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Abstract: In this paper, a method for the automated reconstruction of architectures from two views of a monoc-
ular camera is proposed. While this research topic has been studied over the last few decades, we contend that
a satisfactory approach has not yet been devised. Here, a new method to solve the same problem with several
points of novelty is proposed. First, reference planes are automatically detected using color, straight lines, and
edge/vanishing points. This approach is quite robust and fast even when different views and complicated conditions
are presented. Second, the camera pose and 3D points are accurately estimated by a two-view geometry constraint
in the convex optimization approach. It has been demonstrated that camera rotations are appropriately estimated,
while translations induce a significant error in short baseline images. To overcome this problem, we rely only on
reference planes to estimate image homography instead of using the conventional camera pose estimation method.
Thus, the problem associated with short baseline images is adequately addressed. The 3D points and translation
are then simultaneously triangulated. Furthermore, both the homography and 3D point triangulation are computed
via the convex optimization approach. The error of back-projection and measured points is minimized in L∞-norm
so as to overcome the local minima problem of the canonical L2-norm method. Consequently, extremely accurate
homography and point clouds can be achieved with this scheme. In addition, a robust plane fitting method is intro-
duced to describe a scene. The corners are considered as properties of the plane in order to limit the boundary. Thus,
it is necessary to find the exact corresponding corner positions by searching along the epipolar line in the second
view. Finally, the texture of faces is mapped from 2D images to a 3D plane. The simulation results demonstrate the
effectiveness of the proposed method for scenic images in an outdoor environment.

Keywords: 3D reconstruction, convex optimization, correspondence, planes detection, plane fitting, plane homog-
raphy, sum of square error differences, two-view geometry.

1. INTRODUCTION

The automated architectural reconstruction of large-
view scenes is one of the most important processes in vir-
tual environments, scene planning, and the navigation of
autonomous mobile robots. While some progress has been
made in the field of 3D reconstruction over the last few
years, there are still no methods that satisfy the require-
ment of robustness with the capability to produce struc-
tures with high accuracy. In addition, some approaches
require a large amount of work to be performed by hand
or with an apparatus, such as laser radar, airborne light de-
tection, and ranging. Such schemes are usually expensive
and require much more time for data acquisition.
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Three-dimensional metric reconstruction from two un-
calibrated views is one of the classical topics in 3D com-
puter vision, and extensive work has been conducted in
this field over the last few decades. Some typical arti-
cles related to vision research can readily be found [1, 2].
For a quick overview, it is important to separate the exist-
ing approaches into several groups. The first group com-
prises methods of upgrading projective metric reconstruc-
tion based on self-calibration. In such schemes, projective
reconstruction is performed using an epipolar geometry
and subsequently upgrading to metric reconstruction by
finding the intrinsic parameters (camera calibration) via
Kruppa’s equations derived from the fundamental matrix
[3, 4]. While these methods do not require previouse
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Fig. 1. Flowchart of the architectural reconstruction pro-
cess.

knowledge of the scene, an epipolar geometry must be
employed to estimate the fundamental matrix. In the nor-
mal camera motion case, the estimation is ordinary. How-
ever, in the critical configuration [5], the fundamental ma-
trix cannot be estimated. In this paper, such a problem
is solved as a short baseline problem. The second group
of methods [6, 7] is based on scene knowledge or struc-
ture, including parallelism, orthogonality, and scenes with
planes, in order to perform camera calibration.

Most of the research cited above is based on the lin-
ear constraint of 3D points and a camera. However, 3D
triangulation using the L2–norm usually becomes trapped
in local minima. Thus, we relied on scene structure in a
different way. Our work is in some ways similar to that
outlined in [8], where the linear method is based on the
algebraic cost-function. Here, a more global optimal solu-
tion is proposed using the convex optimization approach.
The original idea was pioneered in [9], where the L∞-norm
was utilized to solve most common problems with a multi-
view geometry. In this paper, it is shown that the problems
of automated reference plane detection and a small base-
line can be solved absolutely via convex optimization.

Without using any additional devices (e.g., electro-
magnetic devices) for calibrated images from a single
camera, our proposed method overcomes some of the crit-
ical configurations mentioned above. A flowchart of the
proposed method is shown in Fig. 1. The generation of
reference planes is the first requirement to compose image
constraints: this is known as homography. Thus, a plane

detection algorithm must be performed for an image pair
as the initial step. In this paper, only a brief description
of the method is presented, as a more detailed explanation
is provided in our earlier work [10, 11]. Here, it may be
asked why homography is needed but two-view geometric
essential constraint for camera pose estimation. The an-
swer is because of the short baseline image problem. It
was shown in [12] that camera rotation is appropriately
estimated, but the translation error increases significantly
as the baseline decreases. This problem will lead to seri-
ous errors in the 3D structure. Therefore, in the modern
3D reconstruction community, the use of camera pose in-
stead of only rotation is avoided [13]. Rotation can be
achieved through the use of other sensors or scene proper-
ties (e.g., through homography). Here, a reference plane
was utilized for this purpose. Specifically, at least four
correspondence points inside the plane of an image pair
must be extracted; these points obviously belong to the
same plane in a real scene. The SIFT algorithm [14] is
considered as an appropriate solution to this problem. It
should be noted that only correct correspondence features
inside the plane are extracted for homography computa-
tions. Thus, RANSAC-based [15] outlier removal of two
feature sets will be performed. Although many methods
can be utilized for the classical homography estimation
problem (see [16]), we propose a new, more optimal ap-
proach. Some aspects of the scheme are similar to those
of robust estimation using RANSAC, but we minimize the
error in a different way through the use of the L∞-norm
under convex optimization. Such an approach sometimes
yields the same accuracy rate, but it allows the local min-
imum problem of the L2-norm in the general case to be
avoided. The next step, 3D point triangulation, has been
one of the classic topics in field of 3D vision over the last
few decades. Most researchers have used the direct lin-
ear transform (DLT) method for triangulation. However,
this scheme will produce a large error, especially when
a lack of information exists (e.g., in a two-view geome-
try). In contrast, we approach the problem from the stand-
point of convex optimization. Once the homography is ob-
tained as mentioned above, scene structure and translation
will be optimally triangulated. Under the assumption that
the scene architecture consists of rectangular planes, point
clouds must be described in terms of planar patches. Sev-
eral researchers have proposed methods to solve this prob-
lem, and most of the schemes are based on the RANSAC
algorithm. In this work, a similar method of RANSAC-
based plane fitting is employed with some modifications.
Usually, the plane will be limited by the convex hull of its
own points. Here, the boundary of a plane is derived by its
properties. The corners of a plane in two views allow the
boundary to be determined. Therefore, the corresponding
corner points must be extracted. This simple task can be
performed by searching the sum of the square error along
the epipolar line in the second view. Finally, the textures
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of the 2D image are mapped to the reconstructed planes.
One useful option in the practical application of this pro-
posed method is that the true information of objects can
be obtained if we know the displacement of the camera
at adjacent moments or the baseline when a stereo system
is used. For example, our proposed method concentrates
on building an object automatically with face detection.
Thus, 3D reconstruction with true building information,
e.g., the distance from the camera to the building and the
dimensions of the building, can be achieved automatically.

This paper is organized into 6 sections. A summary of
the plane detection method is given in Section 2; a build-
ing face is used as one example to analyze the method. In
Section 3, the homography estimation method based on a
two-view geometry and the convex optimization approach
is discussed. 3D point triangulation and camera transla-
tion are also investigated. Plane fitting and corner corre-
spondence are explained in Section 4, while experimen-
tal details and obtained results are discussed in Section
5. Conclusions derived from the research are ultimately
given in Section 6.

2. REFERENCE PLANE DETECTION

Line segments and belongings in the appearance of a
building are used as geometrical and physical properties,
respectively. The geometrical properties are represented
as principal component parts (PCPs) in the form of a set of
doors, windows, walls, and so on. For the physical prop-
erties, the color, intensity, contrast, and texture of regions
are used. The analysis process begins with the detection
of straight line segments. We used the m-estimator sam-
ple consensus (MSAC) method [17] to group such parallel
line segments, which have a common vanishing point. The
detail explanation of applying MSAC Method for vanish-
ing point detection could be found in our former research
[11]. One dominant vanishing point was calculated for the
vertical direction and a maximum of five dominant van-
ishing points were computed for the horizontal direction.
A mesh of basic parallelograms is created by one of the
horizontal groups and the vertical group. Each mesh rep-
resents one face of the building. The PCPs are formed by
merging an area of basic parallelograms with similar col-
ors. In addition, the PCPs are classified into doors, win-
dows, and walls. Finally, the structure of the building is
described as a system of hierarchical features. The build-
ing is represented by a number of faces, and each face is
represented as a color histogram vector. The color his-
togram vectors are computed by the wall region of a face.
A flowchart of this method is shown in Fig. 2.

2.1. Line segment detection
The first step in line segment detection is edge detection

for an image. We used the edge detection function with the
Canny edge detector algorithm. The function is run with

Fig. 2. Flowchart of the building face detection process.

a threshold that is automatically chosen. The threshold is
a two-element vector in which the first element is the low
threshold, and the second element is the high threshold.
The value for thresh is relative to the highest value of the
gradient magnitude of the image, the default value is [0.25
0.6]. A straight line segment is a part of an edge includ-
ing a set of pixels which have a number of pixels larger
than the given threshold (T1) and all pixels are aligned.
Therefore, if we draw a line through the ends, the dis-
tance from any pixel to this line is less than another given
threshold (T2). In our case T1 = 10 pixels and T2 =

√
2.

The thresholds are figured out through the heuristics. It is
correct for almost outdoor image database. The changes
of these thresholds do not affect too much on the final re-
sults. When a different threshold is chosen the number of
parallel line will change. In all cases, the vanishing points
can be found out with a small number of parallel lines.
Otherwise, when the number of parallel lines increase the
vanishing points detection is more accurate but the pro-
cessing time is high. Therefore, the building face still can
be detected.

According to the threshold for RANSAC algorithm
based plane fitting, the probability density function of the
data points should be compute first. With that we can com-
pute a confidence interval: 98% of the data points are lo-
cated at a maximum distance D from their true position.
Then we could use this D to set the distance threshold.
The plane will be found out when the number of inlier
point n get the maximum value.

2.2. Reducing the low contrast lines
Low contrast lines usually arise from such objects as an

electrical line or the branch of a tree. Most low contrast
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lines are not usually located on the edges of PCPs because
two regions with a high contrast in color may be distin-
guished at these edges. Here, the intensity was based on
two regions beside a line so that low contrast lines can be
discarded.

2.3. MSAC-based detection of dominant vanishing
points

The line segments are roughly separated into two groups.
The vertical group contains line segments that create a
maximum angle of 20? with the vertical axis. The re-
manent lines are treated as horizontal groups. For the fine
separation stage, the robust MSAC method was used to
estimate the vanishing point.

2.4. Horizontal vanishing point detection
Horizontal vanishing point detection is performed in a

manner similar to that outlined in the previous section. In
reality, a building is a prototypical structure where many
faces and various colors appear in images. Therefore, it
is necessary to separate the faces. A maximum of five
dominant vanishing points is computed for the horizontal
direction.

2.5. Separation of planes as the faces of building
The vertical segments are extended by their middle

points and vertical vanishing point. The number of in-
tersections of vertical lines and horizontal segments was
used to detect and separate the planes as the faces of a
building; the obtained results are shown in Fig. 3. Coarse
face separation is performed according to the following
rules:

1) If the same region contains two or more horizontal
groups, then priority is given to the group with a larger
number of segment lines.

2) If two or more horizontal groups are distributed along
the vertical direction, then priority is given to the group
with a lower order of dominant vanishing points. The sec-
ond stage is the recovery stage. Some horizontal segments
that are located close to the vanishing line of two groups
are usually improperly grouped. Instead of belonging to
lower order groups, some segments are in higher order
groups and must be recovered. The recovery stage is per-
formed from low to high order. The third stage involves
finding the boundaries of the faces.

3. CAMERA REGISTRATION AND 3D POINT
TRIANGULATION

The camera rotation and translation can be computed
by the DLT method proposed in [18]. However, a prob-
lem occurs when the baseline of views is too small or
close to zero. In [12], it was shown that the rotation could
be appropriately estimated while the translation was af-
fected by the baseline distance. The error of translation

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Fig. 3. Building detection results. (a) and (b) are line seg-
ment and low contrast lines reducing. (c) to (e)
is detection of dominant vanishing points. (f) is
roughly detected facets. (g) and (h) are boundary
finding. (i) is final face detection.
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Fig. 4. Camera registration and 3D point triangulation
scheme.

is increased significantly when the camera distance de-
creases. This problem will lead to poor accuracy in the
triangulation step. In this work, the building faces are ro-
bustly detected in the previous step. Thus, the plane ho-
mography is considered as a robust constraint even if the
camera distance is small or zero. This constraint can be
computed by many different methods (see [16]). Here,
an approach based on global optimization is used because
it possesses certain advantages, as discussed in [9]. 3D
points and translation will then be computed simultane-
ously. The step-by-step procedure is described as follows.
Firstly, we extract invariant features inside the plane re-
gion of an image pair. Correct matching is achieved ac-
cording to RANSAC-based outlier removal. Secondly, the
bisection algorithm is performed to minimize the error of
back-projection and measured points under the convex op-
timization approach. The problem of 3D point triangu-
lation and translation estimation is also addressed in the
same manner. In the subsection below, we will recall some
principles of the pinhole camera model, the correspon-
dence problem, and convex optimization theory applied
to a multi-view geometry for the problem formulation and
solution. The general arrangement of these steps is shown
in Fig. 4.

3.1. Camera model
The projective geometry is used throughout this work

to describe the perspective projection of a 3D scene onto
2D images [17]. This projection is expressed as follows:

x = PX , (1)

where P is a 3×4 projection matrix that describes the per-
spective projection process, while X = [X ,Y,Z,1]T andx=
[x,y,1]T are vectors containing the homogeneous coordi-

Fig. 5. SIFT feature extraction and matching after
RANSAC-based outlier removal.

nates of the 3D world coordinates and 2D image coordi-
nates, respectively. When ambiguity in the geometry is
metric, i.e., Euclidean up to an unknown scale factor, the
camera projection matrices can be expressed in the fol-
lowing form:

P = K[R|−Rt], (2)

where t and R denote the translation and rotation of the
camera, and K is an upper diagonal 3×3 matrix contain-
ing the intrinsic camera parameters. Here, K can be writ-
ten as

K =

 fx s ux

0 fy uy

0 0 1

 , (3)

where fx and fy are the focal length divided by the hori-
zontal and vertical pixel dimensions, s is a measure of the
skew, and (ux,uy) is the principal point.

3.2. Feature extraction and matching
Many kinds of features have been considered for fea-

ture extraction and matching problems, including SIFT,
Harris [19], SURF [20], and GHOL [21]. Among these,
SIFT was first presented by David G Lowe in 1999 and
was completely applied in a pattern recognition problem
in 2004. This algorithm is quite invariant and robust for
feature matching with scaling, rotation, or affine trans-
formations. As such, we utilized SIFT feature points to
find the corresponding points of image pairs. The SIFT
algorithm performs the following tasks: scale-space ex-
trema detection, accurate keypoint localization, orienta-
tion assignment, and keypoint descriptor. SIFT features
and matching are applied for one image pair, as shown in
Fig. 5. The result of a correspondence point will be used
to compute the fundamental matrix described in the next
step.

3.3. Two-view geometry
The epipolar constraint represented by a 3x3 matrix is

called the fundamental matrix, F . The method based on
two-view geometry theory was thoroughly examined in
[17]. According to the theory, two image point u and u′
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Fig. 6. Epipolar geometry principle.

are projected from a 3D point U observed by two cameras
with optical centers C and C’. These five points form a
common plane called the epipolar plane. The points e and
e′ are called the epipoles of the two cameras; epipole e′ is
the projection of the optical center C of the first camera in
the image observed by the second camera and vice versa.
If u and u′ are projections of the same point, then u′ must
lie on the epipolar line associated with u, hence the epipo-
lar constraint. The epipolar constraint plays an important
role in stereo vision analysis. When the intrinsic parame-
ters of the cameras are known, the epipolar constraint can
be represented algebraically by a 3x3 matrix known as the
essential matrix. Otherwise, the epipolar constraint repre-
sented by a 3x3 matrix is called the fundamental matrix,
F . An illustration of the epipolar geometry principle is
shown in Fig. 6.

The essential equations:

u′T Fu = 0, (4)

l′ = Fu, l = FT u′, (5)

Fe = 0, FT e′ = 0. (6)

3.4. Plane homography estimation
According to the explanation above, it is easy to real-

ize that the constraint of two sets of points that belong
to the same plane will be considered as the homography
constraint, i.e., the fundamental matrix F becomes the ho-
mography matrix H. Now, a method based on optimiza-
tion is performed to find a 3x3 matrix H. It is reformulated
as a quasi-convex optimization problem. Some methods
have been proposed from research outlined in [16]. One
highly accurate method is known as back-projection error
minimization. It is easy to see that solving the L2-norm
for error minimization is a difficult non-convex problem.
Such an approach can yield local minima instead of a sin-
gle global minimum when error is minimized in the L∞-
norm. In this section, the above problem will be formu-
lated and solved using the bisection convex optimization

method.

3.4.1 Problem formulation
Let u′i, i = 1, . . . , m, denote a set of planar points repre-

sented by homogeneous plane coordinates, and ui, i = 1,
. . . , m denote the corresponding image features also rep-
resented by homogeneous coordinates. The two point sets
are related by the relation ui ≈ Hu′i, where H is repre-

sented by H =

 x1 x2 x3

x4 x5 x6

x7 x8 1

. The problem is to find a

matrix H such that the projection of u′i through H is near-
est to ui, i.e., the cost function is minimized:

m

∑
i=1

d(ui,H(x)u′
i)

2. (7)

Here, d(·, ·) represents the geometric distance between
two points in the image. In [9], it was noted that the L2

-norm error of this cost function creates three local min-
ima, whereas the L∞-norm creates a single minimum. In
this paper, we use a procedure similar to the RANSAC
method in [16]. This leads to the following minimization
problem:

minmax
i

d(ui,H(x)u′i)

subject to λi(x)> 0, i = 1,2, ...,m.
(8)

Here, λi(x) is the depth of a point in image i. It is easy to
realize that the square image distance is a rational function
of x:

d(u,H(x)u′)2 =
f1(x)2 + f2(x)2

λ (x)2 , (9)

where f1(x)2, f2(x)2, and λ (x)2 are affine functions in x
with coefficients determined by u and u′.

Remark 1: The problem minmaxi d(ui,H(x)u′i) has
some convexity properties. Thus, this problem can be
solved by a quasiconvex optimization method.

3.4.2 Bisection-based quasiconvex optimization
solver

In this section, the bisection method will be applied to
solve the problem mentioned above. Suppose that γ is
an upper bound of the objective function in problem (8).
According to the theory outlined in [22], this problem can
be formulated as follows:

minγ
Subject to ∥ f1i(x), f2i(x)∥ ≤ γλi(x)

λi(x)> 0, i = 1,2, ...,m.

(10)

If γ is unknown, Equation (10) can be re-written in
second-order cone program (SOCP) feasibility problem
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form:

Find x

Subject to ∥ f1i(x), f2i(x)∥ ≤ γλi(x)

λi(x)> 0, i = 1,2, ...,m.

(11)

If it is assumed that the optimal γ∗ is lower than some
threshold of γu pixels, then γ∗ ∈ [0,γu]. Until now, typical
convex feasibility problem solving has been applied. The
detailed algorithm is presented below.

Algorithm 1: Bisection-based quasiconvex optimiza-
tion solver

Given: optimal value f ∗0 ∈ [γl ,γl ] and tolerance ε > 0
Repeat

1. γ := (γl + γu)/2
2. Solve the convex feasibility problem
3. If feasible γu := γ , else γl := γ

Until γu − γl ≤ ε
Remark 2: Note that if we define H1 = I, then homog-

raphy mapping from image 1 to image 2 is H12 = HH1 =
H. In this method, at least four coplanar points are needed
to generate the homography matrix.

3.5. Simultaneous triangulation and translation esti-
mation

Over the last two decades, many methods have been pro-
posed for triangulation and motion estimation in the field
of 3D computer vision. Among them, particular attention
is given here to linear multi-view reconstruction and cam-
era recovery using a reference plane [8]. We also present a
similar approach of using a reference plane, but triangula-
tion and pose estimation is based on global optimization.
After the homography of views is obtained in the previ-
ous step, it is possible to estimate 3D points and camera
translation simultaneously. Triangulation with a known
geometry constraint (homography in this case) will also
be reformulated as a quasi-convex optimization problem.
Similar to the homography computation, some researchers
have proposed methods using the L∞-norm [9] or the L∞-
norm combined with the L1-norm [23] instead of the L2-
norm to minimize the residual error associated with a mea-
sured feature and the back-projection of 3D points. It is
easy to see that solving the L2-norm for more than two
cameras is a difficult non-convex problem. Such an ap-
proach can yield local minima instead of a single global
minimum when error is minimized in L∞-norm.

Let Pi =
[

Hi ti
]
, i = 1, 2, ..., m denote the m known

homogaphy cameras, where ti is an unknown vector (in
this case m = 2). Here, uiare the projection of point U
in 3D space (both are expressed in homogeneous coordi-
nates). The problem of finding the camera position andU
given the homography matrix and image points is known
as triangulation and position estimation. In the ideal case
(absence of noise), the triangulation is ordinary. In the
case where noise is present, the back-projection of point

Fig. 7. Camera position with sparse 3D points of a scene.

U to the image plane does not coincide with ui. Thus, we
must find the camera position and point U such that its
projection is nearest to ui, i.e., the cost function is mini-
mized:

m

∑
i=1

d(ui,PiU)2. (12)

Here, d(·, ·) represents the geometric distance between
two points in the image. In this paper, we use a procedure
similar to that outlined in [16]. The known homography
problem will now be described in detail. Considering the
camera matrix Pi, we will try to solve the minimization
problem:

minmax
i

d(ui,PiU(x))

Subject to λi(x)> 0, i = 1,2, ...,m,
(13)

where λi(x) is the depth of a point in image i. It is easy to
see that the square image distance is a rational function of
x:

d(u,PU(x))2 =
f1(x)2 + f2(x)2

λ (x)2 , (14)

where f1(x)2, f2(x)2, and λ (x)2 are affine functions in x
with coefficients determined by u and P. The solution is
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(a) (b)

(c)

Fig. 8. The measured points and back-projection of 3D
points: (a) and (b) are back-projection and mea-
sured points (blue *: measured points, red o: back-
projection), and (c) is magnified view.

similar to the bisection method in (11). The simulation
result of a point cloud and camera position is shown in
Fig. 7. The back-projection error is also displayed in Figs.
8(a)-(c). This error can be used to check the accuracy of
translation estimation and 3D point triangulation.

4. PLANE MODELING

Once the point cloud is generated, a way to present
these scenery points should be devised. Usually, a plane is
needed to fit these points because most of the scene struc-
ture is a plane or planar patches. The boundary of a plane
may be a convex hull over a set of points. In contrast, we
find the plane limits through the existing properties of the
plane. When the corner of a plane is determined in 2D
images, it can be used instead of a convex hull to circum-
scribe the plane. The texture is mapped from the original
image to the determined planes. The manner in which to
perform these tasks is described below.

4.1. Plane fitting
Several researchers have investigated plane fitting in

previous studies. Here, particular attention is given to

(a) (b)

(c) (d)
Fig. 9. The corner point extracted from the building faces:

(a) and (c) are original face detection; (b) and (d)
are corner points.

the RANSAC-based fitting method and plane sweeping
scheme proposed in [24] and [25], respectively. Without
using any additional scene assumptions, except that the
scene can be represented by a planar patch, we also used
the RANSAC-based approach in plane fitting in a man-
ner similar to the canonical line fitting problem. First, a
point in the set of points is randomly chosen. Then, the
n closet points within a certain distance are also selected.
This can be considered as the error associated with this
method. The points inside the upper and lower plane are
inliers. The RANSAC algorithm is used to reject the out-
liers and fit a plane to this subset.

Here, the process of randomly selecting the first point
is repeated until the maximum number of iterations is
reached or the number of remaining points is smaller than
n. We can see that the size of the planar patches is depen-
dent on the number of points n.

4.2. Corner point verification
In order to limit the boundary of the planar patches,

some additional information must be known, i.e., the
curve surrounding the plane must be determined. With the
assumption that the object plane has a rectangular shape,
connected lines through the corner points represent the
boundary. Thus, the problem is simplified to find the cor-
ner point correspondence. Here, correlation-based simi-
larity measurement methods are considered, and a simple
sum of the square error differences (SSD) method is em-
ployed. We first need to extract the corner points in the
first frame and find their matching points in the second
frame automatically. To accomplish this task, the follow-
ing steps are performed:
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(a) (b)

(c)
Fig. 10. Corner point verification: (a) and (b) are epipolar

lines for corner searching. (c) is verification of
face of the second view (magenta: original face,
yellow: verified face).

1) Pick up a corner point in the first frame. The corner
are pick up by the crossing point of the margin hori-
zontal and vertical line of detected building face.

2) Find the epipolar line in the second frame;
3) Use window sliding along the epipolar line and find

the sum of the square error differences with respect to
the one in first frame. The corresponding point is our
matching point. A brief description of this method is
given below. The formulation of SSD is expressed as:

D=
∫∫

R
[I(R(x,y))−I(R′(x′,y′))]2w(x,y)dxdy, (15)

where I(R(x, y)) is the intensity at point (x, y) of a
region R in the first image, and w(x, y) is a Gaussian
weighting function. A point (x’, y’) in R’ that gives a
minimum SSD from R is considered a feature match
of (x, y). The results of corner point matching from
two views are shown in Fig. 10.

5. EXPERIMENTS

In this section, experiments conducted to evaluate the
proposed method are described. The main objects are
large-view scenes in an outdoor environment. The dataset
images were acquired by a mini perspective camera, Fu-
jifilm. The first experiment was carried out on the of-
fline database. The building faces for reconstruction is

assumed planar. The processing speed is neglected how-
ever the speed is presented as follow: The building face
detection process in our experiment cost nearly 0.5 second
on Intel(R) Core(TM) i5 CPU 750@2.67 GHz with 3 GB
of RAM under Matlab environment with a MOSEK add-
in toolbox [26]. The reconstruction and color rendering
are cost nearly 0.2 second with image of size [640x480].
The accurate reconstructed points and camera pose are re-
flected in the back-projection error. The magnified figure
shows that the error distance is almost less than one pixel.
This excellent result is difficult to obtain even when bun-
dle adjustment (L2-norm minimization) is used in a two-
view geometry. With high-accuracy point cloud recon-
struction, points on the same plane in the 2D image are
almost distributed on the plane in 3D space. This is one
benefit of using RANSAC-based plane fitting in the next
step. For comparison the accuracy of the proposed method
and existing reference, author implemented standard lin-
ear algorithms and bundle adjustment which optimizes us-
ing L2-norm) to exactly the canonical data base. The data
is available at http://www.robots.ox.ac.uk/ṽgg/data.html.
In order to compare the sparse point cloud reconstruction
method, the camera is calibrated beforehand. The Root
Mean Squares (RMS) errors of the reprojected and cor-
responding feature points are given instead of the sum of
squares errors. In the experiments, the RMS reprojection
and L∞ errors are measured. Table 1 shows experimen-
tal results of existing references and the proposed method.
After solving these problems, the RMS errors for the Bun-
dle Adjustment approache and L∞ minimization (convex
optimization) are 0.40495 pixels and 0.38783 pixels, re-
spectively. The corresponding L∞ errors are 0.89991 pix-
els and 0.85414 pixels. For a more clear visualization, we
performed texture mapping from the original plane to the
fitted planes. Figs. 11(a)-(c) show the different angles of
view of the building faces, which are appropriate for de-
termining the location of building faces in 3D space by the
mapped texture.

In the second experiment, the same process is em-
ployed, but the number of faces is 2. The metric ambi-
guity of reconstruction can be realized if the corner of two
faces as well as the rectangular shape of the faces is ex-
amined. In a real building, faces are truly rectangular and
the angle of a corner between two faces is nearly 90 de-
grees. These structural properties are reconstructed quite
well, as shown Fig. 12. In the last experiment, a more
complicated scene is used to test the robustness of our al-
gorithm. Two images with a size of 1600x1200 containing
a scene with a building covered by complex and interlac-
ing connection wires were fed into the system. Similar to
the previous case, the faces of the building were detected
robustly and quite fast. The results obtained for the recon-
structed planes with texture are shown in Fig. 13.

The building detection rate was verified by two data
sets. The first one is ZuBuD data set [27]; the second one
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Table 1. Experimental results for the Bundle Adjustment
approache and L∞ minimization.

Methods Bundle
Adjustment

L∞ Minimization

View 1 RMS 0.44343 0.43906
View 2 RMS 0.35416 0.38123
View 3 RMS 0.41216 0.33632
Total RMS 0.40495 0.38783

L-infinity error 0.89991 0.85414

(a) (b)

(c)

Fig. 11. Reconstruction results obtained for a one-face
building: (a), (b) and (c) are different angle of
views of the reconstructed face.

is our data set. The ZuBud data set contains 201 buildings,
each building is appeared five poses in the training data.
Also there are 115 images for a test set. Totally, there are
1120 building images. Our data set comprises of 880 im-
ages with 680 building and 200 non-building images. The
results are summarised in Table 2. Obviously, The pro-
posed method is robust with color and intensity changes
because of utilizing geometry features to detect the van-
ishing point and then the building faces. The pre-process
of the proposed method is based on the edge detection. So
the color and intensity changes do not affect the final re-
sults. There is no claim for cylindrical form building such
as Baroque architecture but in the data set some of them
can be detected correctly. The important point for accu-

(a) (b)

(c)
Fig. 12. Reconstruction results obtained for a building

with two faces: (a), (b) and (c) are different an-
gle of views of the reconstructed faces.

racy detection of building face is the structure of parallel
lines. When the number of dominant vanishing points can
be found out then the building faces are also can be de-
tected. The ideal for extending the planar patch as the
element to mimic the complex shape is really interesting.
This problems will be discussed in the further researches.
The results of building detection under occlusion and in-
tensity changes conditions are illustrated in Appendix A.

6. CONCLUSION

In this work, automated architecture reconstruction
based on a reference plane under convex optimization
from two-view images was presented. Some advantages
of the scheme were realized and the method was mathe-
matically and experimentally verified. The first advantage
is that the proposed pipeline utilized only a homography
constraint to avoid the serious error of the canonical pose
estimation method. This also allows the significant error
of translation in the small baseline problem to be over-
come. The second benefit is that we avoid using a bundle
adjustment, i.e., the L2-norm in back-projection error min-
imization, to estimate homography. This method can lead
to local minima. Instead, we employed convex optimiza-
tion in our algorithm. By utilizing the L∞-norm for mini-



824 My-Ha Le, Hoang-Hon Trinh, Van-Dung Hoang, and Kang-Hyun Jo*

(a) (b)

(c) (d)

(e)
Fig. 13. Reconstruction results obtained for a building

with three faces: (a) and (b) are face detection.
(c)-(e) are different angle of views of the recon-
structed faces.

Table 2. Summary of building detection.

Data sets Type of
images

Number
of

images

Corrections Confusions

ZuBuD
Data

Building
images

1120 1117 3

UlBuD01
Data

Building
images

680 660 20

UlBuD01
Data

Non-
building
Images

200 184 16

mization of the back-projection error, we can estimate the
homography quite accurately. Furthermore, extreme ex-
actness of the translation estimation and point clouds is
achieved. One additional strong point is the robustness

of reference plane detection even under a complex occlu-
sion condition and in an outdoor environment with inten-
sity changes. The iteration method of plane fitting is also
a significant advantage. In future work, a general solution
for high-accuracy multiple-view reconstruction will be de-
veloped using reference planes under global optimization.
In addition, we will improve the method by upgrading to
dense point clouds using a stereo rid or omni-directional
camera. Trajectory estimation will also be considered.
The final goal will be the application of this method to
real scene modeling systems.

APPENDIX A

The results of building detection under occlusion and
intensity changes are showed in Fig. 14. The non-planar
buildings or cylindrical form building are detected in Fig.
15.
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