
International Journal of Control, Automation, and Systems (2015) 13(2):426-433 
DOI 10.1007/s12555-014-0148-7 

 

ISSN:1598-6446  eISSN:2005-4092
http://www.springer.com/12555

Multiple-model Rao-blackwellized Particle Probability Hypothesis Density 

Filter for Multitarget Tracking 
 

Bo Li 

 
Abstract: Multitarget tracking (MTT) is a frequent topic in visual surveillance systems. Although the 
multiple-model probability hypothesis density (MM-PHD) filter plays an important role in the MTT, 
both computerized intractability and imprecise estimate are still inevitable. To solve the problems, a 
novel filter is presented in this paper. Different from the previous work, the Rao-Blackwellized particle 
filtering algorithm is incorporated with the MM-PHD filter to reduce computational load, where the 
sequence Monte Carlo method is adopted to estimate the nonlinear state of targets, and the linear state 
is predicted using the Kalman filter with the information embedded in the estimated nonlinear state. 
With respect to tracking precision, we find that the reweighting scheme can be realized for the number-
estimate of both undetected targets and false alarms. The result is useful in balancing the required par-
ticle number in order to stabilize target estimates during the surveillance period. The illustrative simu-
lation is finally provided to show the effectiveness of the proposed filter. 
 
Keywords: False alarm, multitarget tracking, particle, probability hypothesis density filter. 
 

1. INTRODUCTION 

 
Multitarget tracking (MTT) is to jointly estimate the 

number of targets and their states in a series of the noisy 
and cluttered measurements. With regard to the unknown 
and time-varying targets, the MTT has played a major 
role in both military and civilian fields, such as radar 
tracking, sonar tracking, etc [1,2]. In the past decade, 
several scholars have studied this topic with a great deal 
of success and many papers with respect to the well es-
tablished MTT algorithms have been published in the 
important literature [3-6]. As early as in 2003, the work 
conducted by Mahler demonstrated the prospective de-
velopment of multitarget filters. In particular, the proba-
bility hypothesis density (PHD) filter based on the statis-
tical first moment approximation has been receiving sig-
nificant attention [3]. This filter propagates the PHD of 
multitarget posterior density instead of the full multitar-
get posterior density as well as incorporates track with-
out consideration of the traditional measurement-to-track 
association [4]. Operating on the single-target state space, 
the integral of the PHD over a certain region is regarded 
as the estimated number of targets, and the associated 
peaks represent the estimated state of targets [5,6].  

Although the PHD filter is a promising algorithm for 
the MMT, based on the single-model (SM) method, it is 
difficult to match the true target dynamics, especially the 
maneuvering targets. In addition, the filter cannot reflect 
all variations in dynamic parameters due to the errors 
falling outside range [7]. From analysis perspective, the 
multiple-model (MM) method can well match different 
target motions with parallel sub-filters; for example [8,9] 
and the references therein. In [10], the authors derived 
the closed-form solution to the PHD recursion for linear 
Gaussian jump Markov multitarget mode with available 
Gaussian components. In [11], the MM implementation 
of the particle PHD filter was applied with satisfactory 
performance using the sequential Monte Carlo (SMC) 
method. It is worth noting that the usefulness of both 
filters was demonstrated under one constant velocity 
(CV) model and/or one constant turn (CT) model. Some 
drawbacks are apparently related to implementation of 
the existing MM-PHD filters, even the individual PHD 
filter. To begin with, there is no closed-form solution 
owing to the PHD propagation involving multiple inte-
grals [6,12]. Then, some fluctuations in number-estimate 
and state-estimate are inevitable due to both sensor im-
perfection and clutter influence. Last but not least, the 
extended high-dimensional state space incurs enormous 
computational load, such as extra required particles and 
long running time. To avoid intractable computation, [13] 
presented the particle approximation to the closed-form 
solution to the PHD propagation. For more results to this 
topic, we refer readers to [14-16]. As for the second 
shortcoming, the improved PHD filtering algorithm for 
overestimated target number was put forward in [17] that 
confirmed the label with biggish weight to eliminate the 
clutter influence. Nevertheless, to our knowledge, the 
last puzzle has not been dealt with up to now.  
Following the work of [11], it is our intention in this 

article to solve the problems: (i) how the computational 
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complexity can be reduced with small particle number? 
(ii) how the tracking accuracy of the individual PHD 
filter accompanied by the proposed strategy can be im-
proved? For the purpose, we present an MM version of 
the Rao-Blackwellized particle (RBP) PHD filter, named 
the RBPPHD filter. The main contributions of this work 
can be summarized as follows: (i) reduced computational 
complexity: It is known that the RBP filtering algorithm 
can reduce particle number with small variance. There is 
a definite link between filtering algorithm and computa-
tional load. Application of the algorithm to the MM-PHD 
filter would likely perform better; (ii) improved tracking 
accuracy: On the basis of reweighting technique, the 
weight of the survival and newborn particles is balanced. 
As a result, the number of undetected targets and false 
alarms is corrected. Furthermore, the accuracy of state-
estimate using the individual PHD filter is improved in 
the k-means clustering. 
The remainder of this note is organized as follows: 

Section 2 addresses the principle of the MM-PHD filter. 
The improvements of the proposed filter and the particle 
implementation are studied in Section 3. In Section 4, the 
simulation is showed with results to verify tracking per-
formance of the proposed filter. In Section 5, the conclu-
sions are drawn by presenting the future work. 
 

2. PRELIMINARIES 

 
In the MTT, the collections of the target state and 

measurement at scan k are given by  

1 1 1
( , ),

k k k k
f

− − −

=x x u  (1) 

1 1 1
( , ).

k k k k
h

− − −
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where 
1k

f
−

 and 
1k

h
−

 denote the known transition and 

observation functions; xk and zk are the state and 

measurement vectors; 
1k−

u  and 
1k−

e  are the known 

state and measurement noises [18-20]. If xk and zk can be 

represented by the random finite set (RFS), the standard 

MM-PHD filter is competent. Especially in the cluttered 

environment, the filter has been shown to offer 

improvements in tracking performance against some 

conventional filters. To simplify presentation, we make 

two remarks in order: (i) without respect to target 

spawning, target motions are statistically independent; 

targets disappear from the scene; targets appear in the 

scene independently of existing targets; (ii) the detection 

probability is a positive constant pD regardless of xk. 

Then the filtering process can be summarized as follows: 

Assume the initial PHD 
1 1 1 1: 1
( , | )

k k k k
D r v
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=x Z  is de-

rived by the available measurements 
1: 1k−

Z  from the pre-

vious k –1 scans, where 
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r
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 denotes the model index; v is 

the previous target model [9,11]. As each model-matched 

PHD filter is fed with different PHDs, the predicted PHD 

under the current model u at scan k is given by 
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where | 1 1( | , )
k k k k k
f r u
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=x x  is the Markov target tran-

sition probability; | 1 1( | )
k k k k
f r u r v
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= =  is the Markov 

model transition probability; ( , )
k k k
b r u=x  is the PHD 

of the spontaneous newborn targets; 
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x  is 

the probability of the survival targets with 
1
;
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x

r
N  is 

the number of target models.  

As we know, the sensor collects an average number λ 
of the Poisson-distributed false alarms, the spatial 
distribution of which is governed by the probability 
density c(zk). We are to derive an equation for the 
updated PHD under the model u at scan k 
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D r u
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× =x Z  (4) 

Based on the physical meanings of the PHD, the 
integral of (4) over the surveillance region is regarded as 
the expected number of targets, that is 

( ) ( )1:
, | d .

k k k k k k k
N r u D r u= = =∫ x Z x  (5) 

We have in hand Nr PHD filters running in parallel. As 
each filter represents a different model, the total number 
of targets is estimated by  

( )
1

ˆ .

r
N

k k k

u

N N r u

=

= =∑  (6) 

Finally, the k-means clustering has been employed for 

state-estimate, which can efficiently partition the particle 

representation into the number of clusters given by the 

integer approximation of number-estimate. The center of 

each cluster represents a local maximum of intensity 

function as well as gives the state-estimate of a target. 

For the MM-PHD filter, ˆ

k
N  associated maximum peaks 

are the state-estimate. 
 

Remark 1: We summarize the characteristics of the 

MM-PHD filtering process under duplicate: (i) consider 

the target state (position, velocity, etc.) contains at least 

four dimensions, the target dynamic model and the 

model index can be regarded as an intractable MM 

structure; (ii) the sensor may not detect all the adjoining 

targets due to 1,
D

p ≠  which may bring about the 

undetected targets when trajectories are close. Besides, 

some false alarms may appear when estimating targets.  

 

3. MM-RBPPHD FILTER 

 
As we know, the PHD can be approximated by a 

weighted set of particles, from which the state-estimate 
of the individual target is generated by the k-means 
clustering, and the estimated number of targets is given 
by the sum of weights. From this viewpoint, we develop 
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the proposed filter with considerable modifications in 
this section. 
 

3.1. RBP filtering step 
In the MM-PHD filter, the large number of particles 

required to approximate the posterior density render the 
difficult in extended high-dimensional state space. As a 
result, the extra computational load inevitably stems 
from the numerous particles. Furthermore, the computing 
time is on a drastic increase. In this case, the RBP 
filtering algorithm is competent. Owing to the position 
information accounting for only a proportion of state, 
there is no nonlinear problem on velocity-estimate. 
Accordingly, the target state has the characteristic of 
linear/nonlinear, that is, the hybrid Markov structure. We 
will focus on the RBP filtering algorithm, such as with 
some components having linear dynamics that are 
estimated using the finite-dimensional optimal filter such 
as the Kalman filter (KF) conditional on other 
components in the SMC framework, like the particle 
filter (PF) [21,22]. To reduce computational cost, we 
incorporate the RBP filtering algorithm with the MM-
PHD filter, i.e., the MM-RBPPHD filter.  

Consider the independent nonlinear and linear states 
n

k
x  and ,

l

k
x  the whole state vector at scan k can be 

given by T[ ] ,n l

k k k
=x x x  where T

[ ]⋅  denotes the 

transpose of matrix. We rewrite the hybrid Markov 

structure as 
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In (7)-(9), 
1
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A  and 

1

l
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A  are the transition matrices 

of the nonlinear and linear states; 
1

n

k−
B  and 

1

l
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the input matrices of the nonlinear and linear noises; the 

noises follow the Gaussian distribution, that is, ~

n
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where ( )⋅N  denotes the normal probability density 

function; ,

n

k
Q

l

k
Q  and Rk are the variances; Sk is the 

covariance [23,24]. We consider (7) and (8) are linear 

and Gaussian when l

k
x  and 

1 1
( ( ))n n

k k k
f

− −

−x x  are seen 

as the state and measurement vectors, and therefore are 

estimated using the KF. On the other hand, the PF is used 

to estimate the nonlinear state .

n

k
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3.2. Prediction step 
First, for the nonlinear state, we have the particle 

representation of the posterior PHD as 
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where ( )δ ⋅  is the Dirac Delta function; ( )
1
i
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 is the 

index of target models; 
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 is the predicted number of 

particles.  
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scan k –1. Consider the newborn and survival targets, at 

scan k, the weight approximation of the predicted PHD 

in (3) can be written as  
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where Jk is the number of the newborn particles.  

Let 
1
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k
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ability mass functions of the survival and newborn 
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( )
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 is generated by the importance sampling 

from the following proposal density 
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Simultaneously, we have in hand the predicted particle 
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where 
1 | 1

( | , , )
k k k k k
q r

− −

⋅ x Z  and | 1( | , )
k k k k
p r

−

⋅ Z  denote 

the proposal distributions of the survival and newborn 

targets [25,26]. 
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Given that the nonlinear state and the prior distribution 

of the linear state are uncorrelated, the newborn targets 

are also given by ,( )
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With regard to the survival and newborn targets, we 
obtain the weight of the predicted particles 
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where ( )
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 denotes the model distribution of the 

newborn targets.  

 
3.3. Updated step 
With the measurement zk at scan k, the updated 

particle weight is given by 
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Remark 2: In (19), the particle weight contains the 
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In order to correct the number of the undetected targets 
and false alarms, it is necessary to decrease the weight of 
the newborn particles to eliminate the potential false 
alarms, and therefore utilize the excess weights to 
compensate the undetected components of the survival 
targets.  

First, we define ( )
,
i

B k
w  is the modified weight of the 
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Let us turn attention to the modified weight ( )
,
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S k
w  of 

the survival particles. To guarantee accurate number-

estimate, the sum of ( )
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Given that 
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where round ( )⋅  denotes integer approximation. Here, 
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N  is no longer determined by  

( )
1

1

round

k kL J
i

k

i

−

+

=

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∑ w  but by 

( )
1

,

1

round

kL
i

S k

i

−

=

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∑ w  and 
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i L

−

−

+
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⎜ ⎟
⎝ ⎠
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It means the estimated number of targets is more 
accurate. 
 

3.4. Estimation step 

In this step, a new set of particles with the associated 

weights ,( ) ( ) ( )

1{ , / , } kLn i i i

k ik k k
N r

=

x w  are resampled from the 

set 1,( ) ( ) ( )
1| 1 | 1{ , / , } .k kL Jn i i i

k ik k k k k
N r −

+

=− −
x w  Then the particle 

weight is scaled by 
k

N  to ,( ) ( ) ( )

1{ , , } kLn i i i

ik k k
r

=

x w  so that 

all the weights keep the same as before [4,27].  

Owing to the updated posterior PHD in (4), we have 

( ) ( ) ( ) ( )( ),

1:

1

, | , .

kL
i n i i

k k k k k kk k k

i

D r r rδ

=

= − −∑x Z w x x  (23) 

Finally, at scan k, the total number of targets under 

r
N  parallel models is estimated using (6). Furthermore, 
ˆ

k
N  local maximum peaks of the PHD present the state-

estimate based on the k-means clustering. 
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4. SIMULATION RESULTS AND DISCUSSIONS 

 

To validate tracking performance, the numerical 

studies for the proposed filter scheme is presented in this 

section. We consider a particular scenario in the 

surveillance region [ 100,1000] [ 100,1600]− × − m2. The 

experimental environment was: IntelTM CoreTM CPU @ 

2.9 GHz, 4 GB Memory, and MATLABTM v7.8.  

 
4.1. Scenario 
As maneuvering target has various dynamics, we 

define the state equations of the CV model and the CT 
model as 

1 1

1 1 0 0 1 2 0

0 1 0 0 1 0
,

0 0 1 1 0 1 2

0 0 0 1 0 1

k k k− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

x x u  (24) 

( )

( )

1 1 1 1

1 1

1

1 1 1 1

1 1

1 sin 0 1 cos

0 cos 0 sin

0 1 cos 1 sin

0 sin 0 cos
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k k k k

k k

k

k k k k

k k

ω ω ω ω

ω ω

ω ω ω ω

ω ω

− − − −

− −

−

− − − −

− −

=

⎡ ⎤− −
⎢ ⎥

−⎢ ⎥
⎢ ⎥−
⎢ ⎥
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x

x
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1 2 0

1 0
,

0 1 2

0 1
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⎡ ⎤
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

u  (25) 

where T
[ , , , ]

k k k k k
x x y y=x � �  contains the planar position 

( ),

n

k k k
x y=x  and the velocity ( ), ;

l

k k k
x y=x � �

1k
ω

−

 is 

the turn rate;  

2

1
2

0.01 0
~ 0,

0 0.01
k−

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

u N .  

According to the RBP filtering algorithm, we rewrite 

the CV model ( 1)
k
r =  as 

1 1 1

1/ 2 0
,

0 1/ 2

n n l

k k k k− − −

⎡ ⎤
= + + ⎢ ⎥

⎣ ⎦
x x x u  (26) 

1 1
.

l l

k k k− −

= +x x u  (27) 

Similarly, the CT model ( 2)
k
r =  is rewritten as 

1

n n
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The RBP-based models can be incorporated to 

describe the target dynamics, and what’s more, the 

particle dimension is cut in half using n

k
x  and .

l

k
x   

Next, the measurement equation is given by 

( )
1

2 2

arctan

,
k k

k k

k k

y x

x y
−

⎡ ⎤
⎢ ⎥= +
⎢ ⎥+⎣ ⎦

z e  (30) 

where 

2

1
2

0.1
~ 0, .

0.1
k−

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

e N  

At scan k, the probabilities of the survival and 
newborn targets are 0.95 and 0.33. The sensor, located 
on (450,750) m, has the detection probability 0.95. The 
clutter is modeled as a Poisson RFS in the surveillance 
area and the average number returns per unit hyper 
volume is 0.5. The initial model probabilities for the CV 
and CT models are equivalent; the particle number per 
target is 500. The detection threshold is 0.55. We utilize 
the Wasserstein distance as a valid multitarget miss-
distance between the true and estimated sets of 
multitarget states to evaluate the tracking performance.  
 

4.2. Simulation results 
Three targets randomly move in the surveillance 

region for 55 s. Target 1 travels from the original 
position (0,0) m at a CV with velocity of (40,20) m s-1 
during 1st – 6 th s; after executing a 9 ° s-1 left turn for 9 s, 
it returns to the initial CV dynamics until 40th s. Target 2 
keeps a CV with velocity of (20,20) m s-1 from the 
position (0,700) m during 16th – 55 th s. Target 3 travels 
during 11th – 29 th s at a CV with velocity of (20,40) m s-1 
from the position (100,120) m and then follows by a 
right turn of 9° s-1 for 11 s. 
Fig. 1 demonstrates the measurements and the true 

trajectories of three-target. In this figure, we can see that 
Targets 1 and 3 are maneuvering and Target 2 is non-
maneuvering. In addition, some unexpected false alarms 
occur when they are close to the true target trajectories. 
Fig. 2 shows the true tracks and estimates versus time 

by the clutter suppression in x – y coordinate. From this 
figure, it can be seen that both the standard MM-PHD 
filter and the proposed filter can track multitarget. From 

 

Fig. 1. Target trajectories and measurements. 
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the enlarged scale, we can clearly observe the estimated 
junction points of three trajectories using both filters. 
Fig. 3 shows x – y – t coordinate of position-estimate. 

In this figure, it can be seen that Target 1 is close to 
Targets 3 and 2 on 21st s and 27th s in x coordinate. 
Target 2 is nearing Target 1 in y coordinate at 27th s and 
then makes a stealthy approach to Target 3 during 33rd –
36 th s. We find Targets 1 and 2 are close on 27th s.  
Fig. 4 illustrates the target number-estimate. Note that 

the MM-PHD filter has unstable number of targets 
because it underestimates on 27th s and overestimates on 
47th s. The primary cause of the former is that Target 1 is 
missing when it is very close to Target 2 on 27th s. In 
contrast, the reason for the latter is that a false alarm 
happens near Target 2 on 47ths. The further investiga-
tions indicate that the inaccurate number-estimate using 
the MM-PHD filter originates from sensor imperfection 
and clutter interference. For comparison, the proposed 
filter has its own advantage. When the newborn targets 
appear, the excessive particle weights are shifted to 
others with certain percentage.  
Fig. 5 shows the Wasserstein distance of x – y position. 

As seen, the MM-PHD filter has higher peaks when 
errors happen. Furthermore, it has errors at the time of 
model switching. Compared to the MM-PHD filter, the 
proposed filter has superior performance. It not only 

corrects the number of the undetected targets and the 
false alarms but also cuts down the maneuvers with small 
variance. As a result, the position deviations are lower 
during the surveillance period.  
In addition, 100 Monte Carlo runs are performed to 

evaluate tracking performance under the same 
environment. Table 1 shows the performance of both 
filters. Under the particle number 500, it can be found 
that the proposed filter provides more accurate number-
estimate with 77.07% miss-distance of the MM-PHD 
filter. As illustrated in this table, when 1000 particles are 
used in the MM-PHD filter, the tracking performance 
does not yet measure up to the proposed filter with 500 
particles. The reason can be explained that the proposed 
filter reduces the particle number and the dimension by 
almost half. In view of the facts, the proposed filter is 
more acceptable for the MTT. 

Fig. 2. x-y coordinate of position-estimate. 

 

Fig. 3. x-y-t coordinate of position-estimate. 

Fig. 4. Target number-estimate. 

 

Fig. 5. Wasserstein distance. 

 

Table 1. Tracking performance. 

 
Target 
number 

Wasserstein 
distance (m) 

Running
time (s)

MM-PHD filter
(500 particles)

2.1891 104.1387 2.0016 

MM-PHD filter 
(1000 particles)

2.1175 97.4072 3.8741 

Proposed filter
(500 particles)

2.0364 80.2573 3.1658 
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5. CONCLUSION 

 
This paper has developed an MM-RBPPHD filter for 

the MTT in the noisy set of measurements. The 
challenges are to deal with computational load and 
imprecise estimate of the existing MM-PHD filter. Our 
work employs the RBPPHD filter in the overall filtering 
process, where the extra weights of the newborn particles 
are shifted to find the undetected targets. Above all, we 
derive the MM version of the RBPPHD filter that 
reduces particle number and saves running time. The 
numerical studies show that the proposed filter has great 
improvement on both number-estimate and state-estimate. 
As future developments of this research, we want to save 
running time under the current tracking precision. 
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