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Abstract: This paper proposes a distributed coordinated tracking controller for a group of high-order 

linear systems. The proposed controller is based on the disturbance observer which is a robust output 

feedback controller. It is noted that agents are allowed to use only outputs of their neighbors and the 

proposed controller uses only relative measurements. Since only outputs are exchanged among agents, 

the amount of information exchange does not depend on the dimension of agents’ dynamics. Numerical 

simulations are included to validate the theory. 
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1. INTRODUCTION 

 

During the last two decades, control problems on 

multi-agent systems which consist of a group of systems 

have attracted a number of researchers. Major research 

efforts have been put into the problems of consensus and 

synchronization, formation control, distributed optimiza-

tion, and distributed estimation, etc., and a vast amount 

of results can be found in the literature. See, e.g., [1-4], 

the survey paper [5], and references therein for more 

details. 

Among the problems mentioned above, the consensus 

problem is considered in this paper. In particular, we 

consider the consensus problem with a leader, called the 

coordinated tracking problem or leader-following 

problem, of which the objective is to design a controller 

so that each agent in the group called follower tracks the 

trajectory of an agent called leader. Previous results on 

this topic are summarized as follows. In [6,7], tracking 

controllers based on distributed observers which estimate 

the velocity of the leader are proposed. Note that these 

results cover second order systems and more importantly 

they require the assumption that the leader’s acceleration 

input is known to all followers which is not realistic. In 

[8], a bounded control is proposed for the case where the 

state of the leader is available to only a limited number 

of followers. Although time varying interaction networks 

can be covered, the controller requires estimates of the 

time derivative of other agents’ states which is not easy 

to implement. Recently, variable structure based 

coordinated tracking controllers are presented in [9] 

where the controller does not use the velocity (for the 

first order agents) or acceleration (for the second order 

agents) information of the other agents. Note that the 

work [9] requires that agents should exchange not only 

positions but also velocities with their neighbors.  

In this paper, we present an output feedback coordi-

nated tracking controller for high order linear systems. 

Compared to the results mentioned above, the present 

work considers a more realistic case where the followers 

do not know the input to the leader, agents are allowed to 

exchange only outputs, and no absolute measurements 

are used. It is noted that a preliminary version of the 

current paper has been published in [10], where a group 

of double integrators are considered and the design of 

controller requires the knowledge of network topology.  

The proposed controller is based on the disturbance 

observer [11] which has been known as a robust output 

feedback controller and widely used in industry; see [12-

16] and references therein. Precisely, the disturbance 

observer developed in [16] is modified to solve the 

problem. Moreover, we present a constructive design 

procedure to determine the controller parameters.  

The rest of this paper is organized as follows. In 

Section 2, we formulate the problem and state the key 

assumptions. In Section 3, an output feedback distributed 

coordinated tracking controller is presented and a 

rigorous stability proof is given. Numerical simulation 

results are given in Section 4 and Section 5 concludes the 

paper.  

Notation: For a matrix M, 
ij

m  represents the (i, j) 

component of M. 
k
I  denotes the identity matrix of 

dimension k. 0
k

k
∈�  and 1 k

k
∈�  represent column 

vectors with all their elements being 0 and 1, 

respectively. For two matrices A and B, A B⊗  denotes 
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the Kronecker product. Given a matrix A, 
max

( )Aλ  

min
( ( ),Aλ  resp.) denotes the maximum (minimum, resp.) 

eigenvalue of A. The i th-order time derivative of x is 

denoted by ( )
.

i
x  A polynomial 1

1
( ) n n

n
c s s c s

−

−

= + +�  

0
c+  is said to be a Hurwitz polynomial if all roots of 

( ) 0c s =  have negative real parts.  

Notions from graph theory: A weighted graph G  

consists of vertex set 
1

( ) { , , },
N

V v v= �G  edge set 

( ) ( ) ( ),E V V⊆ ×G G G  and weight W where 
i
v  denotes 

the i th agent, N  represents the number of agents, i.e., 

( ) ,|V |G  and ( )E G  is a set of ordered pairs of vertices 

called edge satisfying ( ) ( )
i j
v v E, ∈ G  if and only if 

information flows from the i th agent to the j th agent. 

Weight ( ) ( )W V V
+

: × →G G �  is a mapping that assigns 

weights to edges of G  and satisfies ( ) 0
i j

W v v, ≠  if 

and only if ( ) ( ).
i j
v v E, ∈ G  A subgraph ˆG  of G  is a 

graph such that ˆ( ) ( ),V V⊂G G ˆ( ) ( )E E⊂G G ∩ ˆ( ( )V ×G  
ˆ( )).V G  The weights of the subgraph ˆG  are defined to 

have the same values as those of .G  Let the adjacency 

matrix [ ]
ij

A a=  be an N N×  nonnegative matrix and 

its element is defined as 0
ii
a = , ( )

ij j i
a W v v= ,  if .i j≠  

The graph G  is called undirected if ,

T
A A=  and 

directed otherwise. The Laplacian matrix L  of a graph 

is defined as ,L D A= −  where D = diag ( 1 ).
N

A  

 

2. PROBLEM FORMULATION 

 

We consider a multi-agent system composed of N 

agents. The dynamics of the ith agent is described by 

,

,

i i i
g g

i i
g

x A x B u

y C x

= +

=

�

 (1) 

where i n
x ∈�  is the state of the i th agent, i

u ∈�  

the input, i
y ∈�  the output, 

1 1

0 1

1 1

1

0
[ ] ,

0
1 0

1

n n n n

g n

n n n

g g n

I
A a a a

a

B C

− − ×

−

− ×

−

⎡ ⎤
= ∈ , = , ,⎢ ⎥
⎣ ⎦

⎡ ⎤ ⎡ ⎤= ∈ , = , ∈ .⎢ ⎥ ⎣ ⎦⎣ ⎦

� �

� �

�

�

�

 

Each agent is supposed to follow the trajectory of the 

leader whose dynamics is given by 

,

,

g g

g

x A x B u

y C x

= +

=

�

 (2) 

where u ∈�  is the control input to the leader, n

x ∈�  

the state, y ∈�  the output. It is assumed that the leader 

does not receive any information from its neighbors. For 

simplicity, the leader is labeled as 1.N +  
 

Assumption 1: The control input u  to the leader is 

continuously differentiable for all t, and u  and u�  are 

uniformly bounded, i.e., ,u u
+| |<  and .u u

+| |<� �  
 

The graph which models the interaction among 1N +  

agents is denoted by G  and its subgraph associated 

with agents 1, ,N…  is denoted by .

F
G  Here the 

superscript F  is used to indicate that the agents 

1, ,N…  are followers. In what follows, the agents 

1, ,N…  are called followers. 

The weighted adjacency matrix and its Laplacian 

associated with G  are denoted by ( 1) ( 1)N N
A

+ × +
∈�  

and ( 1) ( 1)
,

N N
L

+ × +
∈�  respectively. We define L ∈

�  
N N×

�  by a submatrix of L with the last column and last 

row removed. It should be noted that L
�  is different 

from the Laplacian associated to the graph .

F
G  

 

Assumption 2: The graph G  is fixed and contains a 

directed spanning tree, and the graph F
G  is undirected 

and connected. The eigenvalues of the ,L
�  denoted by 

( ),
i
Lλ
�

1, , ,i N= �  are bounded by known values, i.e., 

( ) ,
i
Lλ λ λ

− +

≤ ≤
�

1, , .i N∀ = �         � 

 

Assumption 2 means that at least one follower 

receives information from the leader and thus at least one 

( 1)i N
a

+
 of A is nonzero. It is noted that L has one simple 

zero eigenvalue with associated eigenvector 
1

1
N+

 and 

that L
�  is symmetric and positive definite. 

The problem under consideration is to design an 

output feedback controller for distributed coordinated 

tracking. Precisely, we would like to design an 

(dynamic) output feedback controller of the form 

1

1

( , ),

( , ), 1, , ,

( ),

i i i

i i i

N
i j i

ij

j

F z

u G z i N

z a y y

χ χ

χ

+

=

=

= = …

= −∑

�

 (3) 

which solves the practical distributed coordinated 

tracking problem in the sense that for a given 0ε >  it 

holds that 

( ) ( ) , 1, , ,limsup
i

t

x t x t i Nε
→∞

− ≤ = …� �  (4) 

while all signals in the closed-loop systems are bounded. 

Note that each agent has its own controller but the 

structure is the same for all agents, and that the controller 

uses only its neighbors’ information, namely, we 

consider distributed controllers. It is emphasized that the 

leader is allowed to be driven by a nonzero input and no 

follower in the group can access the leader’s input ,u  

which are distinct features of the current work compared 

to a number of existing results; see [6,7] and the papers 

mentioned in [5]. 

The control objective, expressed by the condition (4), 

is to make the followers’ states converge to the vicinity 

of the leader’s trajectory. Although the convergence 

condition is weakened compared to the case where 

asymptotic convergence to ( )x t  is concerned, the infor-

mation available to the controller is only the output 
1

j
x  

of its neighbors which makes the problem challenging. 

We close this section by emphasizing that by the inter-

nal model principle the best we can expect is the 

coordinated tracking in the practical sense because each 
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agent can not use the control input u  applied to the 

leader so that the resulting pattern of state trajectory is 

not predictable. 

 

3. MAIN RESULT 

 

The proposed distributed coordinated tracking 

controller is based on the disturbance observer developed 

recently [15,16] and is given by 

( )0

1 1 1

,

,

,

i i i
p

i i i
q

i i i i i i i i
n n

p A p B u

q A q B z

u p q q p q z q

τ

τ

α
β β

τ

= +

= −

= − − = + + −

�

�

� � �

 (5) 

where 

1

1

0

1

1 0

0 1

0

, ,
0

, , ,

[ , , ] .

n

n n nn

p

n n

nn

q n

n

n

I
A B

B

τ τ

τ

α α

τ

α α
α

τ τ

β β β

−

×−

−

−

−

⎡ ⎤
⎡ ⎤ ⎢ ⎥= − ∈ = ∈⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤
= = ∈⎢ ⎥

⎣ ⎦

= ∈

� �

� �

� �

�

�

�

 

Note that the input to the controller is zi which is the 

weighted sum of the relative measurements and this 

means that the proposed controller is an output feedback 

controller. We emphasize that the control input to the 

leader u  is not used. The constants 
0 1
, , ,nα α

−

…
0
,β  

1
, ,

n
β

−

…  and τ are controller parameters and all par-

ameters except τ are selected following the procedure 

described below. 

Controller Design Procedure: 

1) Choose 
0 1
, , nβ β

−

…  such that the polynomial n
s +  

1

1 0

n

n
sβ β−

−

+ +�  is Hurwitz. 

2) Take 
1 1
…

n
α α

−

, ,  such that the polynomial 1n
s

−

+  
2

1 1

n

n
sα α

−

−

+ +�  is Hurwitz. 

3) Choose †
0 0α >  such that the polynomial n

s +  
1

1 0

n

n
sα α−

−

+ +�  is Hurwitz for all †
0 00 α α< ≤ . 

4) Choose 
‡
0 0α >  such that the Nyquist plot of 

1 2

0 1 1
( ) [ ( )]n n

c n
G s s s sα α α

− −

−

= / + + +�  is located 

in the right side of the disk whose diameter has 

endpoints 1 λ
−

− /  and 1 λ
+

− /  in the complex plane. 

5) Choose 
‡†

0 0 0min{ }.α α α= ,  
 

Remark 1: Note that we can always find the constants 
†

0α  and 
‡
0α  in the controller design procedure. Indeed, 

†

0α  can be chosen from the root locus 1 ( ) 0
c

kG s+ =  

with respect to 0,k >  and the existence of 
‡
0α  is 

guaranteed by the boundedness of the Nyquist plot to the 

negative real axis. The existence of 
‡
0α  is exploited to 

prove the absolute stability, using circle criterion [17], of 

a dynamics which explains the convergence of the con-

troller states to their steady state values. 

 

Remark 2: The reasoning behind the proposed con-

troller (5) is the following. As proved rigorously in 

[15,16], the disturbance observer based controller can 

make an uncertain closed-loop system behave as if it is a 

disturbance free nominal closed-loop system provided 

that design parameters are chosen appropriately. In our 

case, we apply this ability to the dynamics of i i
x x= −�  

x  so that it behaves approximately the same as i
x =�  

11

i
A x�  where A11 is a Hurwitz matrix whose characteris-

tic equation is given by 1

1 0
.

n n

n
s sβ β−

−

+ +…+  See (8) 

for the structure of A11. 

 

With the parameters chosen above, we can investigate 

the stability of the closed-loop system and choose the last 

controller parameter τ which will be chosen sufficiently 

small. First of all, we rewrite the closed-loop system as 

follows: 

 

Lemma 1: In the coordinates given by 

( )

( )

( 1)

1 ( 1) ( )
1

,

( ) ,

( ) ( ) ,

i i

i i i j n j
j j

i j i j i j
j n

x x x

q z

p q

ξ τ

η τ

− −

− −

= −

= + /

= −

�

 

the dynamics of the ith agent and its controller becomes 

( )

1

1

1

1 1

( )0
1

1

( )0
1

1

, 1, , 1,

,

1
, 1, , 1,

( ) ,

1
, 1, , 1,

1
( ) .

i i
j j

n
i i i
n j j

j

n ji i i
j j

i i i n
n

i i
j j

n
i i i i n
n j j

j

x x j n

x a x u u

j n

z

j n

u z

α
ξ ξ ξ

τ τ

α
ξ ξ

τ

η η
τ

α
η α η

τ τ

+

−

=

−

+

+

−

=

= = … −

= + −

= − + = −

= − +

= = −

= − + +

∑

∑

�
� �

�
� �

�
�

�

� �

�

 (6) 

Proof: One can easily verify the relations for ,

i
jx
� ,

i
jξ  

1, , ,j n= …  and ,

i
jη 1, , 1,j n= … −  by straightforward 

computations. In order to derive the dynamics of ,

i

n
η  we 

first compute 

1

1 21

i i in
p pp

α

τ

−

= − +�  

1 2

1 31 1 2

i i i in n
p pp p

α α

τ τ

− −

= − − +�� �  

�  

( ) ( )
1( 1) 1

1 1

1

nn n jn ji i i
nj

j

p p p
α

τ

−

− − −

−

=

= − +∑  

and 

0 0

1

i i i

n n n
q zq

α α

τ τ

= − −�  
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( )1 0

2

i i in i

n n n
qq q z

α α

τ τ

−

= − − +�� � �

�

 

( ) ( ) ( )
( 2)

2( 1) ( 1)
0

1

1

( ) .
n

nn n jn ji i i i
n n nj n

j

q q q z
α α

τ τ

−

−

− − −

−

−

=

= − − +∑  

In addition, we have 

( ) ( ) 0
1 1

1

( ) ( ) ( 1)0

1

( 1) ( 1) ( )0

1

( ) ( ) ,

( ) ( ) ( ) ,

( ) ( ) ( ) .

n
n ji n i n j i

j n
j

n
n ji n i n j i n

n nj n
j

n
n ji n i n j i n

n nj n
j

p p u

q q z

q q z

α α

τ τ

α α

τ τ

α α

τ τ

− −

=

− − −

=

−+ − +

=

= − +

= − −

= − −

∑

∑

∑

 

From these computations, we compute 
i

n
η�  as 

( ) ( )

( ) ( )

( )

( )

( ) ( 1)
1

1

( ) ( 1)
1

1

1

( )
0

( )
0

1

1

1
,

n n
i n i i

nn

n n j n jn jn i i
nj

j

n
i i

n n
i i i

j j

j

p q

p q

u z

u z

τη

α
τ

τ

α

τ

α
α η

τ τ

+
−

− − +
−−

=

−

=

⎛ ⎞= −⎜ ⎟
⎝ ⎠

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

∑

∑

�

 

which completes the proof.          � 
 

We rewrite the control input of the i th agent as 

( )( 1)
1 1

1

1 1

1 1

( )

,

n
i i n j i i j

j j

j

n N
i n j i k

j j ik j

j k

u z

l x

η β τ ξ

η β τ ξ

− −

−

=

−

−

= =

= − −

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠

∑

∑ ∑ �

�

 (7) 

where we applied the relation 
1

1
( )

Ni k i

ikk
z a y y

+

=
= −∑  

11
.

N k

ikk
l x

=

= −∑ �

�  

To proceed, we compute the quasi-steady state of i
jξ  

and i
jη  (the imaginary steady state values of i

jξ  and 
i
jη  when τ is zero and the plant states and inputs are 

frozen), denoted by ,

i

jξ ,

i

jη  respectively, as follows: 

1
0,

i i

n
ξ ξ= = =�   

2
0,

i i

n
η η= = =�  (9) 

1 1 11

1 1 1

( )
n n N

i i k
j j j j ik j

j j k

a x l x uβ βη
− − −

= = =

= − + + + .∑ ∑ ∑� �

�  (10) 

Indeed, we first rewrite the dynamics of i
jξ  and i

jη  as 

( )

1 1

( )
0 1

1

( )

1 0

1

, 1, , 1,

( ) ,

, 1, , 1,

.

i i i
j n j j

i i i n
n

i i
j j

n n
i i i i
n j j

j

j n

z

j n

u z

τξ α ξ ξ

τξ α ξ τ

τη η

τη α η α

− +

+

−

=

= − + = −

= − +

= = −

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

∑

�
�

�

� �

�

 

Taking 0τ =  in the dynamics of ,

i
jξ 1, , ,j n= …  and 

,

i
jη 1, , 1,j n= … −  results in (9). To derive (10), we 

consider the dynamics of .

i

n
η  Taking 0τ =  and apply-

ing (9) yield 

( )
1 ( ) .
i i i n

u zη = +  

Substituting the relations 

( )
1

0 0
1 1

1 1
0

1 1

( )

,

N n
i n kk

jik j

k j

n N
k k m

j km j

j m

z l a u ux

u l x

τ τ

τ

η β

−

= =

= =

−

=

= =

⎛ ⎞
= − + −⎜ ⎟

⎜ ⎟
⎝ ⎠

= −

∑ ∑

∑ ∑

�

�

�

�

 

one has 

11 1

1 1

1 11

1 1 1 1

n N
i i m

j im j

j m

N n n N
kk m

ik j j j km j

k j j m

l x

l a x l x u

βη η

βη

−

= =

− −

= = = =

= −

⎛ ⎞
− + − −⎜ ⎟

⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑ ∑ ∑

�

� �

�

� �

 

from which we have 

 

1 0
[ , , ] ,

n
α α α

−

= �

�  
0 1

[ ]
n

α α α
< −
= , , ,�

�  
0 2

[0 ]
n

β β β
−

= , , , ,�

�

�  
0 2

[0 ]
n

a a a
−

= , , , ,�

�

�  diag{ , ,1},
k k

τ
τΔ = …  

1 1

11

0
n n

I
A

β

− −

⎡ ⎤
= ,⎢ ⎥−⎣ ⎦�

 
( 1)

12 1

0
,

n n

n

A

τ
β

− ×

−

⎡ ⎤
= ⎢ ⎥

− Δ⎣ ⎦

�

�
 

( 1)

13

0
,

n n

g

A
C

− ×

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

�  
1

22

1
0

n

n

I
A α

−

−

⎡ ⎤
= −⎢ ⎥
⎣ ⎦

�
 1 1

31
( 1)

( )
,

0

n n

n n

a a
A

β β β
− −

− ×

⎡ ⎤+ − +
= ⎢ ⎥
⎢ ⎥⎣ ⎦

�

� � �

� �

( 1)

32

1 0 1

0
,

0

n n

n n

A

α β

− ×

− −

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
�

 

0 2

1
1 1

32 ( 2)

100

( )

0

[ ]
n

n

n n

n n

n

a

A

τ

β β τ

β β

α
−

−

− −

− ×

−

⎡ ⎤− + Δ
⎢ ⎥

= ⎢ ⎥
⎢ ⎥− Δ⎣ ⎦�

�

�

 
1 1

33

0

0
,

n n

g

I
A

Cα α

− −

<

⎡ ⎤
= ⎢ ⎥− +⎣ ⎦

�
 

1 1

33
( 1)

( )
,

0

n n g

n n

a C

A

β
− −

− ×

+⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

�   (8)

( 1)

21

0
,

n n

F
β

− ×
⎡ ⎤
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−⎣ ⎦

�

�
 

( 1)

22 1

0
,

n n

n

F

τ
β

− ×

−

⎡ ⎤
= ⎢ ⎥

− Δ⎣ ⎦

�

�
 

( 1)

23

0
,

n n

g

F
C

− ×

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

�  1
31

( 1)

,
0

n

n n

F
β β β

−

− ×

⎡ ⎤−
= ⎢ ⎥
⎢ ⎥⎣ ⎦

�

� �

�  
( 1)

32

1 0 1

0

0

n n

n n

F

α β

− ×

− −

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
�

 

1
1

32 ( 2)

1
0 0 2

0 ,

[ 0]

n

n

n n

n

n

F

τ

τ

β β

α β β

−

−

− ×

−

−

⎡ ⎤− Δ
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
− Δ⎢ ⎥⎣ ⎦

�

�

�

 
( 1)

33
0

0
,

n n

g

F
Cα

− ×
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 
1
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( 1)

.
0

n g
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C

F

β
−

− ×

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦
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( )1 1

1 1

1 1

1 1

0

.

N n
k

ik j j j

k j

n N
k m

j km j

j m

l a x

l x u

β

η β

− −

= =

−

= =

⎛
= +⎜

⎜
⎝

⎞
+ − − ⎟

⎟
⎠

∑ ∑

∑ ∑

�

�

�

�

 (11) 

We stack (11) for all 1, ,i N= �  to have 

11

1 1 1 11

1 1 1

1 1 11

1 1 1

0

( )

( )

N

n n N
k

j j j j k j

j j k

n n N
NN k

j j j j Nk j

j j k

a x l x u

L

a x l x u

β βη

β βη

− − −

= = =

− − −

= = =

=

⎡ ⎤
+ + − −⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

+ + − −⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑

� �

�

� �

�

�

�

 

from which the relation (10) follows since L
�  is a 

positive definite matrix by Assumption 2. 

Now, we are ready to write the whole closed-loop 

system. Let U be an orthogonal matrix (i.e., )UU I=

�  

such that 
1

diag{ ( ), , ( )} : ,
N

UL U L Lλ λ= = Λ�

� � � � i i
jj

ηη =�  

,

i
jη−  and 

1 1 1
[ , , , , , , , , ] .

i i i i i i i

n n n
x xχ ξ ξ η η= � �� �� � �

�  Define 
1 3

[( ) , , ( ) ]
N nN

χ χ χ= ∈� �

� � �  and 

3
( )i

i n
U Iζ χ= ⊗ ,  (12) 

where Ui is the i th row of U. Note that we do not define 
i
jξ
�  since 0.

i
jξ =  

 

Lemma 2: With iζ  defined in (12), the whole closed-

loop system is rewritten as 

,
N
I A F B uζζ ζ⎡ ⎤= ⊗ −Λ⊗ +⎣ ⎦

� �  (13) 

where 1 3
[( ) , , ( ) ] ,

N nN
Rζ ζ ζ= ∈�

� � �  

11 12 13

3 322

31 32 32 33 33

1
0 0

,

1 1

n n
n n n n

A A A

A
A

A A A A A

τ

τ τ

×
× ×

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ∈⎢ ⎥
⎢ ⎥
⎢ ⎥+ +
⎢ ⎥⎣ ⎦

� �

�

� � �

 

3 321 22 23

31 32 32 33 33

0 0 0

,
1 1

n n n n n n

n nF F F
F

F F F F F
τ τ

× × ×

×

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥

+ +⎢ ⎥
⎣ ⎦

� � �
�

� � �

 

( ) 3

3 2 1
( ) 1 [0 ,1,0 ] nN

n N n n
B U I Rζ −

= − ⊗ ⊗ ∈

� � �  

and other matrices and vectors are defined in (8). 

 

Proof: At first, we compute the dynamics of i
χ  as 

1
, 1, , 1

i i
j jx x j n

+
= = −

�
� � � , 

( )1 1

1

n
i i n j i i
n j j j

j

x xη β τ ξ
−

−

=

= − +∑�

�� � , 

1 1

1
, 1, , 1

n ji i i

j j
j n

α
ξ ξ ξ

τ τ

−

+
= − + = −

�
� , 

( )0

1 1 1

1 1

N n
i i k n j k k
n ik j j j

k j

l x
α

ξ ξ η β τ ξ
τ

−

−

= =

⎛ ⎞
= − − − +⎜ ⎟

⎜ ⎟
⎝ ⎠

∑ ∑�

� �

� , 

( )

1 1 1 0 1

1

1 1 1 1 1

1

1 1 1

1

1 1 1 2

1

1 0 1 1 1 1

1 1

1 1 1 1

1

( )

( )

( )

1
( )

( )

i i
n n

n
i

j j n n j j

j

n
n j i

n n j j

j

i i
n n

N n
k k

ik n j n j j

k j

n
n j k k

n j j n

j

a x

a a x

a

a u

l x x

η β β

β β β

β β τ ξ

β η η
τ

β β β β β

β β τ ξ β η

− −

−

− − − − +

=

−

− − −

=

− −

−

− − − +

= =

−

− − −

=

= − +

+ + − +

− +

+ + + −

⎛
− − + −⎜

⎜
⎝

⎞
− + ⎟

⎠

∑

∑

∑ ∑

∑

�

� �

�

�

� �

� �

�

�

,
⎟

 

1

1
, 2, , 1

ii
j j

j nη η
τ

+
= = −

�
� � � , 

0

1 1

2 1

0

11

1 1

1

,

n n
i i n j i

j j jjn
j j

N n
k n j k

ik j j

k j

l

α
α β τ ξηη

τ τ

α
β τ ξη

τ

−

− −

= =

−

−

= =

⎛ ⎞
= − − ⎜ ⎟

⎜ ⎟
⎝ ⎠

⎛ ⎞
− −⎜ ⎟

⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑

�

�
�

�

�

 

1 1 11

1 1

( ) ,
n n

ii i n j i
j j j j j

j j

u a x uβ β τ ξη
−

− − −

= =

= − + − +∑ ∑��  

 

which can be written compactly as 

,
N
I A L F B u

χ
χ χ⎡ ⎤= ⊗ − ⊗ +⎣ ⎦

�

�

�  (14) 

where 
2 1

1 [0 1 0 ] .
N n n

B
χ −

= − ⊗ , ,
� � �  Applying (12), we have 

,
N
I A F B uζζ ζ⎡ ⎤= ⊗ −Λ⊗ +⎣ ⎦

� �  

which completes the proof.          � 
 

To proceed, we present the properties guaranteed by 

the controller parameters obtained from the controller 

design procedure. 
 

Lemma 3: Let 
0 1
, ,

n
α α

−

…  be the constants chosen 

from Controller Design Procedure, ( ) (
c g

G s C sI= −  
1 1 2

33 1 1
) 1/[ ( )],n n

g n
A B s s sα α

− − −

−

= + + +�  and 
33

A A
η
=

�

 

33
Fλ

−

−  (A33 and F33 defined in (8)). Then, the follow-

ing properties hold true. 

1) For each [ , ],λ λ λ
− +

∈  the polynomial 1

1

n n

n
s sα

−

−

+  

1 0
sα λα+ + +�  is Hurwitz. 

2) The transfer function ( ) 1 ( ) ( )(1
T c

Z s G sλ λ
+ −

= + − +  
1( ))

c
G sλ

− −  is strictly positive real. 

3) There exists a symmetric positive definite matrix 

,

n n

P
η

×

∈
�

�  a row vector 1
,

n

M
×

∈�  a number 

,W ∈�  and a positive scalar δ such that 
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0
( )

2

g g

P A A P M M P

P B C M W

W W

η η η η η

η

δ

α λ λ
+ −

+ = − −

= − −

= .

� � � � �

�

� �

� �

�

 

Proof: We firstly note that 1 2

1 1

n n

n
s sα α

− −

−

+ + +�  

is Hurwitz (coefficients 
1 1
, ,

n
α α

−

�  are obtained from 

the second step in Controller Design Procedure). With 

these coefficients and α0 which is also chosen from the 

procedure, the assertions are proved as follows. From the 

circle criterion (see, e.g., [17, Theorem 7.2]), the fourth 

step in the controller design procedure guarantees that 

the transfer function 1( )(1 ( )) ,
c c

G s G sλ
−

+  whose de-

nominator is 1

1 1 0
,

n n

n
s s sα α λα

−

−

+ + + +�  is asymp-

totically stable for any [ ],λ λ λ
− +

∈ ,  and that transfer 

function 

1

1

( ) (1 ( ))(1 ( ))

1 ( ) ( )(1 ( ))

T c c

c c

Z s G s G s

G s G s

λ λ

λ λ λ

+ − −

+ − − −

= + +

= + − +

 

is strictly positive real. This means that properties 1) and 

2) hold true. 

The property 3) follows from Kalman-Yakubovich-

Popov Lemma (see, e.g., [17, Lemma 6.3]) since the 

transfer function ( )
T

Z s  admits a minimal realization 

0
( , , ( ) ,1),

g g
A B C
η

α λ λ
+ −
−

�

 i.e., ( ) 1 ( )
T g

Z s Cλ λ
+ −

= + −  
1

0
( ) .

g
sI A B

η
α

−

−

�

 This completes the proof.     � 
 

Now, we state the main result of this paper. 
 

Theorem 1: For the multi-agent system with agents 

described by (1) and (2), suppose that Assumptions 1 and 

2 hold true. For any given 0,ε >  there exists 0 1τ
∗

< <  

such that for any 0 ,τ τ
∗

< <  the distributed controller 

(5) solves the practical coordinated tracking problem, i.e., 

( ) ( ) ,limsup
i

t
x t x t ε

→∞
− ≤� � 1, , ,i N= …  and all signals 

in the closed-loop systems are bounded. 
 

Proof: We start the proof by investigating the stability 

of (13). Since the dynamics (13) is decoupled, it is 

sufficient to consider the dynamics for .iζ  Towards this, 

let 
1
,

iζ
2
,

iζ
3

i nζ ∈�  be such that 
1 2

[( ) ( )
i i iζ ζ ζ= , ,

� �  

3
( ) ]iζ � �  and define 

1 1
,

i
θ ζ=

2 2
,iθ ζ=

3 3

i
θ ζ=  to 

simplify notation. Consider the Lyapunov function 

candidate defined by 

1 1 1 2 2 2 3 3 3
( ) ,V t P P P Pθ θ θ θ γθ θ θ θ= := + +

� � � �  (15) 

where 
1 2 3

[ ] ,θ θ θ θ=

� � � �

1 2 3
diag{ , , },P P P Pγ=  and P1, 

P2, and P3 are symmetric positive definite matrices such 

that 

1 11 11 1

2 22 22 2

3 3 3

3 0

,

,

,

( ) ,

2

n

n

g g

P A A P I

P A A P I

P A A P M M P

P B C M W

W W

η η
δ

α λ λ
+ −

+ = −

+ = −

+ = − −

= − −

= .

� �

�

�

� �

� �

�

 (16) 

Note that the existence of P1 and P2 follows from the 

stability of A11 and A22, and Lemma 3 guarantees the 

existence of P3, M, W, and δ. The constant γ is defined by 
2

1
δ

γ λ= +  where max 32 32[ ]
max (( )

i
i

A F
λ λ λ

λ λ λ
− +

∈ ,

= −

�  

3 32 32
( )).

i
P A Fλ−  

We compute the time derivative of V(t) as 

1 1 2 2 3 3 3

1 1 12 2 1 1 13 3 2 2 21 1

2 2 22 2 2 2 23 3

3 3 31 31 1 3 3 32 32 2

3 3 32 32 2 3 3 33 3

3

1
( ) ( )

2 2 2

2 2

2
2 ( ) ( )

2
2 ( ) ( )

2

i

i i

i i

i i

V t M M P

PA P A P F

P F P F

P A F P A F

P A F P F

γ
θ θ θ θ θ δ θ

τ τ

θ θ θ θ γλθ θ

γλθ θ γλθ θ

θ λ θ θ λ θ
τ

θ λ θ θ λ λ θ
τ

θ

−

= − − − +

+ + −

− −

+ − + −

+ − − −

+

�

� � �

� �

� �

� �

� � � �

� � �

� �

� �

� �

3 33 33 3 3 3
( ) 2 1i i N gP A F PU C uλ θ θ− − .
� � �

� � �

 

Applying Young’s inequality and arranging terms, we 

obtain 

( )

1 1 2 2 3 3 3

3 3 3 3 33 3

2 2 2 3 3 3

3 3 3 2 32 32 3 32

2

32 2

1
( )

2

1 2
( )

( ) ( )

2
( ) (

2

) ,

i

i i

i

i

V t P

M M P F

Q Q

P A F P A

F u

γ δ
θ θ θ θ θ θ

τ τ

θ θ θ λ λ θ
τ τ

θ λ τ θ θ λ τ θ

δ
θ θ θ λ

τ τδ

λ θ μ

−

∗ +

≤ − − −

− − −

+ , + ,

+ + −

− +

�

�

� � �

� � �

� �

� � �

 

where μ* is a positive constant defined shortly. Also, 

2
( ) n n

i
Q λ τ

×

, ∈�  and 
3
( ) n n

i
Q λ τ

×

, ∈�  are given by 

2 2 2

2 12 1 12 2 21 21 2

2 2 2 2 2

2 22 22 2 23 23 2

32 32 32 32

( ) 8 8

( ) ( ),

i i

i i

i i

Q A P A P F F P

P F F P F F P

A F A F

λ τ γ λ

γ λ γ λ

λ λ

, = +

+ + +

+ − −

� � � �

� � � �

� �� �

� �

� �

�

 

2

3 1 1313

3 31 31 31 31 3

2

3 33 33 33 33

2

3 3

( ) 8

8 ( )( )

2 ( ) ( )

( 1)

4

i n

i i

i i

g g

Q P A IA

P A F A F P

P A F A F

N
PC C P

λ τ

λ λ

λ λ

μ∗

, = +

+ − −

+ + − −

+

+ .

�

�

� �� �

� �� �

�

�

�

�

 

Note that the forth line of the bound for ( )V t�  comes 

from 

1 1

2 2

3 32 32 23 3

3 3 3 2 32 32 3 32 32 2

2
( )

2
( ) ( ) .

2

i

i i

P P A F

P A F P A F

θ λ θ
τ

δ
θ θ θ λ λ θ

τ τδ

−

≤ + − −

�

� � �

 

We define 

2 2
0 1,

3 3
0 1,

max ( , ) ,

max ( , ) .

i

i

i

i

Q Q

Q Q

τ λ λ λ

τ λ λ λ

λ τ

λ τ

− +

− +

< ≤ ≤ ≤

< ≤ ≤ ≤

=

=

� �

� �
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Moreover, by applying (16) and taking 2,W =  we 

obtain a bound for the underlined part in ( )V t�  as 

3 3 3 3 33 3

3 3 3 3 0 3

3 3

3 3

3 3

3 3

1 2
( )

1 2
( )

2
( )( )

1

2
( )(( ) )

2
( )( )

i

i g g

g i i g

i g g

g i i g

M M P F

M M P B C

C C

M M

C M W C

C C

θ θ θ λ λ θ
τ τ

θ θ θ λ λ α θ
τ τ

θ λ λ λ λ θ
τ

θ θ
τ

θ λ λ λ λ θ
τ

θ λ λ λ λ θ
τ

−

−

− +

− + −

− +

− − −

≤ − − −

− − −

= −

− − − −

− − −

� � �

� � �

� �

� �

� � �

� �

 

( ) ( )3 3

1
( ) ( )

i g i g
M WC M WCθ λ λ λ λ θ

τ

− −

= − − − − −

�
�  

0.≤  

Now, from the definition of γ and the bounds obtained 

above, it follows that 

1 1 2 2 3 3 3

2

2 2 2 3 3 3

1 1 2 2 2

2min 3

3 3 3

1 1
( )

2 2

( )

1 1

2

( )
( ) .

2

V t P

Q Q u

Q

P
Q u

δ
θ θ θ θ θ θ

τ τ

θ θ θ θ μ

θ θ θ θ
τ

δλ
θ θ μ

τ

∗ +

∗ +

≤ − − −

+ + +

⎛ ⎞
≤ − − −⎜ ⎟

⎝ ⎠

⎛ ⎞
− − +⎜ ⎟
⎝ ⎠

�

�

�

� � �

� �

� �

�

 

If we take min

max

2

2 2

( )

2 ( )( )
,

P

P u N

λ ε

λ
µ

+

∗

=

�

 then there exist 
1

0τ >  

and 
2

0τ >  such that 

min 3

2 3

1 2

( )1 1 1
, .

2 2 2

P
Q Q

δλ

τ τ

− ≥ − ≥  

Therefore, it follows that for any given 0,ε >  if τ <  

1 2
: min{ , },τ τ τ

∗

=  then 

2

max

1
( ) ( ) , : .

2 ( )
V t V u

P
ρ μ ρ

λ

∗ +

≤ − + =� �  (17) 

From the comparison lemma [17], we have 

( ) 2

0

2

( ) (0) ( )

1
(0) ( ) (1 ),

t
t t

t t

V t e V e u d

e V u e

ρ ρ σ

ρ ρ

μ σ

μ
ρ

− − − ∗ +

− ∗ + −

≤ +

= + −

∫ �

�

 

from which we have 21( ) ( ) ,limsup
t

V t u
ρ
µ

→∞

∗ +

≤ �  and 
21 ( ) .limsup

t
P u

ρ
θ θ μ

∗ +

→∞
≤ �

�  Hence, from the 

definition of µ*, it follows that limsup
i

t N

εζ
→∞

≤� �  

and that .limsup
t

ζ ε
→∞

≤� �  Since 

1

3 3

1

3

( ) ( )limsup limsup

( ) limsup

n n

t t

n

t

U I U I

U I

χ χ

ζ

−

→∞ →∞

−

→∞

= ⊗ ⊗

≤ ⊗ ⋅ ,

� � � �

� � � �
 

we conclude that limsup
i

t
χ ε

→∞
≤� �  and that limsup

t→∞
 

,limsup
i i

t
x x x ε

→∞
− = ≤

�� � � �  which completes the 

proof.                � 

 

4. SIMULATION 

 

We consider five followers and one leader which are 

third order systems given by (1) with [1 2 1] .a = , ,−

�  The 

network topology among agents is shown in Fig. 1 

whose Laplacian matrix is given by 

 

 

Fig. 1. Network topology used in simulation. 

 

 

 

 

Fig. 2. Practical coordinated tracking of five followers 

under the proposed control. 
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Fig. 3. Tracking error i
e� �  for three cases. Steady state 

tracking error becomes smaller as τ decreases. 

 

3 2 0 0 0 1

2 4.5 1.5 0 1 0

0 1.5 1.5 0 0 0
.

0 0 0 2 2 0

0 1 0 2 3 0

0 0 0 0 0 0

L

− −⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥−

= ⎢ ⎥
−⎢ ⎥

⎢ ⎥− −
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The leader’s dynamics is given by 

1 2 3

,

[ ( ) , ( ) , ( ) ]

g g
x A x B u

u K r t r t r tx x x

= +

= − − −

�

� ��

�
 (18) 

in which ( ) 0 3sin 2r t t= .  and the gain matrix K is se-

lected such that eigenvalues of 
g g

A B K−  are located at 

10 / 3 10 3 / 3j− ±  and –10/3. Controller parameters are 

chosen as [2, 2,0.1] ,α =

�
[1,5,10] ,β =

�  and 0.001τ =  

along Controller Design Procedure given in Section 3. 

The initial state of all followers are randomly selected 

but that of leader is set to be zero. Fig. 2 illustrates that 

all states of agents converge to the vicinity of leader’s 

trajectory. To illustrate that the practical coordinated 

tracking is achieved by the proposed controller, we 

present Fig. 3 for which the simulation is conducted for 

different values of τ, while all parameters and initial 

states are the same. From the result, one can deduce that 

ultimate bound of the tracking error ( )i i
e x x= −� � � �  

becomes smaller as τ decreases, which indicates that the 

desired steady state error bound ε  can be obtained by 

adjusting .τ τ
∗

<  

 

5. CONCLUSIONS 

 

This paper investigated the distributed coordinated 

tracking problem for a group of high-order linear 

systems. As a solution, we have proposed a distributed 

coordinated tracking controller which is based on 

disturbance observer. The controller requires only the 

weighted sum of its neighbor’s output, thus the amount 

of information exchange does not depend on the system 

order. Future research topics include extensions to the 

case with switching network and nonlinear agents.  
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