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Abstract: The stability of impulsive systems with time window is studied via comparison method. 

Two theorems are obtained to determine the different impulsive time windows for stable and unstable 

continuous dynamical systems, respectively. The effectiveness of the theoretical results are illustrated 

by two numerical examples. 
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1. INTRODUCTION 

 

The study of impulsive systems has been assuming a 

greater importance since many evolution processes in 

nature are characterized by the fact that at certain 

moments of time they experience an abrupt change of 

states. These systems have important applications in 

various fields, such as mechanical systems, network 

systems, sampled-data systems, and control systems with 

communication constraints (see [1-3]). On the other hand, 

impulsive control based on impulsive systems can 

provide an efficient way to deal with plants that cannot 

endure continuous control inputs. The stability analysis 

of ordinary differential equations with impulsive effects 

at fixed time has been the subject of many investigations 

in recent years (see [4-18]). For example, [9] and [10] 

considered the asymptotic stability and stability of 

impulsive control systems, respectively. In [13], Xie 

investigated the stabilization and synchronization of 

Lorenz systems by impulsive control. 

It should be noticed that the impulses of these studied 

systems all occurred at the fixed-time points. But in 

some real impulsive control system, it is not easy to 

ensure that the impulsive input is exactly at a fixed time, 

that is to say, the impulses may occur in a little range of 

time therefore we just need to consider impulsive effect 

in an interval, which we call it impulsive time window. 

It is well known that comparison methods play an 

important role in the theory of impulsive differential 

equations, hence in this paper, we mainly investigate 

stability of impulsive system with time window via 

comparison method. The rest of the paper is organized as 

follows. In Section 2, we introduce the impulsive 

systems with time windows and some preliminaries. In 

Section 3, we give two main theorems via comparison 

methods; one is for stable continuous dynamical system, 

another is for unstable ones. And then we give two 

numerical examples to show the effectiveness of the 

obtained results in Section 4. Finally, we conclude our 

results. 

 

2. PROBLEM STATEMENT AND 

PRELIMINARIES 

 

Let ( , )R = −∞ +∞  be the set of real numbers, Rn be 

the space of n-dimensional real column vectors and 

{1,2, }Z
+
= �  be the set of positive integer numbers. 

{ :K R Rϕ
+ +

= →  is continuous, monotone strictly in-

creasing and (0) 0}.ϕ =  [ , ]PC D F  is the set of functions 

:D Fψ →  which are continuous for ,t D∈ ,
k

t t≠  have 

discontinuous of first kind at the points tk and are left 

continuous. In this paper, we consider the following im-

pulsive control system: 

0 0

( , ), , [ , )

( ) ( , ( ))

( ) , 1, 2, ,

l r

k k k k

k k

x f t x t t t t t

x t U k x t

x t x k

+

+

⎧ = ≠ ∈
⎪⎪

=⎨
⎪

= =⎪⎩

�

�

 (1) 

where nx R∈  is state variable. [ , ),n nf PC R R R
+

∈ ×  

[ , )( 1, 2, )
l r

k k
t t k = �  are fixed-time windows and 

k
t ∈  

[ , ),
l r

k k
t t .k Z

+
∈  We assume that 

0 1 1 1 2

l r l
t t t t t< ≤ < < ≤  

2 2
.r l r

k k k
t t t t t< < < ≤ < <� �  
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Definition 1: If for each 0,ε >
0

,t R
+

∈  there is a 

0
( , ) 0tδ δ ε= >  such that 

0
x δ<  implies ( ) .x t ε<  

Then the solution of (1) is said to be stable. 

If the solution of (1) is stable and for each 0,ε >  

0
,t R

+
∈  there is a 

0
( ) 0tδ δ= >  and 

0
( , )T T t ε=  such 

that 
0
x δ<  implies ( )x t ε<  for 

0
.t t T≥ +  Then the 

solution of (1) is said to be asymptotically stable. 

Definition 2: Let 
0
,V V∈  and assume that 

( , ) ( , ( , )), , [ , )

( , ( , )) ( ( , )),

l r

k k k k

k

D V t x g t V t x t t t t t

V t x U k x V t xψ

+⎧ ≤ ≠ ∈⎪
⎨

+ ≤⎪⎩
 (2) 

where :g R R R
+
× →  is continuous in 

1
( , )
k k
t t R
−

×  

and for each ,x R∈ ,k Z
+

∈  

( , ) ( , )

lim ( , ) ( , )

k

k
t y t x

g t y g t x
+

+

→

=  

exists. :
k

R Rψ
+ +
→  is non-decreasing. Then the fol-

lowing system 

0 0

( , ), , [ , )

( ) ( ( )),

( ) , 1, 2,

l r

k k k k

k k k

w g t x t t t t t

w t w t

w t w k

ψ
+

+

⎧ = ≠ ∈
⎪⎪

=⎨
⎪

= =⎪⎩

�

�

 (3) 

is the comparison system of (1). 

Lemma 1: Assume that 

1) ( ,0) 0,f t = ( ,0) 0g t =  and ( ,0) 0U k =  for all k; 

2) : ,V R S R
ρ+ +

× → 0,ρ >
0
,V V∈ ( , ) ( ,D V t x g t V

+
≤  

( , )),t x , [ , );

l r

k k k k
t t t t t≠ ∈  

3) There exists a 
0

0ρ >  such that 
0

x S
ρ

∈  implies that 

( , )x U k x S
ρ

+ ∈  for all k and ( , ( , ))V t x U k x+ ≤  

( ( , )),
k
V t xψ ,

k
t t= [ , );

l r

k k k
t t t∈

0
x S

ρ
∈  

4) ( ) ( , ) ( )x V t x xβ α≤ ≤  on ,R S
ρ+

×  where ( ),α ⋅  

( ) .Kβ ⋅ ∈  

If the trivial solution of comparison system (3) is sta-

ble (resp. asymptotically stable), then the trivial solution 

of (1) is also stable (resp. asymptotically stable). 

Proof: From condition 1 we know that the trivial solu-

tions of both (1) and (3) exist. 

Firstly, we prove the trivial solution of (1) is stable. 

Let us suppose that the trivial solution of (3) is stable 

and let 
0

0 min( , ),η ρ ρ< <  then there exist an 
1 0
( ,tε  

) 0η >  such that 
0 1

0 w ε≤ <  implies 
0 0

( , , ) ( )w t t w β η<  

where 
0

t t≥  and 
0 0

( , , )w t t w  is an arbitrary solution of 

(3). Let us choose 
0

( )w xα=  and let 
2 2

( )ε ε η=  

such that 
2

( ) ( ).α ε β η<  Let 
1 2

min( , ),ε ε ε=  then we 

have the following claim: 

Claim 1: For any solution 
0 0

( , , )x t t x  of (1), if 
0
x  

,ε≤  then ( )x t η≤  for 
0
.t t≥  

If claim is not true then there are k and a solution 

1 1 0 0
( ) ( , , )x t x t t x=  of (1) satisfying 

1 1
( )xη τ≤  and 

1
( )x t η<  for 

0
[ , ),

k
t t t∈ [ , ),

l r

k k k
t t t∈  

 (4) 

where 
0

,x ε<
1 0

tτ >  and 
1 1

( , ].
k k
t tτ

+
∈  

From 
0

0 min( , )η ρ ρ< <  we know 
0

0 ,η ρ< <  then 

from condition 3 we have 
1 1
( ) ( , ( )) .
k k

x t U k x t ρ+ <  

Therefore there exists a 
2 1

( , ],
k
tτ τ∈ [ , ),

l r

k k k
t t t∈  such 

that 
1 2
( ) .xη τ ρ< <  Followed conditions 2 and 3, we 

have  

1 max 0 0
( , ) ( , , ),V t x w t t w≤

0 0
( ),w xα=

0 2
[ , ],t t τ∈  (5) 

where 
max 0 0

( , , )w t t x  is the maximal solution of (3). 

Followed condition 4 and recall that any solution of (3), 

0 0
( , , ) ( ),w t t x β η<  we have 

1 2 2 1 2

max 0 0

( ) ( ( ) ) ( , ( ))

( , , ) ( ),

x V x

w t t x

β η β τ τ τ

β η

≤ ≤

≤ <

 (6) 

which leads to a contradiction. Hence, Claim 1 is true 

and the trivial solution of system (1) is stable. 

Secondly, we prove the trivial solution of (1) is 

asymptotically. We just to prove the trivial solution of (1) 

is attractive. 

Let us suppose that the trivial solution of (3) is asymp-

totically. Following the proof of stable case, we know 

that the trivial solution of (1) is stable. Let 
3 0

( ,tε ε=  

0
min( , ))ρ ρ  then the stable property leads to  

0 3
x ε<  implies ( ) ,x t ρ<

0
.t t≥  (7) 

Let 
0

0 min( , ),η ρ ρ< <
0
t R

+
∈  and because the trivial 

solution of (3) is attractive, there exist 
4 4 0

( ) 0tε ε= >  

and 
0

( , ) 0T T t η= >  such that 

0 4
0 w ε≤ <  implies 

0 0
( , , ) ( ),w t t w β η<

0
.t t T≥ +  (8) 

Let us choose 
0 3 4

min( , )ε ε ε=  and let 
0 0

,x ε<  then 

we have 

max 0 0

0

( ( ) ) ( , ( )) ( , , ( ))

( ), ,

x t V t x t w t t x

t t T

β α

β η

≤ ≤

< ≥ +

 (9) 

which proves the trivial solution of (1) is asymptotically 

stable.                � 

 

3. MAIN RESULTS 

 

Theorem 1: If the comparison system is as follows: 

0 0

( ) ( ), , [ , ),

( ) ( ( )),

( ) , 1, 2, ,

l r

k k k k

k k k

w t h w t t t t t

w t w t

w t w k

σ

ψ
+

+

⎧ = − ≠ ∈
⎪⎪

=⎨
⎪

= =⎪⎩

�

�

 (10) 

where [ , ],PC R Rσ
+ +

∈ ,
k

ψ .h K∈  Then the trivial 

solution of the system (1) is 

(i) stable if 

1 1
( ) 1

( ) 0,
( )

l
k k

r
k

t

t

ds s ds
h s

ψ θ

θ
σ

+ +

− ≤∫ ∫  (11) 

for some 0ρ >  and all (0, ]θ ρ∈ ; 

(ii) asymptotically stable if 

1 1
( ) 1

( ) ,
( )

l
k k

r
k

t

t
ds s ds

h s

ψ θ

θ
σ ϖ

+ +

− ≤ −∫ ∫  for 0.ϖ >  (12) 
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Proof: (i) Let 
0 0

( , , )w t t w  be any solution of system 

(10), then ( )w t  is non-increasing in 1( , ],
k k
t t

+
,k N∈  

1
( ) ( ).
k k

w t w t
+

+
<  It follows from (10) that for ( ,

k
t t∈  

1],k
t
+

,k N∈  we have 

( )

( )

1
( )

( )k k

w t t

w t t

ds s ds
h s

σ
+

= −∫ ∫  (13) 

and follows from (11) that 

1 1 1

1 1

11

( ) ( ( ))

( ) ( )

1 1

( ) ( )

( ) ( ) ,

k k k

k k

l
kk

r
k k

w t w t

w t w t

t t

t t

ds ds
h s h s

s ds s ds

ψ

σ σ

+

+ + +

+

+ +

++

=

≤ ≤

∫ ∫

∫ ∫

 (14) 

then we have 

1 1( ) ( ) ( )

( ) ( ) ( )

1 1 1
0.

( ) ( ) ( )

k k

k k

w t w t w t

w t w t w t
ds ds ds

h s h s h s

+ +

+ +

+ +
= + ≤∫ ∫ ∫  

 (15) 

From which and since ,h K∈  we know that 
1

( )
k

w t
+

+
≤  

( ).
k

w t
+  Let us assume that 

0 1
0 t t≤ <  and choose δ =  

0( ) 0tδ >  such that if 0 (0, ),w δ∈  then 
1 0
( ) .wψ ρ<  

Since 
1

,Kψ ∈  we have 

1 1 0
( ) ( ) .w t wψ ρ
+

= <  (16) 

Since w(t) is non-increasing in 1 2( , ],t t  it follows from 

(16) that 

2 1
( ) ( ) .w t w t ρ

+
≤ <  (17) 

Using mathematical induction we immediately know that 

if 
0

,w d<  then ( ) ,w t ρ<  for all 
0
.t t>  This proves 

the stability of the trivial solution. 

(ii) From the proof of (i), we know 
1

( ) ( )
k k

w t w t
+ +

+
≤  

and w(t) is decreasing in 
1

( , ],
k k
t t

+
 hence we only need 

to prove lim ( ) 0.
k

k

w t
+

→∞

=  

If it is false, then there is such a 0η >  that ( ) .
k

w t η
+

>  

Since the sequence ( )
k

w t
+  is non-increasing and h∈  

,K  we have 

1
( ) ( ( )) ( ( )),

k k
h h w t h w tη

+ +

+
≤ ≤  (18) 

and it follows from (14) and (17) that 

1( ) 1

( )

( ) ( )1
,

( ) ( )

k

k

w t
k k

w t

w t w t
ds

h s h η

+

+

+

+ +

+
−

≤∫  (19) 

then we have 

1
( ) ( ) ( ) ,
k k

w t w t h η ϖ
+ +

+
≤ −  (20) 

Using mathematical induction we can get 

1 0
( ) ( ) ( 1) ( ) .
k

w t w t k h η ϖ
+ +

+
≤ − +  (21) 

It follows ( ) 0w t >  that we have the contradiction: 

1
lim ( ) 0.

k
k

w t
+

+
→∞

<  Therefore the trivial solution of the 

comparison system (1) is asymptotically stable.    � 

 

Corollary 1: If ( , ) ,g t w qw= − 0,q > ( ) ,
k
w dwψ = d  

0,>  then the trivial solution of (1) is 

(i) stable if 

1
ln ( )

l r

k k
d q t t

+
≤ − ; 

(ii) asymptotically stable if 

1
ln ( ),

l r

k k
d q t tγ

+
≤ −  1.γ >  

Theorem 2: If the comparison system is as follows: 

0 0

( ) ( ), , [ , ),

( ) ( ( )),

( ) , 1,2, ,

l r

k k k k

k k k

w t h w t t t t t

w t w t

w t w k

σ

ψ
+

+

⎧ = ≠ ∈
⎪⎪

=⎨
⎪

= =⎪⎩

�

�

 (22) 

where [ , ],PC R Rσ
+ +

∈ ,
k

ψ .h K∈  Then the trivial 

solution of the system (1) is 

(i) stable if 

1 1( ) 1
( ) 0,

( )

r
k k

l

k

t

t

ds s ds
h s

ψ θ

θ
σ

+ +

+ ≤∫ ∫  (23) 

for some 0ρ >  and all (0, ]θ ρ∈ ; 

(ii) asymptotically stable if 

1 1( ) 1
( ) ,

( )

r
k k

l

k

t

t
ds s ds

h s

ψ θ

θ
σ ϖ

+ +

+ ≤ −∫ ∫  for 0.ϖ >  (24) 

Proof: (i) Let 
0 0

( , , )w t t w  be any solution of system, 

it follows from (22) that for 
1

t ( , ],
k k
t t

+
∈ ,k N∈  we 

have 

( )

( )

1
( ) ,

( )k k

w t t

w t t

ds s ds
h s

σ
+

=∫ ∫  (25) 

and follows from (25) that 

1 1 1

1 1

1 1

( ) ( ( ))

( ) ( )

1 1

( ) ( )

( ) ( ) ,

k k k

k k

r
k k

l
kk

w t w t

w t w t

t t

t t

ds ds
h s h s

s ds s ds

ψ

σ σ

+

+ + +

+

+ +

+ +

=

≤ − ≤ −

∫ ∫

∫ ∫

 (26) 

then we have 

1 1( ) ( ) ( )

( ) ( ) ( )

1 1 1
0.

( ) ( ) ( )

k k

k k

w t w t w t

w t w t w t

ds ds ds
h s h s h s

+ +

+ +

+ +
= + ≤∫ ∫ ∫  

 (27) 

From which and since ,h K∈  we know that 
1

( )
k

w t
+

+
≤  

( ).
k

w t
+  

The rest of proof is similarly of the proof of Theorem 1. � 
 

Corollary 2: If ( , ) ,g t w qw= 0,q > ( ) ,
k
w dwψ = d >  

0,  then the trivial solution of (1) is 

(i) stable if 

1
ln ( )

r l

k k
d q t t

+
≤ − − ; 

(ii) asymptotically stable if 

1
ln ( ),

r l

k k
d q t tγ

+
≤ − −  1.γ >  

Remark 1: Theorem 1 needs the continuous dynamics 

of system to be stable, but Theorem 2 allows the 

continuous dynamics to be unstable. Theorem 2 shows 
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that an unstable system with time window can be 

successfully stabilized by impulse. 

Remark 2: The current research results mainly focus 

on impulses all occurred at the fixedtime points, and 

there exist few results on impulsive effect occurred at 

any time of an interval. We get Theorem 1 and Theorem 

2 to determine the different impulsive time windows for 

stable and unstable continuous dynamical systems, 

respectively. 

 

4. NUMERICAL EXAMPLE 

 

In this section, we carry out two numerical example to 

illustrate the theoretical results above. 

Example 1: Consider the impulsive system given by 

( ), , [ , ),

( ) ( ) ( ),

l r

k k k k

k k

x Ax x t t t t t

x t I B x t

φ

+

⎧ = + ≠ ∈⎪
⎨

= +⎪⎩

�

 

where 
1 2 3

( , , ),
T
x x x x=  and 

10 2 0

2 10 0 ,

0 0 8

A

−⎛ ⎞
⎜ ⎟

= −⎜ ⎟
⎜ ⎟−⎝ ⎠

 
1 3

1 2

0

( ) ,x x x

x x

φ

⎛ ⎞
⎜ ⎟

= −⎜ ⎟
⎜ ⎟
⎝ ⎠

 

0 0

0 0 .

0 0

B

κ

κ

κ

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Let ( , ) ,T
V t x x x=  then 

max
( ) 16,T

q A Aλ− = + = −  

2

max
(( )( )) (1 ) .T

d I B I Bλ κ= + + = +  

Noting that  

2

( , ) ( , ),

( , ) ( , ) (1 ) ( , ),
i i i

D V t x qV t x

V t x Bx dV t x V t xκ

+

+

⎧ ≤ −⎪
⎨

+ ≤ ≤ +⎪⎩
 

we choose 0.02,
r l

k k
t t− =

1
0.02,

l r

k k
t t
+
− =  where 

k
t ∈  

[ , )
l r

k k
t t  is random, then from Corollary 3.2, we get  

2(1 ) exp(16 0.02) 1.1735κ+ < × < . 

Obviously when (1 ) 0,κ+ <  the system is asymptotically 

stable, therefore if 0.1735,κ <  the impulsive system is 

asymptotically stable. 

Example 2: The impulsively controlled Lorenz sys-

tem is given by 

( ), , [ , ),

( ) ( ) ( ),

l r

k k k k

k k

x Ax x t t t t t

x t I B x t

φ

+

⎧ = + ≠ ∈⎪
⎨

= +⎪⎩

�

 

where 
1 2 3

( , , ),T
x x x x=  and 

10 10 0

28 1 0 ,

0 0 8 / 3

A

−⎛ ⎞
⎜ ⎟

= −⎜ ⎟
⎜ ⎟−⎝ ⎠

 
1 3

1 2

0

( ) ,x x x

x x

φ

⎛ ⎞
⎜ ⎟

= −⎜ ⎟
⎜ ⎟
⎝ ⎠

 

0 0

0 0 ,

0 0

B

κ

κ

κ

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

then 

max
( ) 28.05,T

q A Aλ= + =

2

max
(( )( )) (1 ) ,T

d I B I Bλ κ= + + = +  

we choose 0.02,
r l

k k
t t− =

1
0.02,

l r

k k
t t
+
− =  where 

k
t ∈  

[ , )
l r

k k
t t  is random, then from Corollary 3.4, we get  

2(1 ) exp( 28.05 0.06) 0.1858κ+ < − × < . 

Therefore if 1.4311 0.5689,κ− < < −  the impulsively 

controlled Lorenz system is asymptotically stable. 

 

5. CONCLUSION 

 

In this paper, we have studied the stability of 

impulsive systems with time window via comparison 

method. Two theorems are obtained to determine the 

different impulsive time windows for stable and unstable 

continuous dynamical systems, respectively. Finally, two 

numerical examples and their numerical simulations are 

given to illustrate the effectiveness of the theoretical 

results. 

Fig. 1. Stable results of Example 1 with 0.1.κ =  

 

Fig. 2. Stable results of Example 1 with 0.1.κ =  
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