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Abstract: In this work we consider the state estimation problem in nonlinear/non-Gaussian systems. A 

new version of Gaussian sum estimation algorithm is developed here based on high-order unscented 

Kalman filter (HUKF). A sigma point selection method, high-order unscented transformation (HUT) 

technique is proposed for the HUKF, which can approximate the Gaussian distributions more accurate-

ly. We present the systematic formulation of Gaussian filters and develop efficient and accurate numer-

ical integration of the optimal filter. We then go on to extend the use of the HUKF to discrete-time, 

nonlinear systems with additive, possibly non-Gaussian noise. The resulting filtering algorithm, called 

the Gaussian sum high-order unscented Kalman filter (GS-HUKF) approximates the predicted and 

posterior densities as a finite number of weighted sums of Gaussian densities. It is corroborated in the 

theoretical analysis and the simulation that the proposed Gaussian sum HUKF has integrated advan-

tages with respect to computational accuracy and time complexity for nonlinear non-Gaussian filtering 

problems. 

 

Keywords: Gaussian Sum, high-order unscented transformation, nonlinear/non-Gaussian, probability 

density function, UKF. 

 

1. INTRODUCTION 

 

In recent years, the analysis and making of inferences 

about a dynamic system arise in a wide variety of 

applications in many disciplines. Examples include 

tracking the channel state information of a rapidly 

changing wireless channel, radar-based tracking of ships 

and aircraft, estimating the volatility of financial 

instruments using stock market data, and many others [1-

4]. Under the assumption that the underlying dynamic 

state space model (DSSM) is linear and all of the 

probability densities are Gaussian and known, the 

Kalman filter is the optimal solution to the recursive 

Bayesian estimation problem. However, when we are 

confronted with a nonlinear filtering problem, we have to 

abandon the idea of seeking an optimal or analytical 

solution and be content with a suboptimal solution to the 

Bayesian filter [5]. In computational terms, suboptimal 

solutions to the posterior density can be obtained using 

one of two approximate approaches. One is the sigma-

point Kalman filters, which is based on deterministic 

sampling methods for the propagation of Gaussian random 

variables through nonlinear systems. The extended 

Kalman filter (EKF) [6], the central difference Kalman 

filter (CDKF) [7], the unscented Kalman filter (UKF) [8], 

the quadrature Kalman filter (QKF) [9,10] and the 

cubature Kalman filter (CKF) [11] fall under this category. 

Another group of approximate solution is known as 

Sequential Monte Carlo methods (SMC) or particle 

filters [12,13]. The SMC methods, although are the least 

restrictive with respect to the assumptions, are more 

computationally expensive than Gaussian approximations. 

In the linear/nonlinear systems, all the Gaussian 

filtering methods have a common assumption that the 

predicted state must satisfy Gaussian distribution. 

However, in the actual systems, the statistical 

characteristics often are not fully known [14]. Gaussian 

sum filters (GSF) enable a more accurate representation 

of the nonlinearities and non-Gaussianity in the 

dynamics and measurement models. The main operation 

of the Gaussian sum filter is the application of Kalman-

filter based prediction and correction steps. In reference 

to Bayesian inference, the nonlinear non-Gaussian 

DSSM can be modeled as a bank of parallel nonlinear 

Gaussian noise dynamic state space models.  

The original GSF is constituted by a bank of parallel 

EKF [15,16], which can approximate non-Gaussian and 

nonlinear DSSM. However, practices show that EKF is 

difficult to implement and tune, only reliable for systems 

that are almost linear on the time scale of the updates and 

even prone to divergence. The Gaussian sum particle 

filter (GS-PF) was suggested making use of the idea of 

the Bayesian sampling [17]. The GS-PF is 

asymptotically optimal in the number of random samples, 

which means that equipped with the computational 
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ability to handle a large number of samples, the GS-PF is 

supposed to outperform analytical Gaussian sum filters. 

However, the disadvantage of random sampling-based 

filter, such as the GS-PF, is that we have to assume great 

computational burden, usually hundreds of times larger 

than analytical filters. Wu et al. [18] pointed out that we 

would better remember a practical rule: only when 

analytical tools do not suffice the requirements is the 

simulation-based method necessary. Arasaratnam [10] 

presented the GS-QKF to deal with nonlinear non-

Gaussian problems which had a better performance than 

the GS-EKF and SMC methods. The limitation with this 

approach is that QKF suffers from the curse of 

dimensionality. The effect of curse of dimensionality 

may often become detrimental in high-dimensional state-

space models with state-vectors of size 20 or more.  

The motivation for this paper is to derive a more 

accurate filter that could be applied to solve nonlinear 

non-Gaussian filtering problems. We first develop the 

high-order unscented Kalman filter (HUKF). A 

mechanism of high-order unscented transformation 

(HUT) is described in which the selection of sigma point 

is according to property density function of variables. 

Secondly, the application of the HUKF has been 

extended by incorporating the conventional Gaussian 

sum filters. The resulting Gaussian sum high-order 

unscented Kalman filter (GS-HUKF) approximates the 

predicted and posterior densities as a finite number of 

weighted sums of Gaussian densities. Through our 

experiment study we found that the filters developed in 

the paper are more flexible and have integrated 

advantages with respect to time complexity and 

computational accuracy. 

The rest of the paper is organized as follows: Section 2 

derives the dynamic state space model and Bayesian 

filter theory in the Gaussian domain. Section 3 describes 

the high-order unscented transformation (HUT) method 

and its application to the unscented Kalman filter. The 

GS-HUKF filter, using the HUKF for the subfilter, is 

derived in Section 4. Section 5 validates the theoretical 

analyses and illustrates the proposed algorithm using two 

numerical examples and finally, Section 6 gives some 

concluding remarks. 

 

2. PROBLEM DESCRIPTION 
 

We first consider the discrete-time dynamic system 

with uncertain initial conditions and discrete-time meas-

urement model. The n-dimensional system state xk, with 

initial probability density p(x0), evolves over time as an 

indirect or partially observed first order Markov process 

according to the conditional probability density p(xk | xk-1). 

The observations zk are conditionally independent given 

the state and are generated according to the conditional 

probability density p(zk | xk). The dynamic state-space 

model can be written as a set of nonlinear system 

equations: 

1 1
( ) , 1, , ,

( ) , 1, , .

k k k

k k k

x f x w k N

z h x v k N

− −

= + =⎧
⎨

= + =⎩

�

�

 (1) 

where wk is the process noise that drives the dynamic 

system through the nonlinear state transition function f, 

and vk is the observation or measurement noise 

corrupting the observation of the state through the 

nonlinear observation function h. The nonlinear function 

f (·) and h(·) captures the state model and the 

measurement model. In the Bayesian networks, the 

problem of variables estimation can be reformulated as 

that how to recursively compute the posterior density as 

new observations arrive. The optimal method to 

recursively update the posterior density as new 

observations arrive is given by the recursive Bayesian 

estimation algorithm. The posterior density can be 

expanded and factored into the following recursive 

update form [12,15]: 

( )1: 1 1 1: 1 1 1
| ( | ) ( | ) ,

k k k k k k k
p x z p x z p x x dx

− − − − −

= ∫  (2) 
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p z z

−

−

=  (3) 

Despite the optimal recursive solution, the multi-

dimensional integrals in (2) are usually only tractable for 

linear Gaussian systems in which case the close-form 

recursive solution is given by the Kalman filter. For most 

general real-world systems, however, the multi-

dimensional integrals are intractable and approximate 

solutions must be used [19]. As discussed in Section 1, 

sigma-point Kalman filters based on deterministic 

sampling approaches can be utilized to address these 

issues. However, these filters may fail in certain 

nonlinear non-Gaussian problems with multi-modal 

and/or heavy tailed posterior distributions. Difficulties 

with the more general setting arise from the occurrence 

of non-Gaussian process and/or measurement noise. The 

focus of this paper is on developing a high-order 

unscented Kalman filter to assimilate nonlinear Gaussian 

systems. Then we use the high-order unscented Kalman 

filter to construct the GSF which can approximate the 

statistical distribution of the non-Gaussian process and/or 

measurement noise. 

 

3. HIGH-ORDER UNSCENTED KALMAN FILTER 

 

3.1. The unscented transformation 

The unscented transformation (UT) is used to calculate 

the statistics of a random variable which undergoes a 

nonlinear transformation. It builds on the principle that it 

is easier to approximate a probability distribution than 

arbitrary nonlinear function [8]. Consider the 

propagation of a n dimensional random variable x 

through an arbitrary nonlinear function, 

( ).y g x=  (4) 

Suppose x has mean X  and covariance P
x
. To 

calculate the statistics (first two moments) of y using the 

UT, we proceed as follows: firstly a set of 2n+1 

weighted samples, called sigma-points, Si={ωi, ζi} are 

deterministically chosen so that they completely capture 

the true mean and covariance of the prior random 
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variable x. A selection scheme that satisfies this 

requirement is: 

/( ), 0;

1/ 2( ), 0;
i

n i

n i

κ κ
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κ

+ =⎧
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 (5) 
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where ωi is the weight associated with the ith sigma-

point and 
2

0
1.

n

ii
ω

=

=∑  κ is called the scale coefficient, 

which can adjust the distance of the sigma points to the 

mean value and ( ( ) )
i x i

n Pσ κ= +  denotes the ith 

column of the square root matrix. The numerically 

efficient Cholesky factorization method is typically used 

to calculate the matrix square root. Since the matrix 

square-root of positive semidefinite matrix is not unique, 

any ortho-normal rotation of the sigma-point set is a 

valid set. Furthermore, if desired, one can derive a 

selection scheme that captures higher order moment 

information such as skew or kurtosis. This, however, will 

in general require a larger set of sigma-points. 

Ponomareva [20] considered an augmented method to 

extend traditional unscented transformation to capture 

3rd and 4th moments. Tenne [21] has considered the 

problem of capturing higher order moments and 

developed a sigma point selection algorithm that captures 

the first eight moments of a symmetric one-dimensional 

distribution using only five points. In the next section, a 

novel high-order unscented transformation is developed 

to address the accuracy of linearization by providing a 

more direct and extensible mechanism for transforming 

mean, covariance and more high-order moments 

information.  

 

3.2. High-order unscented transformation 

In the unscented Kalman filter, a set of sigma points 

are carefully selected, which exhibits the same statistical 

properties to a certain degree as the true distribution of 

the state. The multidimensional Gaussian estimation can 

be resolved into some one-dimensional Gaussian 

estimating problems. Therefore, we can consider the 

probability density function of the one-dimensional 

Gaussian distribution at first. 

Consider a scalar random variable x having a Gaussian 

probability density N(x;0,1), 

2
/ 21

( ) .
2

x

p x e

π

−

=  (7) 

The expected value of the function g(x) can be approx-

imated as  

1

[ ( )] ( ) ( ) ( ) ,
m

i i

i

E g x g x p x dx g σ ω

+∞

−∞

=

= ≈∑∫  (8) 

where σi and ωi are the sigma point and its associated 

weight. Provided g(x) is integrable on interval [−∞ ~ +∞], 

p(x) here can be thought as the weights of all the 

continuous points and the right side of the equation can 

be thought as finite sum of σi. Our main objective is to 

choose the sigma points so that we can obtain a desired 

level of accuracy at a reasonable computational cost in 

terms of the number of integrand evaluations required. 

The function g(·) changes for various systems, thus the 

sigma points will be determined by the probability 

density function p(x). Naturally, poles of the probability 

density function p(x) and its derived functions may be a 

good choice. We can easily get the poles of the function 

p(i)(x)(i ≥ 0) by calculating zeros of its derived functions 

p(i+1)(x) as follows: 

2
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p x x e x
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= ⇒ − = ⇒ = 3,±  (11) 

2(4) 4 2 / 2( ) 0 ( 6 3) 0

3 6 ,

x

p x x x e

x

−

= ⇒ − + =

⇒ = ± ±

 (12) 

2(5) 5 3 / 2( ) 0 ( 10 15 ) 0

0, 5 10.

x

p x x x x e

x

−

= ⇒ − + =

⇒ = ± ±

 (13) 

In this way, poles of higher derivative functions can be 

got. It can be seen from (9)-(13) that: the function p(x) 

has one pole x = 0. If we use it as sigma point, it will be 

the same with EKF in which the state distribution is 

propagated analytically through the first-order lineari-

zation of the nonlinear function. The first derivative 

function p�(x) has two symmetry poles x = ±1. Poles of 

the second derivative function p
��(x) are 0,x = 3,±  

which are identical with the sigma points computed by 

ordinary UT. The third derivative function p )3( (x) has two 

groups of symmetry poles 3 6.x = ± ±  Poles of the 

fourth derivative function p
)4( (x) are 0,x = 5 10.± ±  

Fig. 1 depicts the distribution of these poles in Cartesian 

Coordinates, where σi denotes poles of the ith derivative 

function. 

However, the probability density function p(x) has 

countless derivative functions. To find out which set of 
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Fig. 1. Sigma points for standard Gaussian distribution.
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poles is the most proper one is very important. In the 

statistics, the 68-95-99.7 rule states that for a normal 

distribution, nearly all the values lie within 3 standard 

deviations of the mean. If a point deviates from the 

average far away, the associated weight will be so small 

that can be ignored. Therefore, it�s not necessarily true 

that the more points to choose, the better the 

approximation will be. It should be a compromise 

between computational complexity and performance gain.  

In the following section, how to get the associated 

weights of each sigma point is introduced. At first, the 

relationships between the central moments of a normal 

Gaussian distribution [22] are presented. Suppose 

variable ς has a Gaussian density f (ς) ~ N (0, Ω2), then 

the kth central moment of ς meet 

( 1)( 3) 3 1, 2,4 2 ,

0, 1,3 2 1,

k

k k k k L

k L
ς

⎧Ω − − × =⎪
Σ = ⎨

= −⎪⎩

� �

�

 (14) 

where k

ς
Σ  denotes the kth central moment of variable ς, 

Ω is the variance. 

The scalar random variable x in (7) has a Gaussian 

probability density ( ;0,1)N x  and the required sigma 

points should have the same statistical characteristics 

with it, so we can get 

0
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k k
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where x  is the mean of variable x, σ  is the mean of 

sigma points, k

x
Σ  and k

σ
Σ  are respectively the kth 

central moments of variable x and sigma points. Mean 

and the kth central moment of sigma points can be 

computed by 
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where γ is the number of sigma points. According to (14) 

-(16), it can be obtained that 
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The associated weights of the sigma points will be 

convenient to find according to (17).  

 

3.3. Algorithm of high-order unscented Kalman 

The HUKF, which consists of augmented sigma points 

with separate weights, remains the same structure as the 

ordinary unscented Kalman filter. Sigma points of one-

dimensional variable can be promoted to multiple 

dimensional problems. Suppose x is a nx dimensional 

variable with a Gaussian density having mean X  and 

variance Px, the sigma points can be calculated by  

0
,

( ) , 1, , ,

( ) , 1, , 2 ,

i i x i

i i x i n

X

X P i n

X P i n n

ζ

ζ σ

ζ σ
−

⎧ =
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⎪

= − = +⎪⎩

…

…

 (18) 

where σi is the ith sigma point of one-dimensional 

Gaussian variable, ζi is the ones of multidimensional 

problem, ( )
x i
P  denotes the ith column of the square 

root matrix. According to (17) and (18), high-order 

moment of the distribution can be captured with a fixed, 

small number of points. Unlike the Ponomareva and 

Tenne method, the proposed HUT method avoids to 

solve nonlinear equations directly. We choose the sigma 

points by calculating the poles of Gaussian probability 

density function p(x) and its derived functions. The 

associated weights can be got by (17). In this way, a set 

of high-order unscented Kalman filters can be designed. 

The complete HUKF algorithm that updates the mean 

ˆ

k
x  and covariance 

kx
P  of the Gaussian approximation 

to the posterior distribution of the states will now be 

presented: 

 

3.3.1 Time update 

1) Assume at time k that the posterior density func-

tion 1 1 1| 1 1| 1ˆ( | ) ( , )
k k k k k k

p x z N x P
− − − − − −

=  is known. Fac-

torize 

1| 1 1| 1 1| 1.
T

k k k k k k
P S S

− − − − − −

=  

2) Evaluate the HUT sigma points (i = 1,2,…,m) 

, 1| 1 1| 1 1| 1ˆ .
i k k k k i k k

S xσ
− − − − − −

Χ = +  

3) Evaluate the propagated HUT sigma points (i = 1,2, 

…, m) 

*
, | 1 , 1| 1 1( , ).
i k k i k k k

f µ
− − − −

Χ = Χ  

4) Estimate the predicted state 

*
| 1 , | 1
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ˆ .

m

k k i i k k

i

x ω
− −

=
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5) Estimate the predicted error covariance 

* *
| 1 1 , | 1 | 1 , | 1 | 1

1

ˆ ˆ( )( )
m

T

k k k i i k k k k i k k k k

i

P Q x xω
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=

= + Χ − Χ −∑ . 

 

3.3.2 Measurement update 

1) Factorize 

| 1 | 1 | 1.
T

k k k k k k
P S S

− − −

=  

2) Evaluate the HUT sigma points (i = 1,2,…,m) 

, | 1 | 1 | 1ˆ .
i k k k k i k k

S xσ
− − −

Χ = +  
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3) Evaluate the propagated HUT sigma points (i = 1,2, 

…,m) 

, | 1 , | 1( , ).
i k k i k k k

Z h µ
− −

= Χ  

4) Estimate the predicted measurement 

| 1 , | 1

1

ˆ .

m

k k i i k k

i

z Zω
− −

=

=∑  

5) Estimate the innovation covariance matrix 

, | 1 , | 1 | 1 , | 1 | 1

1

ˆ ˆ( )( )
m

T

zz k k k i i k k k k i k k k k
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P R Z z Z zω
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=

= + − −∑ . 

6) Estimate the cross-covariance matrix 

, | 1 , | 1 | 1 , | 1 | 1

1

ˆ ˆ( )( ) .
m

T

xz k k i i k k k k i k k k k

i

P X x Z zω
− − − − −
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7) Estimate the Kalman gain 

1
, | 1 , | 1.k xz k k zz k k

W P P
−

− −

=  

8) Estimate the updated state 

|ˆk kx = | 1 | 1ˆ ˆ( ).
k k k k k k
x W z z

− −

+ −  

9) Estimate the corresponding error covariance 

| | 1 , | 1 .

T

k k k k k zz k k k
P P W P W

− −

= −  

 

4. GS-HUKF ALGORITHM 

 

In this section we present a further refinement of the 

HUKF called the Gaussian sum high-order unscented 

Kalman filter. The GS-HUKF combines the HUKF and 

Gaussian sum filter for the time update and measurement 

update step. The GS-HUKF uses a finite Gaussian 

mixture model (GMM) representation of the posterior 

filtering density, which is recovered from the weighted 

Gaussian items based on measurement update stage. 

 

4.1. Principle of the GSF 

The theoretical determination of a weighted Gaussian 

sum approximation for a non-Gaussian density is well 

detailed in [15]. It can be shown that as the number of 

Gaussian components increases, the Gaussian sum 

approximation converges uniformly to any probability 

density function. Here, we only briefly review the 

principle idea [23]. For a given density function P(x), an 

approximation Pm(x) can be described by: 

1

( ) ( ; , ),
m

m i i i

i

P x N x uρ

=

≈ Σ∑  (19) 

where m is the number of mixing components, ρi are the 

mixing weights and N(x; ui, Σi) are Gaussian density 

functions with mean ui and positive definite covariance 

matrices Σi.  

To choose the mixture parameters, such as the weights 

ρi, the means ui and variances Σi, that give the optimal 

approximation Pm(x) to the density function P(x), we 

have to minimize a given distance function, for example, 

the Ln norm: 

1

| ( ) ( , ) |
m

n n

m i i i

i

P P P x N x u dxρ
+∞

−∞

=

− = − − Σ∑∫  (20) 

with n usually chosen equal to 2. 

 

4.2. The GS-HUKF algorithm 

Non-Gaussian noise densities can be approximated 

empirically by Gaussian-sums as closely as possible. 

Consequently, for a state-space model with Gaussian-

sum additive noise sources, such as the one described in 

(1), it is possible to obtain both the predicted and 

posterior densities as Gaussian-sums. The proposed GS-

HUKF filter is, in some sense, a steady state of the GSF. 

It consists of the following steps: 

1) Modeling of Non-Gaussian Density. Assume at 

time k that the additive process and measurement noise 

are both available as approximate Gaussian sums: 

1 1

( ) ( ) ( ; , ),
k kI I

k ki i k ki k ki ki

i i

P w p w N w w Qβ β
= =

≈ =∑ ∑  (21) 

1 1

( ) ( ) ( ; , ),
k kJ J

k kj j k kj k kj kj

j j

P p N v v Rν μ ν μ

= =

≈ =∑ ∑  (22) 

where Ik, Jk are the number of components, βki and μkj are 

the mixing weights satisfying: 

1

1

kI

ki

i

β
=

=∑  and 
1

1.

kJ

kj

j

µ

=

=∑  

In addition, the prior density at time zero is also 

assumed to be a Gaussian sum: 

0 0

0 0 0 0 0 0 0

1 1

( ) ( ) ( ; , ),

T T

P x p x N x x P
τ τ τ τ τ

τ τ

α α

= =
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where α0i are nonnegative constants and 
0

0

1

1.

T

τ

τ

α

=

=∑  The 
 

GS-HUKF is required to compute the time and 

measurement update steps at each sampling instant and 

these two steps are derived in the sequel. 

2) Time update. Suppose at time k the Gaussian sum 

approximation of the posterior density P(xk-1|z1:k-1) is 

known and given by: 

1

1 1: 1 ( 1| 1) 1 ( 1| 1) ( 1| 1)

1

( | ) ( ; , ).

Tk

k k k k k k k k k
P x z N x x P

τ τ τ

τ

α

−

− − − − − − − − −

=

= ∑  

 (24) 

For a process noise model of (21), the transition prior 

P(xk | xk-1) can be obtained as 

1

1

1
( | ) ( ; ( ) , ).

Ik

k

i

k ki k k ki ki
P x x N x f x w Qβ

−

=

−

= +∑  (25) 

Combined with (2), the predicted probability density 

function of xk can be calculated by 

1: 1 1 1 1 1
( | ) ( | ) ( | )

k k k k k k k
P x z P x x P x z dx

− − − − −

= ∫  
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1

( 1| 1)

1 1

1
( ; ( ) , )

T Ik k

k k ki

i
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− −

= =

−
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1 ( | 1) ( | 1) 1ˆ( ; , ) .
k k k k k k

N x x P dx
τ τ− − − −

×  (26) 

The integral on the right side is approximated by a 

Gaussian sum in xk using time update of the HUKF. The 

predicted density P(xk |z1:k-1) is therefore approximated as 

1

1: 1 ( | 1) | 1 ( | 1) ( | 1)

1
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where 
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α α β
− − −

=  

( | 1)

*
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f x P
τ τ τ λ

σ
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Χ = +  

Step of time update ends. Prediction probability density 

is expressed by Tk-1 Ik Gaussian items in (27). 

3) Measurement update. Assume that the measure-

ment noise sequence is non-Gaussian and modeled by a 

Gaussian mixture as given by (22). The likelihood 

probability density P(zk | xk) can be described as 

| 1 | 1

1

( | ) ( ; ( ) , ).
kJ

k k kj k k k k kj kj

j

P z x N z h x v Rµ
− −

=

= +∑  (28) 

The posterior density P(xk |z1:k) can be approximated by a 

Gaussian sum after receiving the measurement zk using 

the measurement update step of the HUKF: 

1
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where 
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Then the final state estimate |
ˆ

k k
x  in the minimum-mean-

squared-error sense and the associated covariance Pk|k 

can be computed by: 

|
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k k
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1
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Pα

−

=

∑  (34) 

It has been shown that the number of mixing 

components in the GMM representation grows from Tk-1 

to Tk-1×Ik in the time update step and from Tk-1×
 
Ik to Tk-1 

× Ik × Jk in the subsequent measurement update step. Over 

time, this will lead to an exponential increase in the total 

number of mixing components and must be addressed by 

a mixing-component reduction scheme. In addition, 

some weights in the Gaussian sum approximation, i.e., 

some α(k|k-1)r in (27) and some α(k|k)r in (29) may be 

sufficiently small compared to the others so that they can 

be simply neglected or combined into a single term 

without seriously affecting the approximation. Another 

possible strategy is to conduct probability density 

function re-approximation, i.e., one uses a new Gaussian 

mixture model, with the specified number of Gaussian 

distributions, to approximate the prior or the posterior 

probability density function that has already been 

expressed in terms of a Gaussian sum approximation. To 

estimate the parameters of the new Gaussian mixture 

model (i.e., weights, means and covariances of individual 

Gaussian distributions), we adopt the expectation-

maximization (EM) algorithm [10,24], which is an 

iterative method, to decrease the computational cost of 

the GS-HUKF algorithm. 

 

5. SIMULATION 

 

The proposed high-order unscented transform and GS-

HUKF algorithm were validated by two examples. In the 

first example, the ordinary UT and HUT were applied to 

a simple one dimensional function with a discontinuous 

first derivative. In the second example, the performances 

of GS-HUKF were assessed by means of Monte Carlo 

simulations, GS-UKF, GS-QKF and GS-PF, by applying 

the algorithms for a univariate nonstationary growth 

model in the presence of heavy-tailed additive gamma 

distributed process noise [9]. 
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5.1. Distance of a particle above a barrier 

A particle with an initial velocity of -1 strikes a barrier 

at the origin at time zero and bounces elastically [8,18]. 

Thus, 

0
( , ) | | .y g x t x v t= = +  (35) 

The original distance from the particle to the barrier is 

assumed to be normally distributed with unit variance. 

The exact values of the distance and its variance can be 

calculated by 
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 (36) 

( ){ } ( )
22 2

0
.

y x
P E Y y P v t y= − = + −  (37) 

 

The goal of the approximation is to estimate the mean 

y  and the variance Py as accurately as possible using a 

function of the sigma points and the weights ωi. Using 

sigma points got by HUT in Table 1, the estimation 

result is shown in Fig. 2. Figs. 2(a) and 2(b) illustrate the 

mean distance above the barrier and error of the 

estimated mean distance, respectively. Figs. 2(c) and 2(d) 

show variance of the distance above the barrier and error 

of the estimated variance of the distance, respectively. 
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(a) Mean distance above the barrier. It can be seen that 

the approximated results of ordinary UKF (solid red), 

HUKF of 8th (dashed blue) and HUKF of 20th (circle 

green) can match the analytic solution (*) well. 

However, the HUKF of 20th get the best estimation. 

(b) Error of the estimated mean distance. The differences 

were calculated between approximations and the 

analytic solution. 
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(c) Variance of the distance above the barrier. Same with 

the Mean distance, the approximated results of 

ordinary UKF (dot red), HUKF of 8th (circle blue) 

and HUKF of 20th (solid green) can match the 

analytic solution (*) well, the HUKF of 20th has the 

best estimation. 

(d) Error of the estimated variance of the distance. The 

differences between estimated results and the analytic 

solution were calculated. 

Fig. 2. The analytical solution and the estimated results. 
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As shown in Table 1, each set of sigma points are 

symmetric one-dimensional distribution. Sigma points 

and relevant weights for the HUT of 4th are same with 

the ordinary UT which can capture the first 4th moments 

of a nonlinear function at most. HUT of 8th has five 

sigma points and can capture the first 8th moments at 

most. Eleven sigma points are needed to capture the first 

20th moments.  

Fig. 2 shows the analytical mean, deviation and the 

approximate solutions of the distance above the barrier. 

It can be seen that all the unscented filters reasonably 

approximate the mean and variance of the particles 

distance, whereas the HUKF of 20th can better describe 

the deviation due to its capability of matching the higher 

order moments of nonlinear functions. The number of the 

sigma points is proportionate to the estimation accuracy. 

However, the computational complexity will also 

increase. So, proper number of points should be selected 

based on the specific problem in hand. 

 

5.2. Univariate nonstationary growth model 

Univariate nonstationary growth model is widely 

accepted in econometrics and it is formulated as 

1
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where the process noise wk is assumed to be distributed 

as a heavy-tailed gamma function given by wk~Γ(3, 2), 

where Γ denotes the gamma distribution, and vk is zero-

mean Gaussian white noise with variance 1. The refer-

ence data are generated using x0 = 0.1 and N = 100. The 

state xk is to be estimated from the measurement data zk. 

The performance is compared using the mean-square 

error (MSE) defined by 

2
|

1

1
( ) .

N

n n n

n

MSE x x
N

=

= −∑  (42) 

The MSE of 50 Monte Carlo runs are plotted in Fig. 3. 

In each run, the actual initial state x0 is assumed to be a 

uniformly distributed random variable in the interval [0, 

1]. We compare the performance of GS-HUKF against 

GS-UKF, GS-QKF and GS-PF. In the algorithm of GS-

HUKF, sigma points are chosen from Table 1. 3-point 

QKF is used in GS-QKF. 300 particles SIR-PF is 

adopted in GS-PF. It can be seen that MSEs of GS-UKF 

and GS-QKF are larger than other filters. There is no 

discernible difference in accuracy between them. That is 

because UKF and 3-point QKF are analytically identical 

to each other for the one dimensional systems [18]. 

However, the limitation of QKF for practical use is that it 

suffers from the curse of dimensionality. The GS-

HUKF8 has a noticeable improvement over GS-UKF and 

GS-QKF. The GS-PF and GS-HUKF20 have better 

tracking performances than GS-UKF, GS-QKF and GS-

HUKF8.  

Table 2 summarizes the performance of the different 

filters averaged over 50 randomly initialized Monte 

Carlo runs. It shows the mean and variances of the MSE 

of the state estimates as well as the average processing 

time of each filter. Since the processing time for each 

algorithm is directly related to its computational 

complexity, Table 2 clearly indicates that the GS-HUKF 

algorithms have the same order of computational 

complexity as the GS-UKF, but much better estimation 

performance. Conversely, for the same level of 

estimation performance as the GS-UKF, the GS-PF 

realizes this at a much higher computational cost. The 

best performance is achieved by the GS-HUKF20 which 

better models the non-Gaussian nature of the process 

noise distribution. 

Table 1. The sigma points of HUT. 
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Fig. 3. MSEs of each filter across 50 random runs. 

 

Table 2. Estimation result averaged over 50 Monte 

Carlo runs. 

Algorithm Mean Variance Time(s) 

GS-UKF 3.2987 0.2331 1.48 

GS-QKF 3.2835 0.2317 1.50 

GS-HUKF8 2.8951 0.2469 1.69 

GS-HUKF20 2.3100 0.2265 2.55 

GS-PF 2.2271 0.2446 38.18 
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6. CONCLUTION 
 
The motivation for this paper is to derive a more 

accurate nonlinear non-Gaussian filter that could be 
applied to solve nonlinear non-Gaussian dynamic state 
space problems. One significant contribution lies in the 
proposed high-order unscented Kalman filters, which 
enable the estimation more accurately by choosing the 
sigma points based on the HUT. The new high-order 
unscented transformation design the sigma points accord-
ing to the property density function of variables which is 
more flexible and has integrated advantages with respect 
to time complexity and computational accuracy. In 
addition, the Gaussian sum high-order unscented Kalman 
filter algorithm for nonlinear and non-Gaussian DSSM is 
presented. Simulation results exhibit a significant 
improvement of the GS-HUKFs over other nonlinear 
filtering methods, namely, GS-UKF, GS-QKF and GS-
PF, to solve nonlinear non-Gaussian filtering problems. 
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