 

center of the final trajectories can only be fixed. Along 

this research line, the latest work is referred to in [16] 

and [17] where control protocols were proposed to make 

all agents surround a common point with a desired 

formation structure, in 2D and 3D spaces under 

undirected graph, respectively.  

Most of the aforementioned works are assumed that all 

information is transmitted continuously. However, due to 

the unreliability of information channels, the capability 

of transmission bandwidth of networks, the sensing 

ability of each agent and the total cost, it is quite difficult 

or expensive to ensure the continuity of information 

transmission. Hence it is more practical to take account 

of intermittent information transmission. The discrete-

time coordination algorithms were primarily studied for 

systems with single-integrator dynamics [4,18,19], and 

consensus problems were addressed for second-order 

agents in a sampled-data setting in [20-22]. In these 

references, although conditions to ensure consensus were 

derived in discrete-time settings and the effect of 

sampled-data control on stability of vehicles were 

considered explicitly, there are few research results on 

rotating consensus problems of second-order agents. 

Based on the above considerations, we investigate 

rotating consensus problems of continuous-time second-

order agents in a sampled-data setting. The main 

contributions of this work are twofold. Firstly, we 

proposed a sampled-data-based discrete rotating 

consensus algorithm for networked systems with second-

order dynamic associated by directed interactions, and 

we derive sufficient conditions on the network topology, 

the sampling period, the damping factor and the Euler 

angle such that different collective motions can be 

achieved. Secondly, by introducing a velocity consensus 

item to an existing rotating consensus algorithm 

proposed in [15] for second-order dynamics, all agents 

finally converge to a desired plane in 3D and keep 

moving on with a synchronized velocity rather than 

moving surround a fixed center like [15]. 

This paper is organized as follows. In Section 2, we 

present some notations and some concepts in graph 

theory used throughout this note, we also formulate the 

problem to be studied. Section 3 states the main results, 

i.e. the convergence results are analyzed for the rotating 

consensus algorithm proposed. Numerical results are 

presented in Section 4 to illustrate the effectiveness of 

the theoretical results. Finally, conclusions and future 

research works are given in Section 5. 

 

2. PRELIMINARIES AND PROBLEM 

FORMULATION 

 

2.1. Graph theory 

It is a natural way to model the interaction among a 

group of n agents by a directed graph ( , ),G V E=  

where the agent set and the edge set can be denoted by 

{1,2,..., }V n=  and 2
E V⊆  respectively. An edge 

denoted as ( , )i j  means that information can be sent 

from agent i to agent j, but not necessarily vice versa. 

That is, agent i is a neighbor of agent j. We use Nj to 

denote the neighbor set of agent j. A directed path is a 

sequence of edges of the form 
1 2 2 3

( , ), ( , ),...,i i i i  where 

,
k
i V∈ 1,2, .k = �  Moreover, a directed graph has a 

directed spanning tree if there exists at least one agent 

that has directed paths to all other agents. Usually, we 

use A to represent the weighted adjacency matrix, and 

each entry of A denoted as aij is defined such that aij is 

positive weight if ( ) ,j i E, ∈  while 0
ij
a =  if ( , )j i  

.E∉  The Laplacian matrix [ ]
n n

ijL R
×

= ∈�  with 
ii
=�  

1,

n

ijj j i
a

= ≠

∑  and ,
ij ij

a= −� .i j≠  In particular, we let 

0,
ii
a = 1,..., ,i n=  (i.e., agent i is not a neighbor of 

itself). It is straightforward to verify that L has at least 

one eigenvalue equal to zero with a corresponding right 

eigenvector 1
n
, where 1

n
 is the n × 1 column vector with 

its entries are all ones.  

 

2.2. Rotating consensus algorithm for second-order 

dynamics in a sampled-data setting  

Consider vehicles with dynamics by 

, , 1,..., ,
i i i i
r v v u i n= = =  (1) 

where m

i
r ∈�  and m

i
v ∈�  represents the position 

vector and velocity vector of the thi  agent respectively, 

and m

i
u ∈�  is the control input vector. Rewriting (1) 

in a matrix form 

( ) ( ) ( ),x t Ax t Bu t= +�  (2) 

where t denotes the evolving time of (1) and 

0 1
,

0 0
A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

  
0

,
1

B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

  [ , ] .
T

x r v=  

With the knowledge of linear time invariant systems [23], 
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the discretization form of (2) can be written as  

( 1) ( ) ( ),x k Gx k Hu k+ = +  (3) 

where 0,1,...k =  denotes the discrete-times index and T 

denotes the sampling-data period with ( ) [ ( )] ,
t kT

x k x t
=

=  

( ) [ ( )] ,
t kT

u k u t
=

= ,

AT
G e=

0

d .
T

A
H e B

τ

τ= ∫  

With zero-order hold, it follows that  

( ) [ ], ( 1) .
i i
u t u k kT t k T= ≤ < +  (4) 

Bringing (4) and ,

AT
G e=

0
d

T
A

H e B
τ

τ= ∫  into (3) will 

get 

2

[ 1] [ ] [ ] [ ],
2

[ 1] [ ] [ ].

i i i i

i i i

T
r k r k Tv k u k

v k v k Tu k

+ = + +

+ = +

 (5) 

To achieve the collective rotating motions, in this note, 

we propose a distributed sampled-date rotating consensus 

algorithm for (5) as  

1 1

[ ] ( [ ] [ ]) ( [ ] [ ]),
n n

i ij i j ij i j

j j

u k a R r k r k a v k v kα

= =

= − − − −∑ ∑  

 1,..., ,i n=  (6) 

where α is a positive damping gain to be designed and 
m m

R
×

∈�  denotes a Cartesian coordinate coupling 

matrix defined in [15]. 

In this paper, we mainly formulate and concentrate on 

the collective control for a team of agents moving in a 3-

D mission space, it thus follows that 3
,

i
r ∈�

3

i
v ∈�  

and 3
.

i
u ∈�  However, all results to be proposed and 

analyzed still hold for ,

m

i
r ∈�

m

i
v ∈�  and m

i
u ∈�  

by use of the properties of the Kronecker product. 

 

3. CONVERGENCE ANALYSIS OF THE 

SAMPLED-DATA ROTATING CONSENSUS 

ALGORITHM 

 

In this section, we will analyze the convergence 

properties of (6) under fixed directed interaction, and 

derive the necessary and sufficient conditions to achieve 

the desired collective rotating motions. Before moving 

on, we need the following Notation and lemmas:  

Lemma 1 [24]: Let ,

p p
A

×

∈R ,

q q
B

×

∈R ,

p p
C

×

∈R  

and ,

q q
D

×

∈R  then ( )( ) ,A B C D AC BD⊗ ⊗ = ⊗  where 

⊗  denotes the Kronecker product. If λ is an eigenvalue 

of A and p
x∈�  is a corresponding eigenvector of A, 

and μ is an eigenvalue of B with q
y∈�  being the cor-

responding eigenvector of B, then λμ  is an eigenvalue 

of A B⊗  and x y⊗  is the corresponding eigenvector 

of .A B⊗  

Lemma 2 [24]: If n n

A
×

∈�  and if ,λ µ  are any two 

eigenvalues of A with ,λ μ≠  then any left eigenvector 

of A corresponding to μ is orthogonal to any right 

eigenvector of A corresponding to λ. 

Lemma 3 [25]: Let L be the nonsymmetric Laplacian 

matrix associated with weighted directed graph G. Then 

L has at least one zero eigenvalue and all other eigen-

values have positive real parts. Furthermore, L has 

exactly one zero eigenvalue and all its nonzero eigen-

values have positive real parts if and only if the directed 

graph G has a directed spanning tree. In addition, there 

exists 1
n
 satisfying 0

n
L =1  and ,

n

∈p R  satisfying 

0,>p 0
T
L =p  and 1.

T

n
=p 1  That is, 

n
1  and p are, 

respectively, the right and left eigenvectors of L 

associated with the zero eigenvalue.  

Notation: Let ,
i

µ 1,...,i n=  be the thi  eigenvalue 

of L−  with associated right and left eigenvectors ωi 

and .

i
ν  Let arg( ) 0

i
µ =  for 0

i
µ =  and arg( )

i
μ π=  for 

0
i

µ <  and ,
i

µ ∈R  where arg( )⋅  denotes the phase of 

a number. Denote arg( ) ( / 2, ) ( ,3 / 2)
i

μ π π π π∈ ∪  for all 

other μi with non-zero imaginary parts. Without loss of 

generality, suppose that μi, 1,...,i n=  is labeled as 
i

µ  

0,=
2,...,

,
k

μ ∈R  where k denotes –L has k eigenvalues 

being on real axis, and 
1,...,k n+

µ  represent other eigen-

values with non-zero imaginary parts. It follows from 

Lemma 3 that 0,
i

µ =
1

,
n

ω = 1  and 
1

.ν = p  

Lemma 4 [15]: Given a rotation matrix 3 3
,R R

×

∈  let 

1 2 3
[ , , ]

T
a a a=a  and θ denote, respectively, the Euler 

axis and Euler angle. The eigenvalues of R are 
1

1,σ =  

2
,e

ιθ

σ =  and 
3

,e
ιθ

σ
−

=  where ι  denotes the imaginary 

unit, with the associated right eigenvectors given by, 

respectively, 
1

,ς = a  

2 2 2

2 2 3

2

1 2 3

2

1 3 2

[( )sin ( / 2),

( )sin ( / 2) sin(0 / 2) sin( / 2) ,

( )sin ( / 2) sin( / 2) sin( / 2) ]T

a a

a a a a

a a a

ς θ

θ ι θ

θ ι θ θ

= +

− +

− −

 

and 
3 2

,ς ς=  where ⋅  denotes the complex conjugate 

of a number. The associated left eigenvectors are, re-

spectively, 
1 1

,ϖ ς=
2 2

ϖ ς=  and 
3 3

.ϖ ς=  
 

Corollary 1: Let R, ςi, and 
i

ϖ  be defined in Lemma 
 

1, then 
3

3

1

1
.

T

i iT

i i i

Iς ϖ

ϖ ς
=

=∑  
 

 

Proof: Noting that 
i

ς  and 
i

ϖ  are the right and left 

eigenvectors associated with ,
i

σ 1,2,3.i =  Define two 

matrices as  

31 2

1 1 2 2 3 3

T T T

ςς ς

ϖ ς ϖ ς ϖ ς

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 and 

1

2

3

.

T

T

T

ϖ

ϖ

ϖ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

According to Lemma 2, 0
T

i k
ϖ ς =  for each ,i k≠  then 

it follows that  

1

31 2

2

1 1 2 2 3 3

3

1 0 0

0 0 ,

0 0

T

T

T T T

T

R e

e

ιθ

ιθ

ϖ
ςς ς

ϖ

ϖ ς ϖ ς ϖ ς
ϖ −

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥

=⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

 

where it can be found that the diagonal entries of 

diagonal matrix are exactly the eigenvalues of R. 

Therefore,  

31 2

1 1 2 2 3 3

T T T

ςς ς

ϖ ς ϖ ς ϖ ς

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 and 

1

2

3

T

T

T

ϖ

ϖ

ϖ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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are a pair of invertible linear transformation. Then 

3

3

1

1

31 2

2

1 1 2 2 3 3

3

1
.

T

T T

i iT

i i i

T T T

T

I

ϖ
ςς ς

ϖ

ϖ ς ϖ ς ϖ
ϖ

ς

ςς

ϖ

ϖ
=

⎡ ⎤
⎡ ⎤ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎢ ⎥

⎣ ⎦

=∑  � 

Denote 
1

[ , , ]
T T T

n
r r r= …  and 

1
[ , , ]

T T T

n
v v v= …  as the 

column stack vector of ,
i
r ,

i
v 1,... , ,i n=  respectively. 

We can rewrite the closed loop system of (5) using (6) as 

2 2

3 3

3

[ 1] [ ]( )
,2 2

[ 1] [ ]
( )

n n

n

T T
r k r kI L R TI L I

v k v k
TL R I TL I

α

α

Ω

⎡ ⎤
+⎡ ⎤ ⎡ ⎤− ⊗ − ⊗⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥+⎣ ⎦ ⎣ ⎦− ⊗ − ⊗⎢ ⎥⎣ ⎦

�����������������

 (7) 

where I3n and I3 denote the identity matrix with different 

dimensions respectively, and L is the nonsymmetric 

Laplacian matrix associated with G. To analyze the 

convergence property of (7), we firstly derive the 

eigenvalue and the corresponding eigenvectors of the 

system matrix Ω by the following lemma.  

Lemma 5: According to the Notation we have 

denoted, the thi  eigenvalue of –L is given by 
i

µ  with 

associated right and left eigenvectors ωi and ,
i

ν  re-

spectively. Denote the three eigenvalues of R as 
1

1,σ =  

2
e
ιθ

σ =  and 
3

e
ιθ

σ
−

=  with the corresponding right and 

left eigenvectors given by Lemma 1. Then the eigen-

values of Ω are given by 

2

6( 1) 2 1

2
2

2

1
4 2

4 4

,
2

2

i

i i

i i i

TT

T
T T

αμ
ζ μ σ

μ σ μ σ αμ

− + −

= + +

⎛ ⎞
+ + −⎜ ⎟⎜ ⎟

⎝ ⎠
+

� �

� �

 

where 1,... , ,i n= 1,2,3=�  with the corresponding right 

and left eigenvectors given by 

6( 1) 2 1

6( 1) 2 1

( 1)

2( 1)

i

i

i

i

T ζ
ω ς

ζ

ω ς

− + −

− + −

+⎡ ⎤
⊗⎢ ⎥

−⎢ ⎥
⎢ ⎥⊗⎣ ⎦

�

�

�

�

 and 

6( 1) 2 1

,

1

i

i

i

T

ν ϖ

α
ν ϖ

ζ σ
− + −

⊗⎡ ⎤
⎢ ⎥
⎛ ⎞⎢ ⎥

+ ⊗⎜ ⎟⎢ ⎥⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

�

�

� �

 

respectively. And the eigenvalues 

2

6( 1) 2

2
2

2

1
4 2

4 4

,
2

2

i

i i

i i i

TT

T
T T

αμ
ζ μ σ

μ σ μ σ αμ

− +

= + +

⎛ ⎞
+ + −⎜ ⎟⎜ ⎟

⎝ ⎠
−

� �

� �

 

where 1, , ,i n= … 1,2,3=�  with the corresponding right 

and left eigenvectors given by 

6( 1) 2

6( 1) 2

( 1)

2( 1)

i

i

i

i

T ζ
ω ς

ζ

ω ς

− +

− +

+⎡ ⎤
⊗⎢ ⎥

−⎢ ⎥
⎢ ⎥⊗⎣ ⎦

�

�

�

�

 and 

6( 1) 2

,

1

i

i

i

T

ν ϖ

α
ν ϖ

ζ σ
− +

⊗⎡ ⎤
⎢ ⎥
⎛ ⎞⎢ ⎥

+ ⊗⎜ ⎟⎢ ⎥⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

�

�

� �

 

respectively.  

Proof: Suppose that ζ  is an eigenvalue of Ω with an 

associated right eigenvector ,

f

g

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 where 3
, .

nf g C∈  It 

thus follows that 

2 2

3 32 2

3

( )
,

( )

T T

n n

n

f fI L R TI L I

g gTL R I TL I

α
ζ

α

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− ⊗ − ⊗
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

− ⊗ − ⊗ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
 

which follows that  

2

3
( ) ,

2

T
f Tg L Rf L I g gα ζ+ − ⊗ + ⊗ =  (8) 

3
( ) ( 1) .

2 2

T T
L Rf L I g gα ζ− ⊗ + ⊗ = +  (9) 

Then we can easily get  

( 1)
.

2( 1)

T
f g

ζ

ζ

+
=

−

 (10) 

Substituting (10) to (9) yields  

3 2

3

( 1)
(1 ) ,

4( 1) 2 2

T T T
L R I g g

ζ
α ζ

ζ

⎛ ⎞+
⊗ + = −⎜ ⎟⎜ ⎟−⎝ ⎠

 

which implies that g is actually the right eigenvector of 

matrix ( )3 2
( 1)

4( 1) 2 3

T T
L R I

ζ

ζ
α

+

−
⊗ +  associated with the eigen-

value 
2
(1 ).

T
ζ−  For simplicity, we denote M L= ⊗  

( )3 2
( 1)

4( 1) 2 3
.

T T
R I

ζ

ζ
α

+

−
+  It follows from Lemma 1 that the 

eigenvalue of M corresponding to the thi  eigenvalue of 

–L and the th�  eigenvalue of R is 
3 2
( 1)

4( 1) 2
.

T T

i i

ζ

ζ
μσ αμ

+

−
− −

�
 

Let the following equation 
3 2( 1)

4( 1) 2 2
(1

TT T

i i

ζ

ζ
μ σ αμ

+

−
− =−

�
 

),ζ−  then we will have 

2 2

2
2 1 0,

2 2
i i i i

T T
T Tζ μ σ αμ ζ μ σ αμ

⎛ ⎞
− + + + − + =⎜ ⎟⎜ ⎟
⎝ ⎠

� �
 

 1,2,3.=�  (11) 

Noting that each ζ  satisfying with (11), so it is actually 

the eigenvalue of Ω. Moreover, each eigenvalue of –L 

corresponds to six eigenvalues of Ω by substituting 

,σ
�

1,2,3,=�  to (11). Also noting that q is actually the 

eigenvector of M, then following from Lemma 1 we can 

conclude that ,
i

g ω ς= ⊗
�

 and by substituting it to (10) 

we obtain 
( 1)

2( 1)
,

T

i
f

ζ

ζ
ω ς

+

−
= ⊗

�
 which indicates that the 

right eigenvectors of Ω is  

( 1)

2 1) .(
i

i

T ζ
ω ς

ζ

ω ς

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢

−

⎥

⊗

⊗ ⎦

+

⎣

�

�
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The analysis of finding left eigenvectors of Ω is similar 

to the right one.             � 

Lemma 6 [26]: The polynomial 

2
0,s as b+ + =  (12) 

where , .a b C∈  All roots of (1) are included in the unit 

circle if and only if all roots of  

2(1 ) 2(1 ) 1 0a b b a bρ ρ+ + + − + − + =   (13) 

are in the open left half plane, where (2) is derived 

through a variable transformation by substituting s =  

( 1) /( 1)ρ ρ+ −  to (12).  

Lemma 7: The roots of polynomial (11) are within the 

unit circle if the following conditions are satisfied: 

1) 1

2
( , ) { , 0},

iT
T D

α
α ∈ < <  where  

2 2

2 22 4

4 ( ) 16 ( )2 2
1

i i

i

i i

D
T T T T

μ μα α

μ μ

⎛ ⎞ℜ ℑ⎛ ⎞ ⎜ ⎟= − + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (14) 

and ( )ℑ ⋅  denotes the imaginary part of a number. 

2) Under the assumption of 1, if ,c
d

θ θ<  where c

d
θ =  

min
c

i i
θ  and c

i
θ  is the solution of  

2 3

2

2 2

3 2 2 2 3 3

8
sin ( arg( )) 2 sin( )sin(2 )

12 8
sin( )sin( arg( )) cos(arg( ))

8 2
cos cos(arg( )) cos( arg( ))

cos 4 cos 4 cos 0,

i

i

i i

i i

i i

i i

T

T T

T

T T T

θ μ α θ θ

μ

α α
θ θ μ μ

μ μ

α
θ μ θ μ

μ μ

α θ α θ α θ

+ +

+ + −

+ + +

+ − + =

 

 1,... , .i n=  (15) 

Proof: Substituting ( 1) /( 1)ζ η η= + −  to (11), we will 

have  

2

2

2 4 2
1 0,

i
T TT

α α
η η

σ σσ μ

⎛ ⎞
− − − − =⎜ ⎟
⎝ ⎠� ��

 

1,2,3.=�  (16) 

Note from Lemma 6, all roots of (11) are within unit 

circle if and only if the roots of (16) are all on open left 

half plane. We will show nextly that the roots of (16) are 

all on open left half plane under the conditions 1 and 2.  

Without loss of generality, we can suppose that 
i

μ  is 

labeled as 
1

( ) 0µℜ =  for 
1

0,µ = ( ) 0,
i

μℜ < ( ) 0
i

μℑ =  

for 2,... ,i k=  and ( ) 0,
i

μℜ < ( ) 0
i

μℑ ≠  for 1,i k= +  

... , ,n  where ( )ℜ ⋅  denotes the real part of a number. 

Noting that for 
1

0,µ =  (11) can be written as  

2
2 1 0,ζ ζ− + =  

where it can be easily verified that the eigenvalues of Ω 

corresponding to 
1

μ  is exactly on the unit circle.  

For the first statement, considering ,
i

µ 2,... ,i n=  and 

1
1σ =  for 1=�  firstly. Then polynomial (16) can be 

rewritten as  

2

2

2 4 2
1 0.

i
T TT

α α
η η

μ

⎛ ⎞
− − − − =⎜ ⎟
⎝ ⎠

 (17) 

Let s1 and s2 be the roots of (17), it thus follows that  

2

2

1,2

2 2 16
1 1

, 1, ,
2

i
T T T

s i n

α α

μ

⎛ ⎞
− ± + +⎜ ⎟

⎝ ⎠
= = …  (18) 

and  

1 2

2
1 .s s

T

α

+ = −  

It can be verified that s1 and s2 either have opposite 

imaginary parts or virtually no imaginary parts at all. It 

can be seen that the necessary condition of the fact that 

both s1 and s2 having negative real parts is 
2

1 0.
T

α
− <  Not- 

 

ing that 2

2

2 16
(1 )

T T i

α

μ

+ +  always has non-negative real part 

then s2 is definitely on the open left half plane under the 

necessary condition. So it is left to show condition under 

which s1 is on the open left half plane. Supposing that 
2

2

2 16
(1 ) ,

T T i

a b
α

μ

ι + ++ =  it follows that  

2

2 2

22

16 ( )2
1 ,i

i

a b
T T

μα

μ

ℜ⎛ ⎞
− = + +⎜ ⎟

⎝ ⎠
 (19) 

22

16 ( )
.

i

i

ab

T

µ

µ

ℑ
=  (20) 

Substitute (20) to (19), we can obtain 

2 2

4 2

2 42 4

16 ( ) 64 ( )2
1 0.

i i

i i

a a
T T T

μ μα

μ μ

⎛ ⎞ℜ ℑ⎛ ⎞⎜ ⎟− + + − =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

After some computation, it yields that  

2

22

2

2
2 2

2 42 4

16 ( )2
1

2

16 ( ) 256 ( )2
1

.
2

i

i

i i

i i

T T
a

T T T

μα

μ

μ μα

μ μ

ℜ⎛ ⎞
+ +⎜ ⎟

⎝ ⎠
=

⎡ ⎤ℜ ℑ⎛ ⎞⎢ ⎥+ + +⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

+

 

It is not difficult to find out that s1 has negative real part 

if and only if 
2 2 2(1 )
T

a
α

− >  and 
2

1 0.
T

α

− <  After some 

manipulation, we can finally get (14). Noting that the 

result of this statement is much similar to Lemma 4.3 

proposed in [26], while we introduce a different way to 

get it.  

For the second statement, we need to analyze the 

polynomial (16) when 2,3.=�  Here we only consider 

the case for e
ιθ

σ =
�

(the analysis of the case e
ιθ

σ
−

=
�

 

is exactly same). Then the polynomial (16) can be 

rewritten as  

2

2

2 4 2
1 0.

i
Te T e Te

ιθ ιθ ιθ

α α
η η

μ

⎛ ⎞
− − − − =⎜ ⎟
⎝ ⎠

 (21) 

Let s1 and s2 be the roots of (21), then we will have 
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2

2

1,2

2 2 16
1 1

,
2

i
Te Te T e

s

ιθ ιθ ιθ

α α

μ

⎛ ⎞
− ± + +⎜ ⎟

⎝ ⎠
=  (22) 

1, , .i n= …  

 

Note that α and T have been fixed by condition 2, it thus 

follows from (22) that there existing a critical value of θ 

which makes s1 and s2 exactly lie on the imaginary axis. 

Following a similar procedure of the first statement, what 

we need to do next is to derive the appropriate c

i
θ  for 

(22) corresponding to each μi. After some manipulation, 

we can finally get (15), and it can also be verified that s1 

and s2 are in the open left half plane if ,

c

i
θ θ<  and have 

positive real parts when .

c

i
θ θ>         � 

 

Now the main result of this paper is summarized by 

the following theorem. 

Theorem 1: Consider a network of second-order 

agents with fixed topology. Suppose that associated 

weighted directed graph G has a directed spanning tree. 

Let the control algorithm for (5) be given by (6), where 

[ ] [ [ ], [ ], [ ]]
T

r k x k y k z k=  and [ ] [ [ ], [ ], [ ]] .
T

x y zv k v k v k v k=  

Let ,
i

µ ,
i

ω ,
i

ν  and arg( )
i

μ  be defined in the Notation, 

p be defined in Lemma 3, and R, 
1 2 3

[ , , ] ,
T

a a a=a  

,σ
�

,ς
�

 and ϖ
�

 be defined in Lemma 4. Then: 

1) All the agents will eventually converge to and move 

on a straight-line path described by (23) with the 

consensus velocity given by (24) if and only if α, T, 

and θ under the assumption of Lemma 7.  

( ) ( )

( )

[0] [0] [0] [0] ,

[0] [0]

T T
x y

T
z

x v kT y v kT

z v kT

⎡ + , +⎣

⎤+ ⎦

p p

p

 (23) 

[0] [0] [0] ,
T T T

x y zv v v⎡ ⎤, ,⎣ ⎦p p p  (24) 

where [0],x [0],y [0]z  and [0],
x
v [0],

y
v [0]

z
v  is the 

initial positions and velocities of all agents, respect-

ively.  

2) If α and T satisfy the condition 1 of Lemma 7 and 
c

d
θ θ=  in condition 2, there exists a unique μ

m
 that 

exactly makes two eigenvalues of Ω being on the unit 

circle. Then all the agents will eventually move on 

cylindrical spirals with center line given by (23) and 

period 2 /arg( ),
c

π ζ  where 
c

ζ  is the eigenvalue of 

Ω on the unit circle associated with μ
m
. The radius of 

the cylindrical spiral of agent i is given by 

( )2 2 2

2 3

[0]
2 sin ,

2[0]

T

mi c

r
q a a

v

θ
ω

⎡ ⎤
+⎢ ⎥

⎣ ⎦
 

where 
mi

ω  is the thi  component of 
m

ω  and 

2

2

( 3)
,

2( 1)
1

m

c

c

mc

c

T
q T

e
e

ιθ

ιθ

ν ϖ
ζ α

α
ν ϖζ

ζ

⊗⎡ ⎤
⎛ ⎞+ ⎢ ⎥

= + ⎛ ⎞⎜ ⎟ ⎢ ⎥+ ⊗− ⎜ ⎟⎝ ⎠ ⎢ ⎥−⎝ ⎠⎣ ⎦

 

where 

2
2 2

2
2 4 4

2 2

2

c

c m c c m

T T
T T T

ζ

λ αμ λ λ αμ

=

⎛ ⎞
+ + + + + −⎜ ⎟⎜ ⎟

⎝ ⎠

 

with .

c m
e
ι θ

λ μ=  The relative radii of the cylindrical 

spiral are equal to the relative magnitudes of ,
mi

ω  

and the relative phases of the agents on their spirals 

are equal to the relative phases of .

mi
ω  

3) If α and T satisfy the condition 1 of Lemma 7 and 

max ,
c

d i i m i
θ θ θ

∗

, ≠
< <  there will exists a unique μm 

that exactly makes two eigenvalues of Ω being 

outside of the unit circle. Then all the agents will 

eventually move along logarithmic columnar curves 

with center line given by (23), and with growing rate 

( )
s

ζℜ  and period 2 / ( ),
s

π ζℑ  where 
s

ζ  is the 

eigenvalue of Ω being outside of the unit circle 

associated with μm. The radius of the logarithmic 

columnar curve of agent i is given by 

( )( ) 2 2 2
2 3

[0]
2 sin ,

2[0]
s
tT

mi c

r
q e a a

v

ζ θ
ω

ℜ⎡ ⎤
+⎢ ⎥

⎣ ⎦
 

where 

2

2

( 3)
,

2( 1)
1

m

s

c

ms

s

T
q T

e
e

ιθ

ιθ

ν ϖ
ζ α

α
ν ϖζ

ζ

⊗⎡ ⎤
⎛ ⎞+ ⎢ ⎥

= + ⎛ ⎞⎜ ⎟ ⎢ ⎥+ ⊗− ⎜ ⎟⎝ ⎠ ⎢ ⎥−⎝ ⎠⎣ ⎦

 and 

( )

2

2

4

2
2

2

1
2

4 4

2

mT

s s

T

s s m

T

T T

αμ
ζ λ

λ λ αμ

= + +

+ + −

+

 

with .
s m

e
ι θ

λ μ=  

The relative radii of the logarithmic columnar curves 

are equal to the relative magnitudes of ωmi and the 

relative phases of the agents on their spirals are equal 

to the relative phases of ωmi. 
 

Proof: 1) For the first statement, suppose L being the 

nonsymmetric Laplacian matrix associated with directed 

graph G which has a directed spanning tree. Then the 

eigenvalues of –L has exactly one zero eigenvalue and all 

other eigenvalues are in the open left half plane [4]. 

According to Lemma 7, eigenvalues of Ω are all within 

unit circle when the corresponding μi have non-positive 

real part. So it is left to derive the eigenvalues of Ω when 

the corresponding μi equals to zero. By substituting μi = 0 

to (11), then Ω have exactly six eigenvalues equaling to 

one, furthermore, it is not difficult to verify that the 

geometric multiplicity of these eigenvalues is three. It 

thus follows from Lemma 3 that we can choose 

3
[1 ,0 ]
T T T T

n n
ς⊗
�

 as the right eigenvector associated with 

eigenvalue one, and 
3

[0 , ]
T T T T

n
T ϖ⊗p

�
 as the according 

left eigenvector. Then 
3

[0 (1 )1 ]
T T T T

n n
T ς, / ⊗

�
 and [ T

⊗p  

3
,0 ]

T T T

n
ϖ

�
 are generalized right and left eigenvectors 



Sampled-data Collective Rotating Consensus for Second-order Networks under Directed Interaction 

 

1063

accordingly. Noting that Ω can be written in Jordan 

canonical form as 1
,SJS

−

Ω =  where J is the Jordan 

block diagonal matrix with the eigenvalues of Ω be the 

diagonal entries and the columns of S, denoted by pk, 

1,... ,6 ,k n=  can be chosen to be the right eigenvectors 

or generalized right eigenvectors of Ω, the rows of S –1, 

denoted by ,
k
q 1,... ,6 ,k n=  can be chosen to be left 

eigenvectors or generalized left eigenvectors of Ω. Let 

2 1

3

1
,

0

n

n

p
ς

−

⊗⎡ ⎤
= ⎢ ⎥
⎣ ⎦

�

�
  

3

2

0
,

(1 )1

n

n

p
T ς

⎡ ⎤
= ⎢ ⎥/ ⊗⎣ ⎦

�

�

 

2 1

3
0

n

q
ϖ

−

⊗⎡ ⎤
= ⎢ ⎥
⎣ ⎦

p
�

�
 and 

3

2

0
.

n

q
T ϖ

⎡ ⎤
= ⎢ ⎥⊗⎣ ⎦

�

�

 

Also note that the eigenvalues of Ω are within unit circle 

except those six ones being on it, so it can be easily 

verified that 1
T

k k
p q =  and 0,

T

k
p q =

�
.k ≠ �  Then we 

will have  

3

1 2 1

2 1 2

1 2

3

1

1
[ ]

0 1

1 1
(1/ ) .

0 1

T

k k

T

T T
n n T T

T
n n n

k q
SJ S p p

q

p kT p

p
ϖ ς ς ϖ

− −

−

=

× =

⎛ ⎞⎡ ⎤⎡ ⎤
Ω → → ⎜ ⎟⎢ ⎥⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

⎡ ⎤
→ ⊗⎢ ⎥

⎢ ⎥⎣ ⎦

∑

∑

�

� �

� �

� � � �

�

 

Based on the fact that 
3

31
(1/ )T T

Iϖ ς ς ϖ
=

=∑ � � � ��
 ac-

cording to Corollary 1, it will be followed that  

( )

( )

( )

[ ] [0] [0] ,

[ ] [0] [0] ,

[ ] [0] [0] ,

T
i x

T
i y

T
i z

x k x kTv

y k y kTv

z k z kTv

→ +

→ +

→ +

p

p

p

 

and 

[ ] [0],

[ ] [0],

[ ] [0],

T
xi x

T
yi y

T
zi z

v k v

v k v

v k v

→

→

→

p

p

p

 

when ,k →∞  which shows that all agents will finally 

move on the straight-line path given by (23) with the 

consensus velocities given by (24).  

2) For the second statement, if c

d
θ θ= ( c

d
θ θ= −  is 

similar except that all agents will move in the opposite 

direction). Considering the fact that (11) cannot have two 

conjugated roots when the corresponding µ is on the 

open left half plane, then there must exists a unique µ
m
 

that makes one of the roots of the corresponding 

polynomial (11) exactly lie on the unit circle, and based 

on the truth that Ω is a real matrix which also implies 

that Ω has exactly two conjugated eigenvalues being on 

the unit circle. Noting that it is possible for 
6 3m

ζ
−

 to be 

on the unit circle, while 6 2mζ
−

 is definitely within the 

unit circle. For simplicity, we denote this eigenvalue as 
arg( )

,c

c e
ι ζ

ζ =  and its conjugate is given by 
c

ζ =  
arg( )

.

c
e

ι ζ−

 Noting from Lemma 5 that the right and left 

eigenvectors associated with 
c

ζ  are given by 

2

2

( 1)

2( 1)

c

m

c

m

T ζ
ω ς

ζ

ω ς

+⎡ ⎤
⊗⎢ ⎥−

⎢ ⎥
⎢ ⎥⊗⎣ ⎦

 and 

2

2

,

1

m

m

c

T

e
ιθ

ν ϖ

α
ν ϖ

ζ

⊗⎡ ⎤
⎢ ⎥
⎛ ⎞⎢ ⎥+ ⊗⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦

 

respectively. Similar to the first statement, we can 

choose  

2

2

( 1)

2( 1)

c

m

cc

m

T

p

ζ
ω ς

ζ

ω ς

+⎡ ⎤
⊗⎢ ⎥−= ⎢ ⎥

⎢ ⎥⊗⎣ ⎦

 and 

2

2

( 3)
.

2( 1)
1

m

c

c

mc

c

T
q T

e
e

ιθ

ιθ

ν ϖ
ζ α

α
ν ϖζ

ζ

⊗⎡ ⎤
⎛ ⎞+ ⎢ ⎥

= + ⎛ ⎞⎜ ⎟ ⎢ ⎥+ ⊗− ⎜ ⎟⎝ ⎠ ⎢ ⎥−⎝ ⎠⎣ ⎦

 

It can be verified that 1.
T

c c
q p =  Similarly, it follows 

that the right and left eigenvectors 
c
p
∗  and 

c
q
∗  accord-

ing to eigenvalue 
s

ζ  are, respectively, conjugates of p
c
 

and q
c
. Then  

3

[ ] [0]

[ ] [0]

[0]1 1
[ ],

[0]0 1

k

T T
n n

T
n n n

r k r

v k v

rkT
I c k

v
×

⎡ ⎤ ⎡ ⎤
→ Ω →⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⊗ +⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦

p p

p

 

when ,k →∞  where 

( )arg( ) arg( )
[0]

[ ] .
[0]

c c
k kT T

c c c c

r
c k e p q e p q

v

ι ζ ι ζ−

⎡ ⎤
= + ⎢ ⎥

⎣ ⎦
 

Let [ ]
i
c k  denote the thi  component of [ ],c k  then  

3( 1) 2

2

2

[0]( 3)
2 ( )

[0]2( 1)

arg( )

[0]( 3)
cos arg ( ) ,

[0]2( 1)

arg( ( ))

Tc

i mi c

c

c

T Tc

mi c mi c

c

rT
c q

v

k

rT
q q

v

ζ
ς ω

ζ

ζ

ζ
ω ς ω

ζ

ς

− +

+ ⎡ ⎤
= ⋅⎢ ⎥− ⎣ ⎦

⎧ ⎫
⎪ ⎪

⎛ ⎞+ ⎡ ⎤⎪ ⎪
+ ⎜ ⎟⎨ ⎬⎢ ⎥− ⎣ ⎦⎝ ⎠⎪ ⎪

⎪ ⎪+⎩ ⎭

�
�

�

�

 

where 1,... ,i n=  and 1,2,3.=�  Also note that ωmi and 

2
( )ς �  denote, respectively, the thi  component of ωm 

and the th�  component of ς2. Therefore, it follows that  

( )

( )

( )

3 2

3 1

3

[ ] [0] [0] [ ],

[ ] [0] [0] [ ],

[ ] [0] [0] [ ].

T
i x i

T
i y i

T
i z i

x k x kTv c k

y k y kTv c k

z k z kTv c k

−

−

→ + +

→ + +

→ + +

p

p

p

 

After some manipulations, it can be verified that 

3 2 3 1 3

2 2 2

2 3

[ ( ) ( ) ( )]

[0]
2 sin ,

[0] 2

T

i i i

T

mi c

c k c k c k

r
q a a

v

θ
ω

− −

|| , , ||

⎡ ⎤ ⎛ ⎞= + ⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 

which concludes that all agents will eventually move on 

cylindrical spirals with center line given by (23) with 

period of 2 / arg( ).
c

π ζ  The relative radii of the cylin-
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drical spiral are equal to the relative magnitudes of ωmi, 

and the relative phases of the agents on their spirals are 

equal to the relative phases of ωmi. 

3) For the third statement, here we only consider 

,

max
c

d i i m i
θ θ θ

∗

≠
< <  (respectively, ,max

i i m i
θ θ∗

≠
− < <  

).c

d
θ−  Similar to the analysis of the second statement, 

there exists a unique μm which makes Ω have a pair of 

conjugate eigenvalues outside of the unit circle. 

Similarly, it is possible for 
6 3m

ζ
−

 to be outside of the 

unit circle, while 6 2m
ζ

−
 is definitely within the unit 

circle. For simplicity, we denote this eigenvalue as ,
s

ζ  

and its complex conjugate is given by .

s
ζ  By following 

a similar procedure to the proof of the second statement, 

we can easily obtain that all the agents will eventually 

move along logarithmic columnar curves with center line 

given by (23), with growing rate ( )
s

ζℜ  and period 

2 / ( ).
s

π ζℑ  The radius of the logarithmic columnar 

curve of agent i is given by 

( ) 2 2 2
2 3

[0]
2 sin

[0] 2
.s

tT

mi c

r
q e a a

v

ζ θ
ω

ℜ⎡ ⎛ ⎞
⎜ ⎟
⎝

⎤
+

⎣ ⎦ ⎠
⎢ ⎥  

The relative radii of the logarithmic columnar curves are 

equal to the relative magnitudes of ωmi, and the relative 

phases of the agents on their spirals are equal to the 

relative phases of ωmi.           � 

 

4. SIMULATION 

 

Consider a group of four vehicles associated by a 

directed graph G shown in Fig. 1. Note that G has a 

spanning tree. Let L associated with G be defined as 

follows: 

1.4 0 1.0 0.4

1.5 1.5 0 0
.

1.0 0.4 1.4 0

0.5 0 0 0.5

− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −
⎢ ⎥
−⎢ ⎥⎣ ⎦

 

For the controller parameters, we set 2.0α =  and 

0.4,T =  which can be verified that both satisfy with the 

conditions derived in Lemma 7. By simple computations, 

it is solved that 1.1989.
c

d
θ =  Let R be the rotation 

matrix corresponding to Euler axis 1/ 14[1,2,3]
T  and 

Euler angle θ. Then, it can be calculated that the right 

eigenvector of L−  associated with 0µ =  is ω =  

[ 0.2119,− 0.3684,− 0.4709,− 0.7731]
T  an [0.3697,=p  

0.0704, 0.2641, 0.2958] .
T  

Figs. 2, 3, 4 show, respectively, the trajectories of the 

four agents using (6) with 0.2,
c

d
θ θ= − ,

c

d
θ θ=

c

d
θ θ=  

0.1.+  It can be seen that all agents finally move on the 

straight-line path given by (23) with 0.2,
c

d
θ θ= −  

move on cylindrical spirals with ,

c

d
θ θ=  and move 

along logarithmic columnar curves with 0.1.
c

d
θ θ= +  

In particular, it can be observed from Fig. 5 that all 

agents will converge to and keep moving on the straight-

line path given by (23) with a consensus velocity rather 

than rendezvous at a position. Similarly, the final 

velocity patterns can also be observed for other two cases.  

 

Fig. 1. Network topology for four agents. An arrow from 

j to i denotes that agent i can receive information 

from agents j. A double arrow is the simplified 

form of two directed arrows. 

 

 

Fig. 2. Trajectories of the four agents using (6) with 

0.2
c

d
θ θ= −  in a sampled-data setting.  

 

 

Fig. 3. Trajectories of the four agents using (6) with 
c

d
θ θ=  in a sampled-data setting. 

 

 

Fig. 4. Trajectories of the four agents using (6) with 

0.1
c

d
θ θ= +  in a sampled-data setting. 
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          Time (s) 

 

          Time (s) 

 

          Time (s) 

Fig. 5. Velocity evolving of the four agents using (6) 

with 0.2
c

d
θ θ= −  in a sampled-data setting. 

 

5. CONCLUSION 

 

This technical note has studied rotating consensus 

problems of discrete second-order agents in a sampled-

data setting. Using a rotation matrix and a relative 

damping term, we introduced a protocol and derived the 

conditions under which collective motions of straight-

line path, cylindrical spiral and logarithmic columnar 

curve were achieved. With the help of matrix theory and 

graph skills, the convergence properties of the protocol 

were analyzed theoretically. Finally, simulation results 

are performed to demonstrate the effectiveness of the 

proposed algorithm. Although, rotating consensus 

without a leader is useful in applications such as the 

typical collective motion patterns given in this paper, 

there are many other applications that require a dynamic 

leader, examples include formation flying, body guard, 

and coordinated target tracking applications. So we will 

address the theoretical challenges when there exists a 

static or moving target, which will pose many 

challenging problems that warrant further research. 
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