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Abstract: This paper deals with the issues of sensor fault estimation, actuator fault detection and isola-

tion for a class of uncertain nonlinear systems. By taking the sensor fault vector as a part of an ex-

tended state vector, the original system with sensor faults, actuator faults and unknown inputs is trans-

formed into an augmented singular system which is just with actuator faults and unknown inputs. For 

the constructed singular system, a robust sliding-mode observer is developed to simultaneously esti-

mate the states and sensor faults of original system, and the observer gain matrices are computed in 

terms of linear matrix inequalities by solving an optimization problem. Then an actuator fault detector 

is designed to detect actuator faults when ones occur, and multiple observers used as actuator fault iso-

lators are proposed to identify which actuator is with fault. Finally, a simulation example is given to il-

lustrate the effectiveness of the proposed methods. 

 

Keywords: Fault detection and isolation, fault estimation, linear matrix inequality, nonlinear system, 

sliding-mode observer. 

 

1. INTRODUCTION 

 

The field of fault diagnosis for dynamic systems has 

become an important topic of research in the past three 

decades. Any faults in actuators and/or sensors may 

cause performance degradation or a fatal accident. For 

example, faulty actuators may severely affect the overall 

system performance. Similarly, faulty sensors give 

wrong information about the system status and make the 

system be unstable. Among various fault detection and 

isolation (FDI) schemes [1-7], the observer-based 

approaches exploit analytic redundancy and use a 

mathematic model of the system to design an observer 

generating residual signals that provide fault signatures, 

and the observer residuals are nonzero when there are 

some failures in the systems and become zero or close to 

zero when there is no failure. In sliding mode observer-

based FDI [8-14], Edwards et al. consider the application 

of a particular sliding mode observer to the problem of 

fault detection and isolation based on the equivalent 

output injection concept [8]. Later, Tan and Edwards 

seek to relax that the first Markov parameter from the 

fault to the output must be full rank by using multiple 

sliding mode observers in cascade [9]. Chen and Saif 

develop an actuator fault diagnosis scheme for a general 

class of linear systems subject to unknown inputs that 

can work without the assumptions on fault diagnosis 

strategies, and a method which can be used to estimate 

the faults is proposed [10]. Next, an actuator fault 

diagnosis scheme is proposed by Chen and Saif for a 

class of affine nonlinear systems with both known and 

unknown inputs based on the input/output relation 

derived from the considered nonlinear systems and high-

order sliding-mode robust differentiators [11]. Veluvolu 

and Soh consider the design of sliding mode observers 

for fault reconstruction and state estimations, and the 

reconstruction can be performed online with the state 

estimation [12]. A robust high gain observer which can 

estimate the states and unknown inputs/faults is 

developed for a special class of nonlinear systems [13]. 

Raoufi et al. present a scheme to design robust sliding 

mode observer with H
∞
 performance for uncertain 

Lipschitz nonlinear systems where both faults and 

disturbances are considered [14]. In the adaptive 

observer-based FDI [15-20], Wang et al. propose a kind 

of adaptive fault estimation observer by exploiting the 

on-line learning ability of radial basis function neural 

networks to approximate the actuator fault [15]. Zhang et 

al. develop a fault detection and isolation scheme by 

using adaptive estimation techniques for a class of 

Lipschitz nonlinear systems with nonlinear and 

unstructured modeling uncertainty [16]. Later, Zhang 

presents a sensor bias fault diagnosis method for a class 

of Lipschitz nonlinear systems with unstructured 
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modeling uncertainty in [17]. Wang and Lum provide an 

adaptive unknown input observer to detect and isolate 

aircraft actuator faults [18]. Zhang et al. study the 

problem of fault estimation using adaptive fault 

diagnosis observer, and a fast adaptive fault estimation 

approximator is proposed to improve the rapidity of fault 

estimation [19]. Li and Yang address the adaptive fault 

detection and isolation problem for linear time-invariant 

systems under feedback control [20]. In the descriptor 

observer-based FDI [21,22], paper [21] develops a robust 

H
∞
 sliding mode descriptor observer for simultaneous 

state and disturbance estimation. Gao and Ding propose a 

robust state-space observer to simultaneously estimate 

descriptor system states, actuator faults, their finite time 

derivatives, and attenuate input disturbances in any 

desired accuracy [22]. Nevertheless, most work has dealt 

with the actuator faults without considering sensor faults 

[4-6,8-15,18-20,22,25], or sensor faults without con-

sidering actuator faults [17]. Many works consider both 

actuator faults and sensor faults with the same form [2-3].  

In the present paper, we discuss not only the sensor 

fault estimation but also actuator fault detection and 

isolation for a class of uncertain nonlinear systems with 

unknown input, actuator and sensor faults. First, the 

sensor fault is regarded as a part of new augmented state 

vector and a new singular system is constructed. Next, a 

robust sliding mode observer for singular system is 

proposed such that states and sensor faults of original 

system are estimated. Second, a robust sliding mode 

observer is developed as fault detector to detect actuator 

faults. Finally, multiple observers are designed to detect 

each actuator fault and the purpose of the actuator fault 

isolation is realized. In the existing literature, papers [2] 

and [5] use parity space approach to detect and isolation 

faults for discrete system and the equivalent output 

injection technique is adopt to reconstruct fault signals in 

[8-9], while this paper designs roust singular observer 

and multiple robust observers so that the issues of sensor 

fault estimation, actuator fault detection and isolation are 

simultaneously achieved.  

The rest of this paper is organized as follows: A 

general model and some preliminaries are presented in 

Section 2, and a singular system is constructed by 

augmenting the state and sensor fault vectors as a new 

state vector. A robust sliding mode observer is developed 

to provide the sensor fault estimation in Section 3. Then, 

a similar robust sliding mode observer used as actuator 

fault detector is proposed to detect actuator faults, and 

multiple observers are used to isolate actuator faults in 

Section4. Simulation results are given in Section 5. In 

Section 6, some conclusions are summarized.  

 

2. GENERAL MODEL AND PRELIMINARIES 

 

Consider a class of uncertain nonlinear systems 

subject to simultaneous actuator and sensor faults as 

follows: 

( , ) ,

,

a a

s s

x Ax Bu E x t F f D

y Cx F f

η= + + Φ + +⎧
⎨

= +⎩

�

 (1) 

where ,

n

x∈� ,

p
y∈�

m

u∈�  and k
η ∈�  are the 

state, output, known (measurable) input, and unknown 

input (or modeling uncertainties) vectors, respectively. 
a
n

af ∈�  and s
n

s
f ∈�  stand for the actuator and 

sensor fault vectors, respectively. The sensor fault fs is a 

continuous differentiable function and can be in many 

forms, such as constant, time varying, even unbounded. 

The function ( ) fnn

x t
+

Φ , : × →� � �  is the nonlinear 

term and it is assumed to be continuous. Matrices A, B, C, 

D, E, Fa and Fs are known with appropriate dimensions. 

Without loss of generality, it is assumed that the output 

matrix C is a full-row rank matrix, the distribution 

matrices [ ]aH F D=  and Fs are all full-column rank 

matrices, and n p q≥ ≥  and .a sq n n k= + +  

 

Assumption 1: The nonlinear function vector ( )x tΦ ,  

satisfies Lipschitz conditions, i.e., 

ˆ( , ) ( , )x t x tΦ −Φ ≤ ˆ ,fL x x−    ˆ, ,
n

x x∀ ∈�  

where Lf is the Lipschitz constant. 

Assumption 2: For every complex number s with 

nonnegative real part, the rank condition 

0
rank

0
s

sI A H
n q

C F

−⎡ ⎤
= +⎢ ⎥

⎣ ⎦
 (2) 

holds. 

Assumption 3: The actuator fault fa and unknown 

input η are all bounded in norm. Specially, there exist 

positive scalars μ1, μ2 and μ3 such that 
1
,ϕ μ≤� � η� �  

2
µ≤  and 

3a
f µ≤� �  hold, where [ ] .

T TT
a
fϕ η=  

If an augmented state vector [ ]
T TT

s
z x f=  which 

can deal with the sensor fault fs is introduced, then we 

obtain the following augmented singular system 

( , ) ,

,

s a a

s

Mz A z Bu E x t F f D

y C z

η= + + Φ + +⎧
⎨

=⎩

�

 (3) 

where [ 0 ],
s

n n n
M I

×
= [ 0 ]

s
s n n

A A
×

=  and 
s

C =  

[ ].
s

C F  If a new matrix is set as 

0
,s

n n n

s s

IM
W

C C F

×
⎡ ⎤⎡ ⎤

= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

 

then it is easy to check that W is a full-column matrix 

since F
s
 is full-column rank matrix. So, there exist 

matrices 
( )

s
n n n

U
+ ×

∈�  and 
( )

s
n n p

V
+ ×

∈�  such that 

[ ] [ ]
s

s n n

s

M
U V W U V UM VC I

C
+

⎡ ⎤
= = + =⎢ ⎥

⎣ ⎦
 (4) 

holds and is with a general solution given by 

[ ] ( ),
n p

U V W I WW
+ +

+
= + Γ −  

where Γ is an arbitrary ( ) ( )
s

n n n p+ × +  matrix, and 
1

.( )
TTW WW W

−+
=  ( )

n p
I WW

+

+
Γ −  represents the 

freedom left in [ ]U V  after satisfying [ ]U V W =  

.

s
n n
I

+
 Specially, a special solution of (4) is given as 
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follows: 

1 1

1

[ ] ( )( )

.( )
0

s

T

T TT

s

T

n
T

T

n n s

M
U V W W WW W

C

I C

W W
F

− −

−

×

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

 

So, we can obtain that 

1
,( )

0
s

n
T

n n

I
U W W

−

×

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
  

1
.( )

T

T

T
s

C
V W W

F

−

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
 

Lemma 1: The triple { , , }
s s

UA C UH  is minimum 

phase, i.e., the invariant zeros of the triple { , ,
s s

UA C  

}UH  are all in the open left-hand complex plant, or 

rank
0

s

s

sI UA UH
n q

C

−⎡ ⎤
= +⎢ ⎥

⎣ ⎦
 (5) 

holds for every complex number s with nonnegative real 

part if and only if (2) holds for every complex number s 

with nonnegative real part. 
 

Proof: For every complex number s with nonnegative 

real part, if we set matrices 

1

1

0( )
,

0

T

p

W W

I

−⎡ ⎤
Π = ⎢ ⎥

⎢ ⎥⎣ ⎦

  
2

0

0 ,

0 0

s

T
n

T
sn

p

I sC

I sF

I

⎡ ⎤−
⎢ ⎥

Π = −⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

3
,

T T

n s

TT
s s s

sI sC C A sC F

sF C sF F

⎡ ⎤+ −
Π = ⎢ ⎥

⎢ ⎥⎣ ⎦
 

then there is 

rank
0

s

s

sI UA UH

C

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 

1

( )
rank 0 0

0

sT

s

A H
s W W

C

⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤
−⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥= Π ⎣ ⎦ ⎣ ⎦⎜ ⎟⎢ ⎥

⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

 

( )
rank 0 0

0

sT

s

A H
s W W

C

⎡ ⎤⎡ ⎤ ⎡ ⎤
−⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎣ ⎦ ⎣ ⎦⎢ ⎥

⎢ ⎥⎣ ⎦

 

and 

0 0
( )

.

T

n nT

s s

T T

n s

T T

s s s

I I
s W W s

C F C F

I C C C F
s

F C F F

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎡ ⎤+
= ⎢ ⎥

⎢ ⎥⎣ ⎦

 

Thus, the following rank equation can be obtained 

rank
0

s

s

sI UA UH

C

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 

3
( )0rank

[ ] 0

s s
n q n

s

H

C F

× −

⎡ ⎤⎡ ⎤
Π⎢ ⎥⎢ ⎥

= ⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦

 

3
( )2

0rank

0

s s
n q n

s

H

C F

× −

⎛ ⎞⎡ ⎤⎡ ⎤
⎜ ⎟Π⎢ ⎥⎢ ⎥

= Π⎜ ⎟⎢ ⎥⎣ ⎦
⎜ ⎟⎢ ⎥⎜ ⎟

⎣ ⎦⎝ ⎠

 

0

rank 0 0 0

0

n

s

sI A H

C F

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

0
rank .

0

n

s

sI A H

C F

−⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

From the above rank equation, one can deduces that (5) 

holds for every complex number s with nonnegative real 

part if and only if (2) holds for every complex number s 

with nonnegative real part.          � 
 

Assumption 4: For the triple { , , },
s s

UA C UH  the 

matrix (UH) is full-column rank, and the following rank 

condition 

rank( ) rank( )
s

C UH UH=  

holds. 
 

Remark 1: The rank conditions (2) in Assumption 2 

together with Assumption 4 are the sufficient and 

necessary conditions of unknown input observer design 

which can be found in the paper [23]. The first condition, 

the equation (2), is a natural one and assumption 4 is 

strict for unknown input observer design, and some 

approaches are proposed to deal with the assumption 4, 

please see the papers [26] and [27]. 
 

Lemma 2 [23]: Assumptions 2 and 4 hold if and only 

if for some symmetric positive definite matrix Q∈  
( ) ( )

,
s s

n n n n+ × +

�  there exist matrices 
( )

,
s

n n sp

L
+

∈�  G =  
( )

1 2[ ] s
T q n pT TG G

− ×

∈�  and a symmetric positive 

definite matrix 
( ) ( )

s s
n n n n

P
+ × +

∈�  such that 

( ) ( )

( )

T

s s s s

T

s

UA LC P P UA LC Q

P GCUH

⎧ − + − = −⎪
⎨

=⎪⎩

 (6) 

hold, where 
1

a
n p

G
×

∈�  and 
2

.

k p
G

×

∈�  
 

Remark 2: The paper [23] discussed the way of 

finding the matrices L, G and P satisfying (6) in detail. A 

computing way of them by solving the following 

optimization problem with LMI constraint is given as 

follows: 

min

( ) ( ( ) ) 0

( )
0

( )( )

T

s s s s

T

s

T T

s

P I

P UA C P UA C

I P GCUH

P GC IUH

δ

δ

δ

⎧
⎪ >⎪
⎪ + Γ + +Γ <⎨
⎪⎡ ⎤−⎪ >⎢ ⎥
⎪ −⎢ ⎥⎣ ⎦⎩

 (7) 
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and 1
.L P

−

= − Γ  
 

Lemma 3 [24]: Let X and Y be two real constant 

matrices of appropriate dimensions, then the following 

inequality 

1T T T T
X Y Y X X X Y Yν

ν

+ ≤ +  

holds for any scalar 0.ν >  

 

3. SENSOR FAULT ESTIMATION BASED ON 

ROBUST SLIDING-MODE OBSERVER 

 

In this section, a robust sliding-mode observer is 

proposed to estimate the states of augmented singular 

system (3), and the sensor faults of original system (1) 

can also simultaneously estimated since the states of 

augmented singular system (3) consist of the states and 

sensor fault vectors of system (1). 

For the augmented singular system (3), we consider 

the following robust sliding-mode observer which is used 

to estimate the states of system (3) 

( ) ( )1 1
ˆ ˆ, , , ,

ˆ ,

N L y UBu UE x t y z t

z Vy

ξ ξ δ

ξ

⎧ = + + + Φ +⎪
⎨

= +⎪⎩

�

 (8) 

where ,
s s

N UA LC= −
1

,L L NV= +  and matrix L is an 

observer gain which will be determined later. A sliding-

mode control law is given as 

( )
( ) ( )

( )
1 1

ˆ
ˆ, , ,

ˆ

s

s

UH G y C z
y z t

G y C z
δ σ

−

=

−

 (9) 

where 
1

σ  is a positive scalar and is selected to be large 

enough to satisfy 
1 1

.σ μ>  
 

Theorem 1: Under Assumptions 1~4, the observer 

system (8) with sliding-mode control law (9) is able to 

asymptotically estimate the states of singular system (3) 

if the equation (6) and the following inequality 

2

( )

0( )
0

1
0

T

T

f

P UE T

P IUE

T I

L

ν

ν

⎡ ⎤Λ
⎢ ⎥

−⎢ ⎥
<⎢ ⎥

⎢ ⎥−
⎢ ⎥
⎣ ⎦

 (10) 

holds for any scalar 0,ν >  where ( )T
s s

UA LC PΛ = −  

( ).
s s

P UA LC+ −  

Proof: If the state error is set as ˆ,e z z= −  then the 

error dynamics between systems (3) and (8) can be 

obtained as follows: 

1

1

1

1

ˆ ( )

( , )

ˆ ˆ( , ) ( , , )

( , )

ˆ ˆ( , ) ( , , )

ˆ( , ) ( )

s

s a a

s

s

e z z z Vy I VC z UMz

UA z UE x t UF f UD N L y

UE x t y z t

UA z UE x t UH N L y

UE x t y z t

UA z UE x t UH N z Vy

ξ ξ ξ

η ξ

δ

ϕ ξ

δ

ϕ

= − = − − = − − = −

= + Φ + + − −

− Φ −

= + Φ + − −

− Φ −

= + Φ + − −

� � � �

� �� � � �

 

1 1

1 1

1

1

ˆ ˆ( , ) ( , , )

( , ) ( )

ˆ ˆ( , ) ( , , )

( )

ˆ( , , ),

s

s s s

L y UE x t y z t

UA z UE x t UH N z e Vy

L y UE x t y z t

Ne UA N NVC L C z UE

UH y z t

δ

ϕ

δ

ϕ δ

− − Φ −

= + Φ + − − −

− − Φ −

= + − + − + Φ

+ −

�

 

where ˆ( , ) ( , )x t x tΦ = Φ −Φ�  and [ ] .
T TT
a
fϕ η=  So we 

obtain 

( )1
ˆ, ,e Ne UE UH y z tϕ δ= + Φ+ −

�

�  (11) 

since 
s s

N UA LC= −  and 
1
L L NV= +  hold. 

Consider the Lyapunov function candidate 
L

V =  

,

T
e Pe  the derivative of VL along (11) is 

1

(( ) ( ))

( ) ( ) 2 ( )

ˆ2 ( , , ).

TT

L s s s s

T T T T

T

V e UA LC P P UA LC e

e P UE UE Pe e P UH

e P y z t

ϕ

δ

= − + −

+ Φ+Φ +

−

�

� �  (12) 

Based on the second equation of (6), we have 

1

2 ( ) 2

2 2 .

T T T T

s

s s

e P UH e C G

GC e GC e

ϕ ϕ

ϕ μ

=

≤ ≤

 (13) 

Form the sliding-mode control law (9), there is 

( )
( ) ( )

( )

( )

( )

1 1

1

1

ˆ
ˆ2 , , 2

ˆ

ˆ
2

ˆ

2 .

T

sT

s

T T T

s s

s

s

e P UH G y C z

e P y z t

G y C z

e C G G y C z

G y C z

GC e

δ σ

σ

σ

−

− = −

−

−

= −

−

= −

 (14) 

Consider the Lipschitz condition in Assumption 1, the 

following inequality 

( ) ( )

( )

ˆ ˆ, ,

ˆ

f

f f

x t x t L x x

L T z z L Te

Φ = Φ −Φ ≤ −

= − =

�

 

holds since [ ] ,
T TT

s
z x f=  where [ 0 ].

s
n n n

T I
×

=  The 

above inequality can be written as the equivalent form to 

2T T T
fL e T TeΦ Φ ≤ .� �  (15) 

Based on Lemma 3 and (15), one can obtain 

2

( ) ( )

1
( )( )

1
( ) .( )

TT T

TT T

TT T T
f

e P UE PeUE

e P UE PeUE

L e T Te e P UE PeUE

ν

ν

ν

ν

Φ+Φ

≤ Φ Φ+

≤ +

� �

� �  (16) 

Equations (12)~(14) and (16) together yields 

2

1 1

(( ) ( ))

1
( )( )

2( ) .

TT
L s s s s

T T T T
f

s

V e UA LC P P UA LC e

L e T Te e P UE UE Pe

GC e

ν
ν

μ σ

≤ − + −

+ +

+ −

�
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Thus, if one sets ( ) ( ),T

s s s s
UA LC P P UA LCΛ = − + −  

then there is 

2 1
( )( )T T T

L fV e L T T P UE UE P eν

ν

⎛ ⎞
< Λ + +⎜ ⎟

⎝ ⎠
�  

since 
1 1

.σ μ>  By applying Schur complement to the 

matrix inequality (10), there is 0.
L

V <
�  So, the equilib-

rium point of zero of the observer error dynamics system 

(11) is asymptotically stable.         � 

 

Theorem 1 provides a LMI solution to the nonlinear 

robust sliding-mode observer (8). Since the algebraic 

equation (6) can be solved by the optimization problem 

(7) with LMI constraint, so we can derive the following 

Corollary 1 from (7) and (10) based on the well-known 

Schur complement Lemma. 

 

Corollary 1: Under Assumptions 1~4, the observer 

system (8) exists if the following optimization problem 

with LMI constraint 

( )

2

min

( )

0( )
0

1
0

( )
0

( )

T

T

f

T
s

T
T

s

P I

P UE T

P IUE

T I

L

I P GCUH

P GC IUH

δ

ν

ν

δ

δ

⎧
⎪ >⎪
⎪⎡ ⎤Ω
⎪⎢ ⎥
⎪ −⎢ ⎥

<⎪⎢ ⎥⎨⎢ ⎥−⎪⎢ ⎥⎪⎣ ⎦
⎪
⎡ ⎤−⎪
⎢ ⎥ >⎪
⎢ ⎥⎪ −⎢ ⎥⎣ ⎦⎩

 (17) 

is feasible for any scalar 0,ν >  and gain matrix L =  
1
,P

−

− Γ  where ( ) ( ( ) ) .T
s s s s

P UA C P UA CΩ = +Γ + + Γ  

After the estimated state ẑ  is derived from the robust 

sliding-mode observer (8), it is easy to obtain that the 

estimated state x̂  and sensor fault ˆ
s
f  are described as 

ˆ ˆ[ 0 ] ,
s

n n n
x I z

×
=   ˆ ˆ[0 ]

s s
s n n n
f I z

×
=  (18) 

since the fact that ˆˆˆ [ ] .T T T

s
z x f=  

 

4. ACTUATOR FAULT DETECTION AND 

ISOLATION 

 

The robust observer design methods of the previous 

section simultaneously provide the estimations of both 

the states and sensor faults of original system (1). 

However, the actuator faults and unknown inputs are 

eliminated by designing the robust sliding-mode control 

law (9). That is to say, the observer (8) is robust to 

actuator faults and unknown inputs, which makes the 

detection and isolation of actuator faults to be difficult. 

In this section, the detectors and isolators of actuator 

faults are developed based on the sliding-mode technique. 

 

Theorem 2: Under Assumptions 1~4, if there is 

without actuator faults ( fa = 0), the observer system (19) 

with sliding-mode control law (20) is able to 

asymptotically estimate the states of singular system (3). 

11 1 1 2

1 1

ˆ( , ) ( , , ),ˆ

ˆ ,

N L y UBu UE x t y tz

z Vy

ξ ξ δ

ξ

⎧ = + + + Φ +⎪
⎨

= +⎪⎩

�

 (19) 

where ,
s s

N UA LC= −
1

,L L NV= +  and matrix L is an 

observer gain which will be determined later. A sliding-

mode control law is given as 

( )
( ) ( )

( )
2 1

2 1 2

2 1

ˆ
ˆ, , ,

ˆ

s

s

UD G y C z
y z t

G y C z
δ σ

−

=

−

 (20) 

where 
2

σ  is a positive scalar and is selected to be large 

enough to satisfy 
2 2

.σ μ>  

Proof: If there is without actuator faults ( f
a
 = 0), then 

the error dynamics between systems (3) and (19) can be 

obtained by the similar way to Theorem 1 as follows 

( )1 1 2 1̂
, , ,e Ne UE UD y z tη δ= + Φ+ −

�

�  

where 
1 1

ˆe z z= −  is the observer error. Note that 

( ) 21 1

2 1 2 2 1

2 2

2 2

T T T T

s

s s

e P UD e C G

G C e G C e

η η

η μ

=

≤ ≤

 

and 

( )
( ) ( )

( )

( )

( )

1 2 1

1 2 1 2

2 1

1 2 2 1

2

2 1

2 2 1

ˆ
ˆ2 , , 2

ˆ

ˆ
2

ˆ

2 ,

T

sT

s

T T T

s s

s

s

e P UD G y C z

e P y z t

G y C z

e C G G y C z

G y C z

G C e

δ σ

σ

σ

−

− = −

−

−

= −

−

= −

 

it is easy to derive the following proof of Theorem 2 

from that of Theorem 1.           � 
 

In this paper, na adaptive robust sliding-mode 

observers whose numbers equal to ones of actuator 

components are developed to isolate the actuator fault fa 

based on multi-observer idea, while the unknown input η 

is eliminated by designing sliding-mode control law. In 

fact, we assume that the distribution matrices of actuator 

fault vector and unknown input vector are column linear 

independent, which means that the filter direction of the 

actuator fault is different from that of the unknown input. 

So, the sliding-mode control law (20) just affects 

unknown input η, and the observer output error 

1
ˆ

out s
e y C z= −  is with robust character to unknown 

input η instead of actuator fault fa. Thus, eout is sensitive 

to actuator faults, and will asymptotically approach to 

zero or the small neighborhood of zero when fa = 0. So 

the robust sliding-mode observer (19) with sliding mode 

control law (20) can be regarded as an actuator fault 

detector, and the decision logic for actuator fault 

detection is described as 

actuator fault free
( )

actuator fault occur,

out

a

out

e
J t

e

⎧ ≤ Θ,⎪
= ⎨

> Θ,⎪⎩
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where Θ is a fixed threshold selected to be a little larger 

than the maximum residual when the system is without 

actuator fault, one can determine whether the system is 

affected by actuator faults or not. 

Although the proposed actuator fault detector (19) can 

alert us to the occurrence of the actuator faults when at 

least one actuator fault occurs, it can neither tell which 

actuator is with fault, nor point out when an actuator is 

with fault. To overcome these drawbacks, the multi-

observer idea has been considered [25]. Next, na adaptive 

robust sliding-mode observers which can isolate actuator 

faults will be designed. The observer output error of τ th 

observer is just impacted by τ th actuator fault, but it is 

not impacted by the unknown input and other actuator 

faults, where 1,2, , .
a
nτ = �  

If we introduce the following matrices or vectors 

,1 , 1 , 1 ,,

,

a

T

a a a a na
f f f ff

τ ττ − +

⎡ ⎤′ = ⎣ ⎦� �  

1 1 1
,

a
a a a a a n

F F F FF τ τ τ, , , − , + ,
⎡ ⎤=′ ⎣ ⎦� �  

11 1 1 1 1 1
,

a

T
T T TT

a n
G G G GG τ τ τ, , , − , + ,
⎡ ⎤=′ ⎣ ⎦� �  

where 1,2, , ,
a
nτ = �  and ,

a
f

τ, a
F

τ,
 and 

1
G

τ,
 are the 

τ th actuator fault of f
a
, the τ th column vector of F

a
 and 

the τ th row vector of G1, respectively. 
 

Theorem 3: Under Assumption 1~4, for τ th actuator 

fault ( 1, 2, , ),
a
nτ = �  one can construct the following 

robust sliding-mode observer 

( )

( ) ( )
1

1 2

ˆ,

ˆ ˆ, , , , ,

ˆ ,

a a

a a

a a

N L y UBu UE x t

y z t y z t

z Vy

τ τ

τ τ τ τ

τ τ

ξ ξ

δ δ

ξ

⎧ = + + + Φ
⎪⎪

+ +⎨
⎪ = +⎪⎩

�

 (21) 

with sliding-mode control law 

( )
( ) ( )

( )
2

1 1

2

ˆ

ˆ

ˆ

s a

a

s a

UD G y C z
y z t

G y C z

τ

τ τ τ

τ

δ σ
−

, , = ,

−

 

( )
( ) ( )

2 2

ˆ
ˆ ,

ˆ( ) ,

a a s a

a

a s a

U y C zGF
y z t

y C z tG

τ τ τ

τ τ τ

τ τ

δ σ
, ,

,

−′′
, , =

−′
 

where σ
τ1 and σ

τ2 are all positive scalars and are selected 

to be large enough to satisfy 
1 2τ

σ μ>  and 
2 3

.

τ
σ μ>  

 

Proof: When the τ th actuator is without fault, the 

system (3) is equivalent to 

, ,

( , ) ,

.

s a a

s

Mz A z Bu E x t F Df

y C z

τ τ
η′ ′= + + Φ + +⎧⎪

⎨
=⎪⎩

�

 (22) 

The error dynamic equation between (21) and (22) can 

be written as 

( ) ( )

, ,

1 2ˆ ˆ, , , , ,

a a

a a

e Ne UE UD UF f

y z t y z t

τ τ τ τ

τ τ τ τ

η

δ δ

′ ′= + Φ+ +

− −

�

�

 

where ˆ .
a a
e z z

τ τ
= −  Consider the Lyapunov function 

T

a a a
V e Pe

τ τ τ
=  and notice that 

( ) 2 2 2
2 2 2 ,

T

a s a s a
e P UD G C e G C e

τ τ τ
η η μ≤ ≤  

( )2 2
T T T T

a a a s aa a
e P UF e C Gf f

τ τ τ ττ τ, ,, ,

′ ′′ ′=  

3
2 2 ,

a s a a s aa
G C e G C ef

τ τ τ ττ
μ

, ,,

′ ′′≤ ≤  

( )
( ) ( )

( )
2

1 1

2

ˆ
ˆ2 2

ˆ

T

a s aT

a

s a

e P UD G y C z

e P y z t

G y C z

τ τ

τ τ τ

τ

δ σ
−

− , , = −

−

 

( )

( )
2 2

1 1 2

2

ˆ
2 2

ˆ

T T T

a s s a

s a

s a

e C G G y C z

G C e

G y C z

τ τ

τ τ τ

τ

σ σ

−

= − = −

−

 

and 

( )2
ˆ2

T

a a
e P y z t

τ τ τ
δ− , ,  

( ) ( )

( )

2

2

2

ˆ

2
ˆ

T

a a s a

s a

e P UF G y C z

G y C z

τ τ τ τ

τ

τ τ

σ

, ,

,

′ ′ −

= −

′ −

 

( )

( )
2

2

2

ˆ
2

ˆ

T T T

a s a s a

s a

e C G G y C z

G y C z

τ τ τ τ

τ

τ τ

σ
, ,

,

′ ′ −
= −

′ −
 

2 2
2 ,

s a
G C e

τ τ τ
σ

,

′= −  

the following proof is similar to that of Theorem 1.   � 

 

The robust sliding-mode observer (21) is the τ th fault 

detector for the τ th actuator fault. So, based on observer 

output error ˆ ,
out s
e y C z

τ τ,

= −  the following decision 

logic for detecting the τ th actuator fault is described as 

, the th actuator fault free
( )

, the th actuator fault occurs

out

a

out

e

J t

e

τ τ

τ

τ τ

τ

τ

,

,

,

⎧ ≤ Θ⎪
= ⎨

> Θ⎪⎩

 

where 
τ

Θ ( 1, 2, , )
a
nτ = �  are fixed thresholds selected 

to be a little larger than the maximum residual. 

 

Remark 3: In [2], the fault detection problem is 

discussed for linear discrete system with the same 

actuator and sensor fault information, while an actuator 

fault estimation approach for nonlinear descriptor system 

is developed in [15]. A fault detection and isolation 

approach for actuator stuck faults is addressed in [20]. 

The results of the above papers are derived under the 

assumptions that the linear or nonlinear system is just 

with actuator faults [15,20] or with the same actuator and 

sensor fault signals [2]. Our paper tries to deal with the 

issues of sensor fault estimation, actuator fault detection 

and isolation when the nonlinear system is with unknown 

input, the different actuator and sensor fault signals. So, 

to some extent, our work is an improvement of papers 

[2,15,20]. 

 

5. SIMULATION 

 

5.1. Model expression 

In this section, an illustrative example will be given to 

verify the proposed methods. Consider the modified 

system (1) with the following state-space matrices for an 

aircraft model [28] 
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A =  

1.05 2.55 0 0 169 0.0091

2.55 0.05 0 0 67.09 0.0017

0 0 77.53 39.57 0 0
,

0 0 0 20.2 0 0

0 0 8.8 0 20.2 0

0 0 0 0 0 0.1

− − − −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥− −
⎢ ⎥

−⎢ ⎥⎣ ⎦

 

0

0

0
,

4.49

0

0

B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

0

1

0
,

0

1

0

D E

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

0 1

1 0

1 0
,

0 1

1 0

0 0

a
F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

0.01 0.09 0.07 0 0 0

4.8 5.9 0 0 9.51 0.26
,

3 0.9 0.6 0 0 0

2.6 7 1 0 0 0

C

−⎡ ⎤
⎢ ⎥− − − −⎢ ⎥=
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

 

and [1 0 1 1] .
T

s
F =  The nonlinearity is ( , )x tΦ =  

( )1 1
0.5 1 1x x+ − −  with Lipschitz constant 1fL = . 

The input uncertainty η, actuator fault f
a
 and sensor fault 

f
s
 have been added to demonstrate the proposed method, 

and they are assumed to be 

2.5sin(2.5 ),tη = 1.5cos(3.6 4.8),
s
f t= +

1

2

,

a

a

a

f
f

f

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

where 

1

3, 9 14

0, other,
a

t
f

≤ ≤⎧
= ⎨
⎩

  
2

5, 12 18

0, other.
a

t
f

≤ ≤⎧
= ⎨
⎩

 (23) 

The augmented singular system (3) can be obtained by 

introducing new state vector [ ] .
T TT

s
z x f=  The fol-

lowing matrices U and V can be computed such (4) holds 

as follows: 
 

0.4993 0.1892 0.2441

0.1892 0.116 0.1255

0.2441 0.1255 0.1773

0 0 0

0.3651 0.1655 0.1987

0.01 0.0045 0.0054

0.1535 0.0848 0.0864

U

⎡
⎢
⎢
⎢
⎢

= →⎢
⎢− − −
⎢
− − −⎢

⎢−⎢⎣

 

0 0.3651 0.01

0 0.1655 0.0045

0 0.1987 0.0054

,1 0 0

0 0.2953 0.0193

0 0.0193 0.9995

0 0.0246 0.0007

− − ⎤
⎥− − ⎥
⎥− −
⎥

← ⎥
⎥−
⎥

− ⎥
⎥⎥⎦

 

0.1144 0.0384 0.0501 0.0644

0.1059 0.0174 0.0039 0.1098

0.1125 0.0209 0.1325 0.02

.0 0 0 0

0.0079 0.0741 0.0273 0.0352

0.0002 0.002 0.0007 0.001

0.9444 0.0026 0.0297 0.0259

V

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥

= ⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥
− − − −⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 

It is easy to check that the rank condition rank( )
s

C UH  

rank( ) 3UH= =  is satisfied. So, by applying Matlab’s 

LMI toolbox to optimization problem (17) with LMI 

constraint, matrices L and G which satisfy the matrix 

equation (6) are obtained 

L =  

497 2771 348 6655 137 1140 25 7299

177 6757 146 5706 52 5529 8 4863

250 6020 186 5213 71 0579 12 2715

360 4755 614 4401 8 7195 28 2278

371 0311 258 7822 102 3267 18 5677

22 8407 18 8910 1 0563 0 6039

164 8641 51 98

− . − . . .

− . − . . .

− . − . . .

. − . − . .

. . − . − .

− . . . .

. .

,

38 32 6106 8 6171

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− . − .⎢ ⎥⎣ ⎦

 

12.2774 35.5057 70.7908 55.1998

56.3722 11.3010 2.2161 8.0388 ,

41.8914 1.2764 2.8300 4.0131

G

− − −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

 

where the scalar is set as 1000.ν =  So, it is easy to 

derive the observer gains N and L1 from the matrix L. 

 

5.2. State and sensor fault estimation 

By Theorem 1, we know that the robust observer (8) 

can asymptotically estimate the state z of singular system 

(3). So, the states and unknown inputs of original system 

(1) can be obtained since [ ] .
T TT

s
z x f=  In the 

simulation, the initial states and initial estimation of the 

states are set as (0) [4.8 5.6 2.3 5.8 2.6 5.7]Tx = − −  

and (0) [6.5 9.3 6.9 5.8 3.6 5.4 2.6] ,Tξ = − −  re-

spectively, and the positive scalar σ1 is set as 10. The 

state estimation error curves are given in Fig. 1, and the 

sensor fault estimation is also shown in Fig. 2. From Figs. 

1 and 2, we see that the performance of the proposed 

methods is satisfactory. 

 

5.3. Actuator fault detection and isolation 

In the above section, the robust sliding-mode control 

law (9) can simultaneously eliminate the effects of 

actuator faults and unknown inputs such that both states 

and sensor faults of original system (1) can be estimated. 

In order to further detect and isolate the actuator faults 

when ones occur, a robust sliding-mode observer is 

designed as fault detector and multiple observers are 

given as fault isolators.  

By Theorem 2, we known that, when the system is 

free from actuator faults ( fa
 = 0), the observer system 

given by (19) and (20) is a robust sliding-mode observer 
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which is an actuator fault detector. If the scalar σ2 and 

initial state are set as σ2 = 8 and ξ1(0) = ξ(0), respectively, 

and the actuator faults are assumed in (23). The alarm 

threshold is given as Θ = 0.1. The norm of the output 

error of detection observer and the threshold are both 

plotted in Fig. 3 which shows that actuator fault appears 

during the time of about 9-18s. Fig. 3, however, can 

neither tell us how many actuators are with faults nor 

which actuator is with fault. 

In order to identify which actuator is with fault and 

reach the purpose of actuator fault isolation, multiple 

robust sliding-mode observers are proposed in Theorem 

3. For this simulation, the number of the designed 

isolation observer is 2 since n
a

 = 2. The positive scalars 

are selected as σ
τ1 = 10 and σ

τ2 = 5, and the initial state is 

set as ξ
aτ

(0) = ξ(0), where τ = 1,2. The thresh-olds for 

isolating actuator fault f
a1 and f

a2 are set as Θ1

 = Θ2

 = 0.05. 

Figs. 4 and 5 show the performances of the detection of 

actuator fault f
a1 and f

a2, respectively. From Fig. 4, it is 

told that the first actuator fault occurs during the time of 

about 9-14s, and Fig. 5 shows that the second actuator is 

with fault during the time of about 12-18 s. 

Fig. 3. Actuator fault detection. Fig. 2. Estimation of sensor fault f
s
. 

 

Fig. 1. Estimation curves of system state x. 
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Fig. 4. Fault detection of f
a1. 

 

 

Fig. 5. Fault detection of f
a2. 

 

Remark 4: In [20], the actuator fault detection and 

isolation problem is also discussed and the sensor fault is 

not occurred. Our paper considers not only actuator fault 

but also sensor fault, and the sensor fault is estimated as 

the state of constructed singular system. Moreover, for 

the actuator fault detection results, we can see from Fig. 

1 of paper [20] and Fig. 3 of this one that the detection 

effectiveness of the proposed fault detection method is 

timelier.  

 

6. CONCLUSIONS 

 

In this paper, the issues of simultaneous sensor fault 

estimation, actuator fault detection and isolation for a 

class of uncertain nonlinear are discussed. An augmented 

state vector is introduced to deal with sensor faults, and a 

robust observer with sliding mode law which is adopt to 

attenuate unknown inputs and actuator faults is deve-

loped to estimate states and sensor faults of the original 

system. A robust sliding mode observer used as fault 

detector is proposed to detect actuator faults, and 

multiple observers are considered to achieve the purpose 

of actuator fault isolation. Our methods can not only 

estimate the states and sensor faults of the original sys-

tem but also detect and isolate actuator faults, while the 

unknown inputs are dealt with sliding mode technique. 
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