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Abstract: This paper discusses the distributed adaptive control schemes for pinning synchronization in 

complex dynamical network with non-delayed and delayed coupling. An effective distributed adaptive 

strategy to adjust simultaneously coupling strength and feedback gains is designed based on informa-

tion of the non-delayed network’s configuration. For a special case where the information of delay is 

available, a distributed adaptive scheme to tune the coupling weights of non-delayed coupling network 

is proposed by using the delayed feedback controllers. Based on the small-world network and scale-

free network, simulation examples are given to demonstrate the effectiveness of theoretical analysis. 
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1. INTRODUCTION 

 

Due to the remarkable contribution of Watts, Barabási 

et al. on random networks, the small-world [1] and scale-

free [2] network models have been applied extensively to 

study more realistic complex networks. Actually, 

complex networks are ubiquitous in our daily life, such 

as the Internet, WWW, electric power grids, neural 

networks and scientific citation networks [3], etc. Some 

significant concepts describing the dynamical behaviors 

of complex network are proposed endlessly and 

investigated deeply on variety of science and engineering 

fields in the past few decades. Synchronization, which is 

one of numerous dynamical behaviors for complex 

networks, has attracted more and more attentions from 

researchers in different discipline. Since the ground-

breaking work [4] of Pecora and Carroll was published, a 

great deal of research results on chaos synchronization 

and control have been reported [5-12]. Many kinds of 

synchronization protocols have been proposed, such as 

complete synchronization [13], projective synchroni-

zation [14], generalized synchronization [15], lag 

synchronization [16,17] and so on. In order to 

synchronize a dynamical complex network, introducing 

some control schemes have become common views. 

However, it is literally impossible to add controllers to 

every node in very large-scale network because of the 

computational complexity and cost effectiveness. To 

reduce the number of controllers, an idea using some 

local feedback injections was applied successfully to a 

part of network’s nodes, which is well known as pinning 

control [10,18-23].  

Time-delayed coupling is omnipresent in nature and 

cannot be particularly ignored in long distance 

communication and traffic congestions. Hence, to 

simulate more realistic network, time-delay must be 

taken into account. Most of reports on synchronization of 

dynamical networks are assumed that there exists the 

information communication of node only at time t 

[10,11] or at time t – τ [24,25], respectively. In [26,27], 

authors investigated the delay-dependent synchronization 

criteria for the fuzzy complex dynamical networks and 

coupled discrete-time neural networks with interval time-

varying delays, respectively. Even so, how to realize 

synchronization between different networks is still 

challenging and open work. However, the simplification 

does not satisfy the characteristics of real world, i.e. 

there is the information exchange of nodes not only at 

time t but also at time t – τ. Recently, a general complex 

dynamical network with non-delayed and delayed 

coupling, which describes dynamical behaviors between 

two complex networks, was proposed and some results 

had been reported [28-32].  

The above-mentioned studies on complex dynamical 

networks with non-delayed and delayed coupling 

focused mainly on how to realize synchronization. In this 

paper, our motivations are to propose some control 

strategies to tune parameters of network by using pinning 

synchronization of network. Here, we should be careful 

of the influence of delayed coupling which is absolutely 

ignored. In the following, the affect of delayed coupling 

is illustrated. Furthermore, how to use synchronization to 
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tune parameters of networks, to the best of our knowledge, 

there are few results concerning it for networks with non-

delayed and delayed coupling. Recently, in [33,34], the 

distributed adaptive control gains and coupling weights 

were proposed and their adaptive update laws were 

worth to use for reference. Differing from [33], we draw 

the delayed coupling term into the network in this paper. 

On the other hand, it is significant to consider the cost of 

coupling strength and feedback gains in a real network. 

Generally, they are hoped to be smallest possible. To 

achieve synchronization, the bigger feedback gains are 

required if the coupling strength is too small. How to 

achieve their balance is challenging question. In this 

paper, the adaptive technique is used to solve this 

question. The coupling strength and feedback gains are 

tuned simultaneously to achieve their balance by 

designed adaptive laws. Besides, we also design adaptive 

tune of coupling weights by delayed feedback controllers. 

The main contributions of this paper are twofold: (i) a 

distributed adaptive non-delayed coupling strength and 

its update law is designed under adaptive pinning 

scheme; (ii) using fully the information on size of delay, 

the distributed adaptive non-delayed coupling weights 

and their update laws are proposed under delayed 

pinning scheme. The simulations indicate the 

effectiveness on our distributed adaptive control designs.  

The rest of this paper is organized as follows: In 

Section 2, some preliminaries, lemmas and assumption 

are briefly outlined. The main theorems for pinning 

synchronization on complex dynamical networks with 

non-delayed and delayed coupling are given in Section 3, 

4. In Section 5, two numerical examples on small-world 

and scale-free networks are simulated to demonstrate the 

theoretical analysis. Conclusions are drawn in Section 6.  

Notation: Throughout this paper, the following stand-

ard notations are used. 
N

�  denotes the N-dimensional 

Euclidean space. N N×
�  be N N×  real matrices, 

N
I ∈  

N N×
�  be an N-dimensional identity matrix. AT and A-1 

be the transpose and inverse of matrix A, respectively. 

For real symmetric matrices X and Y, the notation 

X Y< ( )X Y≤  means X – Y is negative definite (re-

spectively, negative semi-definite). 
max

( )λ ⋅  denotes the 

maximum eigenvalue of a real symmetric matrix. 

diag( )�  stands for a block-diagonal matrix, ⊗  denotes 

the Kronecker product. The matrices are assumed to have 

compatible dimensions if they are not explicitly stated.  

 

2. MODEL DESCRIPTION AND PRELIMINARIES 

 

In this paper, we consider a complex dynamical 

network consisting of N identical codes with linearly 

diffusive coupling. The model with non-delayed and 

delayed coupling is described by 

1 2

1 1

( ) ( ( ), ) ( ) ( ),
N N

i i ij j ij j

j j

x t f x t t c a x t c b x t τ

= =

= + Γ + Γ −∑ ∑�  

 1,2, , ,i N= �  (1) 

where T

1 2
( ) ( ( ), ( ), , ( )) n

i i i in
x t x t x t x t= ∈ ,� �  is the state 

vector of the ith node, n nf +
: × →� � �  is a continu-

ously differentiable vector function standing for the 

activity of an individual subsystem; 0τ >  is the coupl-

ing delay; 
1

0,c >
2

0c >  are the coupling strengths; Γ =  

1 2
diag( , , , )

n n
nγ γ γ

×

∈� �  is a positive definite diagonal 

inner coupling matrix in which 0jγ >  if and only if 

two nodes can communicate through the jth state, 

otherwise 0;jγ = ( )ij N NA a
×

=  and ( )
ij N N

B b
×

=  are 

the coupling configuration matrices representing the 

coupling weights and topological structure for non-

delayed configuration and delayed one, where aij and bij 

are defined as follow: if there exits a connection between 

node i and node j ( ),i j≠  then 0,ij jia a= > ij jib b=  

0;>  otherwise 0,ij jia a= = 0;
ij ji
b b= =  and the 

diagonal elements are defined by 

1,

,

N

ii ij

j j i

a a

= ≠

= − ∑   
1,

,

N

ii ij

j j i

b b
= ≠

= − ∑  

where , 1, 2, , .i j N= �  

Suppose that ([ ,0], )
n

C τ− �  be the Banach space of 

continuous functions with the norm 

0

sup ( ) .

t

t

τ

φ φ
− ≤ ≤

=� � � �  

The initial conditions of functional differential equations 

(1) are given by ( ) ( ) ([ ,0], ).n

i i
x t t Cφ τ= ∈ − �  Under the 

initial conditions, we always assume that (1) has an 

unique solution. 

Note that a solution s(t) of an isolated node satisfies 

( ) ( ( ), ),s t f s t t=�  (2) 

in which s(t) may be an equilibrium point, a periodic 

orbit, or even a chaotic orbit. Throughout this paper, the 

undirected networks are considered. 

The aim of this paper is to find some appropriate 

schemes such that the solutions of network (1) 

synchronize with the solution of (2), in the sense that 

lim ( ) ( ) 0, 1,2, , .
i

t

x t s t i N

→∞

− = =� � �  (3) 

In the rest of this paper, we need the following 

assumption and some lemmas: 
 

Assumption 1 [33]: There exist a constant diagonal 

matrix 
1 2

diag( , , , )
n

δ δ δΔ = �  and 0η >  such that 

T

T

( ) ( ( , ) ( , ) ( ))

( ) ( )

x y f x t f y t x y

x y x yη

− − −Δ −

≤ − − − ,

 

where all n

x y, ∈�  and 0.t >  

In what follows, we assume that HΔ = Γ  in which 

1 2
diag( , , , ).

n
H h h h= �  

Remark 1: Assumption 1 is so-called QUAD condi-

tion on vector field and very mild. For example, the 

condition is satisfied if / ( , 1, 2, , )
i j
f x i j n∂ ∂ = �  are uni-

formly bounded and Γ is positive definite. It includes 

many well-known systems, such as Chua’s oscillators, 

Rössler system, Lorenz system, Chen system, and Lü 

system. 
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Without loss of generality, we only consider the 

connected network; otherwise, we may consider the 

synchronization on each connected component of 

network separately, i.e., cluster synchronization. It is 

well known that the coupling configuration matrix of 

undirected network has a simple eigenvalue 0 and all the 

other eigenvalues are negative if and only if the network 

is connected [33,38]. 

 

Lemma 1 [35]: If ( )
ij N N

A a
×

=  is irreducible and 

satisfies 0,
ij ji
a a= ≥ ;i j≠

1,
,

N

ii ijj j i
a a

= ≠

= −∑ , 1,2,i j =  

, .N�  Then, for any constant 0,ξ >  all eigenvalues of 

the matrix A−Ξ  are negative definite, where Ξ =  

diag( ,0, ,0).ξ �  

 

Lemma 2 [36]: Let Q(x) and R(x) be two symmetric 

matrices, matrix S(x) has appropriate dimension. Then 

the linear matrix inequality (LMI) 

( ) ( )
0

( ) ( )
T

Q x S x

S x R x

⎛ ⎞
<⎜ ⎟⎜ ⎟

⎝ ⎠
 

is equivalent to one of the following conditions: 

(i) 1( ) 0, ( ) ( ) ( ) ( ) 0;T
Q x R x S x Q x S x

−

< − <  

(ii) 1( ) 0, ( ) ( ) ( ) ( ) 0.T
R x Q x S x R x S x

−

< − <  

 

Lemma 3 [37]: For any matrices A, B, C, D with 

appropriate dimensions and scalar k, the Kronecker 

product ⊗  satisfies: 

(i) ( ) ( ) ( );kA B A kB k A B⊗ = ⊗ = ⊗  

(ii) ( ) ( ) ( );A B C A C B C+ ⊗ = ⊗ + ⊗  

(iii) ( )( ) ( ) ( );A B C D AC BD⊗ ⊗ = ⊗  

(iv) ( ) .T T T
A B A B⊗ = ⊗  

For the given network structures, it is difficult or even 

impossible to ensure the network (1) to realize self 

synchronization since the existence of delayed coupling 

terms. However, the time-delay cannot be ignored 

absolutely. So, there is an acceptable strategy that 

controllers may be applied to force the network to 

synchronize. On the other hand, due to the very large-

scale nodes of complex network, it is impossible to add 

controllers to every node. To reduce the number of 

controlled nodes, the pinning control scheme is 

considered. Under the strategy of pinning control, there 

are two questions to be solved: (i) what kind of intrinsic 

parameters of network may be used to achieve 

synchronization? (ii) How large should be the suitable 

values of parameters and pinning controller’s feedback 

gains to realize synchronization? To answer above two 

questions, we observe that the non-delayed coupling 

strength and weights may be utilized to synchronize 

network. Usually, it gives much larger coupling strength, 

weights and feedback gains than those needed in practice. 

So, it is not quite practical. A better way is to use 

adaptive approach to tune them. In the following, we will 

discuss them in detail. 

3. DISTRIBUTED ADAPTIVE COUPLING 

STRENGTH VIA ADAPTIVE PINNING SCHEME 

 

In this section, to achieve the synchronization of 

network (1), the pinning strategy is applied if the 

network is not self-synchronized. Suppose that there are l 

controlled nodes, where l is a positive integer satisfies 

1 .l N≤ ≤  Without loss of generality, rearrange the order 

of the nodes in the network, and let the first l nodes be 

controlled. Consequently, based on network (1), the 

pinning controlled network with the time-varying non-

delayed coupling strength is described by: 

1

1

2

1

1

1

2

1

( ) ( ( ), ) ( ) ( )

( ) ( ), 1,2, , ,

( ) ( ( ), ) ( ) ( )

( ), 1, , ,

N

i i ij j

j

N

ij j i

j

N

i i ij j

j

N

ij j

j

x t f x t t c t a x t

c b x t u t i l

x t f x t t c t a x t

c b x t i l N

τ

τ

=

=

=

=

= + Γ

+ Γ − + =

= + Γ

+ Γ − = +

∑

∑

∑

∑

�

�

�

�

 (4) 

where the time-varying coupling strength 
1
( ) 0c t >  is 

the differentiable function, and ( )
i
u t  is the feedback 

controller. Substituting (2) into (4), one yields the error 

network as follows: 

1

1

2

1

1

1

2

1

( ) ( ( ), ) ( ( ), ) ( ) ( )

( ) ( ), 1,2, , ,

( ) ( ( ), ) ( ( ), ) ( ) ( )

( ), 1, , ,

N

i i ij j

j

N

ij j i

j

N

i i ij j

j

N

ij j

j

e t f x t t f s t t c t a e t

c b e t u t i l

e t f x t t f s t t c t a e t

c b e t i l N

τ

τ

=

=

=

=

= − + Γ

+ Γ − + =

= − + Γ

+ Γ − = +

∑

∑

∑

∑

�

�

�

�

 (5) 

where ( ) ( ) ( ).
i i
e t x t s t= −  The adaptive feedback control-

lers and their update laws are designed as: 

T( ) ( ) ( ), ( ) ( ) ( ),

(0) 0, 0, 1,2, , .

i i i i i i i

i i

u t d t e t d t e t e t

d i l

α

α

= − Γ = Γ

≥ > =

�

�

 (6) 

For the time-varying non-delayed coupling strength 

c1(t), the distributed adaptive law is given by: 

T

1

1 1

1

( ) ( ( ) ( )) ( ( ) ( ))

(0) 0 0

N N

ij i j i j

i j j i

c t a e t e t e t e t

c

σ

σ

= = , ≠

= − Γ − ,

≥ , > .

∑ ∑�

 (7) 

 

Theorem 1: Suppose that Assumption 1 holds, Γ is a 

positive definite diagonal matrix. The undirected 

controlled network (5) is globally synchronized to (2) 

under the adaptive feedback controllers (6) and 

distributed adaptive laws (7). 
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Proof: Consider the Lyapunov functional candidate: 

2

T 1 1

1

2

T

1 1

( ( ) )1
( ) ( ) ( )

2 4

( ( ) )
( ) ( )

2

N

i i

i

l N
t

i i

i i
t

ii i

c t c
V t e t e t

d t d
r e s e s ds

τ

σ

α

=

−

= =

−
= +

−
+ + Γ ,

∑

∑ ∑ ∫

 (8) 

where 
1
,c ,

i
d  and r are positive constant to be 

determined below. Let 
1 2

diag( , , , ,0, ,0)
l

D d d d= ∈� �  

,

N N×
�

T T T T

1 2
( ) ( ( ) ( ) ( )) .

N
e t e t e t e t= , , ,�  

Differentiating V(t) along the trajectories of (5), we 

have 

[ ]T

1

( ) ( ) ( ( ) ) ( ( ) )
N

i i

i

V t e t f x t t f s t t

=

= , − ,∑�  

 

T

1

1 1

T

2

1 1

T T

1 1

1 1

1 1

T

T T

1

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ( ) ) ( ) ( )

( )
( ( )

2

( )) ( ( ) ( ))

( ) ( ) ( ) (

N N

ij i j

i j

N N

ij i j

i j

l l

i i i i i i i

i i

N N

ij i

i j j i

j i j

N

i i i i

i

c t a e t e t

c b e t e t

d t e t e t d t d e t e t

c t c
a e t

e t e t e t

r e t e t e t e t

τ

τ

= =

= =

= =

= = , ≠

=

+ Γ

+ Γ −

− Γ + − Γ

−
+

− Γ −

+ Γ − − Γ

∑∑

∑∑

∑ ∑

∑ ∑

∑ ) .τ⎡ ⎤−⎣ ⎦

 

In view of 
1

0
N

ij

j

a

=

=∑  and ,
ij ji
a a=  one obtains 

T

1 1

( ( ) ( )) ( ( ) ( ))
N N

ij i j i j

i j j i

a e t e t e t e t

= = , ≠

− Γ −∑ ∑  

T

1 1

2 ( ) ( )
N N

ij i j

i j

a e t e t

= =

= − Γ .∑∑  

By Assumption 1, it follows that 

T T

1 1

( ) ( ) ( ) ( ) ( )
N N

i i i i

i i

V t e t e t e t H e tη

= =

≤ − + Γ∑ ∑�  

T T

1

1 1 1

( ) ( ) ( ) ( )
N N l

ij i j i i i

i j i

c a e t e t d e t e t

= = =

+ Γ − Γ∑∑ ∑  

T

2

1 1

( ) ( )
N N

ij i j

i j

c b e t e t τ

= =

+ Γ −∑∑  

T T

1

( ) ( ) ( ) ( )
N

i i i i

i

r e t e t e t e tτ τ

=

⎡ ⎤+ Γ − − Γ −⎣ ⎦∑  

T ( )( ) ( )
N n

e t I I e tη= − ⊗  

T

1
( [ ( ) ( )

N
e t I H c A+ ⊗ Γ + ⊗Γ  

T

2
( )] ( ) ( )( ) ( )

N
D r I e t c e t B e t τ− ⊗Γ+ ⊗Γ − ⊗Γ −  

T ( )( ) ( )
N

re t I e tτ τ− − ⊗Γ −  

T T T

T
T T

( )( ) ( ) ( ( ), ( ))

( ( ) ( ))

N n
e t I I e t e t e t Z

e t e t

η τ

τ

= − ⊗ + −

× ,, −

 

where 

2

T2

( )
2

( ) ( )
2

N

c
B

Z
c

B r I

⎛ ⎞
Π − ⊗Γ⎜ ⎟

⎜ ⎟= ,
⎜ ⎟− ⊗Γ − ⊗Γ⎜ ⎟
⎝ ⎠

 

where 1( ) ( ) ( ).
N N
I H A D r IcΠ = ⊗ Γ + ⊗Γ − ⊗Γ + ⊗Γ  

Note that ( ) 0,
N

r I− ⊗Γ <  by Lemma 2, 0Z <  is 

equivalent to 

1

2

T2

( ) ( ) ( )

( ) 0
4

N N
I H c A D r I

c
BB

r

⊗ Γ + − ⊗Γ + ⊗Γ

+ ⊗Γ < .

 (9) 

By Lemma 1, it follows that all eigenvalues of 
1
c A D−  

are negative. Since T ,B B= Γ  is a positive definite 

diagonal matrix, one obtains 

2

T2

1
( ) ( ) ( ) ( )

4
N N

c
I H c A D r I BB

r
⊗ Γ + − ⊗Γ + ⊗Γ + ⊗Γ

  
2 2

2
( )

( )
4

N

c B
h r I

r

ρ
λ

⎡ ⎤
≤ + + + ⊗Γ ,⎢ ⎥
⎢ ⎥⎣ ⎦

 (10) 

where 
1

max { },j n jh h
≤ ≤

=
max 1

( ) 0,c A Dλ λ= − < ( )Bρ  

0>  is the spectral radius of B . 

Taking 
2

( ) / 2,r c Bρ=  we have 

2 2

2

2

( )
( )

4

[ ( )]( )

N

N

c B
h r I

r

h r c B I

ρ
λ

λ ρ

⎡ ⎤
+ + + ⊗Γ⎢ ⎥

⎢ ⎥⎣ ⎦

= + + + ⊗Γ .

 

Therefore, choosing suitable 
1
c ,

i
d  such that h rλ+ +  

2
( ) 0.c Bρ+ <  Then, 

2
[ ( )]( ) 0.

N
h r c B Iλ ρ+ + + ⊗Γ <  (11) 

From (9)-(11), we can conclude that 

T( ) ( )( ) ( ).
N n

V t e t I I e tη≤ − ⊗�  (12) 

By (12), we have ( ) 0V t ≤�  and ( ) 0V t =�  if and only if 

( ) 0.e t =  Hence, the set { ( ) 0,e t= =M ( ) ,
i i

d t d=  

1 1
( ) }c t c=  is the largest invariant set contained in 

{ ( ) ( ) 0}e t V t= : =�D  for system (5). According to 

LaSalle’s invariance principle [39], for any initial 

condition, every solution of system (5) asymptotically 

converges to M  as ,t →∞  i.e., ( ) 0,
i
e t →� � ( )

i
d t →  

,id 1 1
( ) ,c t c→  where id , ( 1 2 )i l= , , , ,�

1
c  are positive 

constants. It can conclude that globally asymptotical 

synchronization of network (4) is achieved. The proof is 

completed.              � 

 

Remark 2: In model (4), we only introduce the time-

varying non-delayed coupling strength c1(t) and design 

its adaptive update law (7). From another perspective, it 
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is feasible that we modify the fixed delayed coupling 

strength c2 to time-varying one (e.g., c2(t)) and design 

corresponding adaptive update law similar to (7). 

However, we find a remarkable phenomenon that 

delayed time-varying coupling strength converges 

gradually to zero with time evolution by the numerical 

simulations. Hence, we think the delayed coupling as 

desynchronizing factor. On the other hand, we emphasize 

specially the time-delay cannot be ignored in a real 

network. It is main reason why we do not introduce time-

varying delayed coupling strength. 

 

4. DISTRIBUTED ADAPTIVE COUPLING 

WEIGHTS VIA DELAYED PINNING SCHEME 

 

Recall the definitions of the topological configuration 

matrices A and B in network (1). In this section, we 

consider the adjustment of non-delayed coupling 

configuration matrix ( ) .
ij N N

A a
×

=  

Construct the time-varying matrix ( ( ))( ) ij N N
a tA t

×

=  

where ( )ija t  is the differentiable function with respect 

to t and satisfies the following properties: 

(i) ( ) ( )
ij ji
a t a t=  for all t, , 1,2, , ;i j N= �  

(ii) When ,i j≠ ( ) 0
ij
a t >  for all t if and only if 

0.
ij
a >  Otherwise, ( ) 0

ij
a t =  for all t if and 

only if 0;
ij
a =  

(iii) The diagonal element 
1

( ) ( )
N

ii ijj j i
a t a t

= , ≠

= −∑  

which ensure that 
1

( ) 0
N

ijj
a t

=

=∑  for all t and 

1 2 .i N= , , ,�  

The corresponding time-varying non-delayed and 

fixed delayed coupling network model can be written as 

1

1

2

1

( ) ( ( ) ) ( ) ( )

( ) 1 2

N

i i ij j

j

N

ij j

j

x t f x t t c a t x t

c b x t i Nτ

=

=

= , + Γ

+ Γ − , = , , , .

∑

∑

�

�

 (13) 

According to the definition of aij(t), the topological 

structures of model (13) are same as model (1) and only 

non-delayed coupling weights are modified. Hence, we 

can design the adaptive update law to tune connective 

weights of non-delayed coupling network’s nodes. 
 

Remark 3: Similar to formation of non-delayed time-

varying coupling matrix A(t), we can also construct a 

delayed time-varying coupling matrix B(t). However, 

just like the delayed coupling is thought as 

desynchronizing factor in Remark 2, we also find that 

non-zero elements of time-varying delayed coupling will 

converge to zero with time evolution by numerical 

simulations. Due to the existence of time-delay, we have 

to consider only the adjustment of non-delayed coupling 

matrix. 
 

In what follows, the pinning strategy is introduced to 

realize the synchronization of network (13). Thus, the 

pinning controlled network is described by 

1

1

( ) ( ( ) ) ( ) ( )
N

i i ij j

j

x t f x t t c a t x t

=

= , + Γ∑�  

2

1

1

1

2

1

( ) ( ) 1 2

( ) ( ( ) ) ( ) ( )

( ) 1, , ,

N

ij j i

j

N

i i ij j

j

N

ij j

j

c b x t u t i l

x t f x t t c a t x t

c b x t i l N

τ

τ

=

=

=

+ Γ − + , = , , , ,

= , + Γ

+ Γ − , = +

∑

∑

∑

�

�

�

 (14) 

where the time-varying coupling weights ( ) 0
ij
a t >  

( )i j≠  is differentiable function, and ( )
i
u t  is the 

feedback controller. Substituting (2) into (13), we obtain 

the error network as follows: 

1

1

2

1

1

1

2

1

( ) ( ( ) ) ( ( ) ) ( ) ( )

( ) ( ) 1 2

( ) ( ( ) ) ( ( ) ) ( ) ( )

( ) 1

N

i i ij j

j

N

ij j i

j

N

i i ij j

j

N

ij j

j

e t f x t t f s t t c a t e t

c b e t u t i l

e t f x t t f s t t c a t e t

c b e t i l N

τ

τ

=

=

=

=

= , − , + Γ

+ Γ − + , = , , , ,

= , − , + Γ

+ Γ − , = + , , ,

∑

∑

∑

∑

�

�

�

�

 (15) 

where ( ) ( ) ( ).
i i
e t x t s t= −  For a special case where the 

information of delay τ is available, so we consider the 

delayed feedback controllers as follows: 

1 2
( ) ( ) ( )
i i i i i
u t c d e t c k e t τ= − Γ − Γ − ,  (16) 

where di, ki ( 1 2 )i l= , , ,�  are positive constants. Similar 

the delayed feedback technique had been used in [9]. 

For the time-varying coupling weight aij(t), we design 

the following distributed adaptive law: 

T( ) ( ( ) ( )) ( ( ) ( ))

(0) (0) 0 1 2

ij ij i j i j

ij ji

a t e t e t e t e t

a a i j i j N

σ= − Γ − ,

= ≥ , ≠ , , = , , , ,

�

�

 (17) 

where aij = aji are positive constants. 

 

Theorem 2: Suppose that Assumption 1 holds and Γ 

is a positive definite diagonal matrix, then the undirected 

complex network (14) is globally synchronized under the 

delayed feedback controllers (16) and distributed 

adaptive laws (17). 

 

Proof: Consider the Lyapunov functional candidate: 

2

T 1

1 1 1

T

1

( ( ) )1
( ) ( ) ( )

2 4

( ) ( ) ,

N N N
ij ij

i i

iji i j j i

N
t

i i
t

i

a t ac
V t e t e t

r e s e s ds
τ

σ
= = = , ≠

−

=

−
= +

+ Γ

∑ ∑ ∑

∑ ∫

 (18) 

where ( )
ij ji
a a i j= ≠  are nonnegative constants, and 

0
ij
a =  if and only if ( ) 0,

ij
a t = r  is positive constant 

to be determined. 

The derivative of V(t) along the trajectories of (15) 

obtains that 
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T

1

( ) ( )[ ( ( ) ) ( ( ) )
N

i i

i

V t e t f x t t f s t t

=

= , − ,∑�  

 

1 2

1 1

T T

1 2

1 1

1

1 1

T

T T

1

( ) ( ) ( )]

( ) ( ) ( ) ( )

( ( ) )( ( )
2

( )) ( ( ) ( ))

( ) ( ) ( ) ( ) .

N N

ij j ij j

j j

l l

i i i i i i

i i

N N

ij ij i

i j j i

j i j

N

i i i i

i

c a t e t c b e t

c d e t e t c k e t e t

c
a t a e t

e t e t e t

r e t e t e t e t

τ

τ

τ τ

= =

= =

= = , ≠

=

+ Γ + Γ −

− Γ − Γ −

+ −

− Γ −

⎡ ⎤+ Γ − − Γ −⎣ ⎦

∑ ∑

∑ ∑

∑ ∑

∑

(19) 

From Assumption 1, one has 

T

1

T T

1 1

( )[ ( ( ) ) ( ( ) )]

( ) ( ) ( ) ( )

N

i i

i

N N

i i i i

i i

e t f x t t f s t t

e t e t e t H e tη

=

= =

, − ,

≤ − + Γ .

∑

∑ ∑

 (20) 

Constructing a Laplace matrix ( )
ij N N

A a
×

=  with 
ii
a =  

1
,

N

ijj j i
a

= , ≠

−∑  one obtains 

T

1 1

T

1 1

( ( ) )( ( ) ( )) ( ( ) ( ))

2 ( ( ) ) ( ) ( )

N N

ij ij i j i j

i j j i

N N

ij ij i j

i j

a t a e t e t e t e t

a t a e t e t

= = , ≠

= =

− − Γ −

= − − Γ .

∑ ∑

∑∑

 (21) 

Combining (19)-(21), it follows that 

T T

1 1

T

1

1 1

T

2

1 1

T T

1 2

1 1

T T

1

T

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )(

N N

i i i i

i i

N N

ij i j

i j

N N

ij i j

i j

l l

i i i i i i

i i

N

i i i i

i

N

V t e t e t e t H e t

c a e t e t

c b e t e t

c d e t e t c k e t e t

r e t e t e t e t

e t I I

η

τ

τ

τ τ

η

= =

= =

= =

= =

=

≤ − + Γ

+ Γ

+ Γ −

− Γ − Γ −

⎡ ⎤+ Γ − − Γ −⎣ ⎦

= − ⊗

∑ ∑

∑∑

∑∑

∑ ∑

∑

�

T

1

T

2

T

) ( ) ( )[ ( )

( ) ( )] ( )

( )[( ) ] ( )

( )( ) ( ),

n N

N

N

e t e t I H

c A D r I e t

c e t B K e t

re t I e t

τ

τ τ

+ ⊗ Γ

+ − ⊗Γ + ⊗Γ

+ − ⊗Γ −

− − ⊗Γ −

 

where T T T T

1 2
( ) ( ( ) ( ) ( )) ,

N
e t e t e t e t= , , ,�  and 

1 2
diag( , , , ,0, ,0),

l
D d d d= � �  

1 2
diag( , , , ,0, ,0).

l
K k k k= � �  

In the following, we can employ the similar steps as in 

Theorem 1 to complete the proof, so we omit it.    � 

Remark 4: In the fixed coupling strengths and 

topological structures of network (14), the non-delayed 

coupling weights can be tuned slightly to achieve 

synchronization. It is noted that the delayed information 

should be fully available. Hence, by introducing the 

delayed feedback controllers, the pinning feedback gains 

can be lower than ones only using memoryless state-

feedback controllers. 

 

5. NUMERICAL SIMULATION 

 

In this section, we provide two simulation examples to 

verify the theoretical analysis. In our simulation 

examples, small-world and scale-free complex networks 

are applied to guarantee connectivity in the designed 

network. Here, we consider the complex dynamical 

network (1) that consists of N identical Chen system. 

Denote the state of the i-th node by 
1 2 3

( , , ),
i i i i
x x x x=  

then the individual node dynamics are represented as: 

1 2 1

2 1 1 3 2

3 1 2 3

35( )

7 28

3

i i i

i i i i i

i i i i

x x x

x x x x x

x x x x

= − ,⎧
⎪

= − − + ,⎨
⎪ = − ,⎩

�

�

�

 

which has a chaotic attractor (See Fig. 1). In [10], Chen 

system has been verified to satisfy Assumption 1. 

 

5.1. Distributed adaptive coupling strength 

In this subsection, we investigate the global synchroni-

zation of the pinning controlled network (4) with 100 

Chen oscillators, where 5 adaptive pinning controllers 

are used and inner coupling matrix diag(1 2 1).Γ = , ,  The 

non-delayed coupling network is presented by a BA 

network where 100N = ,
0

2,m m= =  which contains 

about 200 connections (See Fig. 2). The delayed 

coupling network is described by a WS network where 

100N = , 0 05p = .  (See Fig. 3). The parameters are set 

as 0.5,τ =
2

2,c = 0.2,σ =
1 5

0.16,α α= = =�  and 

initial conditions are totally randomly chosen between 0 

and 3. According to Fig. 4 and Fig. 5, synchronization is 

00 

 

Fig. 1. The chaotic trajectories of the Chen system on 

plane x1 – x3. 
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Fig. 2. A scale-free network contains 100 nodes. 

 

 

Fig. 3. A small-world network contains 100 nodes. 

 

 
(a) 

 
(b) 

Fig. 4. (a) States of adaptive feedback gains di (t) of 

network (5), i = 1, 2, …5; (b) States of adaptive 

coupling strength c1(t) of network (5). 

 
(a) 

 
(b) 

   
(c) 

Fig. 5. Synchronization errors 1( ),i
e t 2 ( ),i

e t 3( )i
e t  of 

network (5) with τ = 0.5, i = 1, 2, …,100. 

 

asymptotically achieved, the adaptive coupling strength 

and feedback gains of pinning controller asymptotically 

converge to constant values. 

 

5.2. Distributed adaptive coupling weights 

In this case, the pinning synchronization of network 

(14) with 50 Chen oscillators is considered, where 3 

delayed feedback pinning controllers are utilized and 

diag(1 2 1).Γ = , ,  On the basis of a WS random network 

(N = 50, p = 0.03) which contains about 100 connections, 

we generate the time-varying non-delayed coupling 

configuration matrix A(t) according to the explanation of 

A(t) in Section 4. The delay coupling network is 

described by a BA network ( 50,N =
0

2)m m= =  which 

also contains about 100 connections. The parameters of 

network (14) is given by 
1

125,c =
2

2,c = 0.5.τ =  For 

connected node i and j, 0.05,
ij ji

σ σ= = (0) (0)
ij ji
a a=  

1.=  The feedback gains di and ki of pinning controllers 

can be chosen as arbitrary positive real numbers. In this 
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simulation, we set them as 
1

8.016,d =
2

9.145,d =
3

d =  

6.845,
1

6.877,k =
2

7.919,k =
3

8.413.k =  The rests of 

initial conditions are taken randomly between 0 and 3. 

As displayed in Figs. 6 and 7, global synchronization is 

realized and coupling weights of non-delayed coupling 

network converge to steady-state value that are slightly 

higher than their initial value 1. 

6. CONCLUSIONS 

 

In this paper, two kinds of the distributed adaptive 

control schemes for pinning synchronization in the 

undirected complex networks with delayed and non-

delayed coupling are proposed. For the first control 

scheme, the coupling strength and feedback gains can be 

adjusted simultaneously to achieve synchronization. It is 

noted that the delay information is available, the second 

pinning scheme that the coupling weights are adaptively 

tuned via delayed feedback controllers is represented. 

Finally, two numerical examples are designed to 

illustrate the validity and effectiveness of established 

theory. The simulations indicate that above theoretic 

results can be applied to realize synchronization in large-

scale networks. 
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