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Abstract: In this paper, we point out that inequality (7) of [5] is not correct. A feasible modified and 

corrected version of the main result is presented. Furthermore, some numerical examples are given to 

illustrate the applicability of the modified result. 
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1. INTRODUCTION 

 

We consider the following delay system presented in 

[5], 

0

0 0 0

( ) ( ) ( ( )) ( ( )), ,

( ) ( ), ,

x t ax t Af x t Bg x t t t

x t t t t t t

τ

ϕ τ

= − + + − ≥

= − − ≤ ≤

�

 (1) 

where 
1 2

[ , ,..., ]T
n

x x x x=  denotes the state vector, a > 0 

is a constant decay rate, ( )
ij n n

A a
×

=  and ( )
ij n n

B b
×

=  

are real matrices. f and g are continuous vector-value 

functions over n

�  with (0) (0) 0,f g= =  

{ ( ) : 0} ([ ,0]; ).n
s s Cϕ ϕ τ τ= − ≤ ≤ ∈ − �  

We agree that the perturbed system method presented 

in [5] for exponential stability of nonlinear delay system 

is interesting. It tries to show that the delay system will 

remain exponential stability, provided the time lag is 

small enough. However, the proof of Theorem 1 in [5] 

contains a mistake, so that the result presented in this 

Theorem is not correct. The goal of this paper is to 

present a new and corrected version of this theorem. A 

counterexample is given to prove that the inequality used 

in [5] is not correct and can not be considered as a new 

or other version of Gronwall inequality. Furthermore, 

examples are provided to demonstrate the less conserva-

tism of the obtained results based on Gronwall inequality. 

First, we show that the use of the Gronwall inequality 

in the proof of Theorem 1 in [5] is not correct. Indeed the 

authors obtain: 

0

( )| ( ) ( ) | ( ) | ( ) ( ) |
t

a s t

t

x t y t A B e x s y s dsα β
−

− ≤ + −∫� � � �  

 
0

( ) | ( ) ( ) | ,
t

a s t

t

B e x s x s dsβ τ−

+ − −∫� �  (2) 

and then, they showed that 

0

0

1

( )

( )

| ( ) ( ) | exp((

)(1 ))

| ( ) ( ) | ,

a t t

t
a s t

t

x t y t B a A

B e

e x s x s ds

β α

β

τ

−

− −

−

− ≤

+ −

× − −∫

� � � �

� �  (3) 

which gives (7): If 
0 0

2 ,t t t δ≤ ≤ +  

0

1

2

( )

| ( ) | | ( ) | exp((

)(1 ))

| ( ) ( ) | .

a

t
a s t

t

x t y t B a A

B e

e x s x s ds

δ

β α

β

τ

−

−

−

≤ +

+ −

× − −∫

� � � �

� �  

Remark 1: The previous inequality (3) (or (7) 

obtained in [5]) is not correct because the use of 

Gronwall inequality contains an error, there’s no version 

of Gronwall inequality to establish the passage from (2) 

to (3), and the following counterexample illustrate this. 

In fact, the inequality used by the authors in [5] can not 

be considered as a new or other version of Gronwall 

inequality as explained in the following. 
 

Example: We show that, with 1,m = ( )u t t=  and 

( ) 1v t =  for all 0t ≥  that satisfies 

( ) ( )

0 0
( ) ( ) ( ) ,

t t
s t s t

u t m e u s ds e v s ds
− −

≤ +∫ ∫  (4) 

may not satisfies 

( )

0
( ) exp( (1 )) ( ) .

t
t s t

u t m e e v s ds
− −

≤ − × ∫  (5) 

Indeed, we have 

( )

0
( ) 1

t
s t t

e v s ds e
− −

= −∫  

and 

( )

0
( ) 1 .

t
s t t

e u s ds t e
− −

= − +∫  

Then, (4) is given by 

( ) ( )

0 0
( ) ( ) ( ) , 0.

t t
s t s t

t u t e u s ds e v s ds t t
− −

= ≤ + = ∀ ≥∫ ∫  
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Suppose that (5) is correct, this implies that 

1 ( )

0
( ) ( ) .

t t
e s t

u t e e v s ds

−

− −

≤ × ∫  (6) 

Hence, (6) gives that 

1(1 ) , 0,
t

t e
t e e e t

−

− −

≤ − ≤ ∀ ≥  

which is a contradiction. 
 

The above counterexample prove that there’s no version 

of Gronwall inequality to establish the passage (4) to (5) 

for u and v nonnegative continuous functions. Thus, the 

expression (3) (or (7) in [5]) can not be obtained by any 

argument. 

We give in the following section a modified and 

corrected version of the original result proposed by [5]. 

 

2. EXPONENTIAL STABILITY 

 

We always assume that the functions f and g satisfy 

the two following assumptions: 

(H1) There exist positive constants α and β, such that 

| ( ) ( ) | | |f x f y x yα− ≤ −  

and 

| ( ) ( ) | | |g x g y x yβ− ≤ −  

hold for any ,

n

x y, ∈�  where | |z  denotes the Euclidean 

norm of a vector z. 
 

The corresponding crisp system associated with (1) is 

of the form: 

0

0

( ) ( ) ( ( )) ( ( )), ,

( ) (0).

y t ay t Af y t Bg y t t t

y t ϕ

= − + + ≥

=

�

 (7) 

One can see that under the standing hypothesis (H1) (1) 

(respectively, (7)) has a unique solution denoted by 

0
( ; , )x t t ϕ  on 

0
t t τ≥ −  (respectively, 

0
( ; , (0))y t t ϕ  on 

0
).t t≥  

For the purpose of this paper, we propose another 

standing hypothesis: 
 

(H2) Equation (7) is globally exponentially stable. 

That is, there exists a pair of constants K and γ such that 

0( )
0 0| ( ; , (0)) | | (0) | , .

t t
y t t K e t t

γ
ϕ ϕ

− −

≤ ∀ ≥  

We will show that under assumptions (H1) and (H2), equa-

tion (1) remains globally exponentially stable provided τ 

is small enough. 

There exist many Lemmas which carry the name of 

Gronwall’s Lemma (see [1-3]). A main class may be 

identified is the integral inequality. The original Lemma 

proved by Gronwall [4] in 1919, is the following. 

Gronwall Lemma: Let : [ , ]z a a h+ → �  be a con-

tinuous function that satisfies the inequality 

0 ( ) ( ( ))
x

a

z x A Mz s ds≤ ≤ +∫  

for all ,a x a h≤ ≤ +  where , 0A M ≥  are constants. Then 

0 ( )
Mh

z x Ahe≤ ≤  

for all .a x a h≤ ≤ +  
 

The above Lemma can be formulated by the following 

famous inequality, which is called the Gronwall 

inequality: 

Let u(t) be a continuous function defined on the 

interval 0 1[ , ]t t  and 

0

( ) ( ) ,
t

t

u t a b u s ds≤ + ∫  

where a and b are nonnegative constants. Then, for all 

0 1[ , ],t t t∈  we have 

0( )
( ) .

b t t
u t ae

−

≤  

After more than 20 years, Bellman [2] in 1943 extended 

the last inequality, which reads in the following: 

Let a be a positive constant, u(t) and b(t), 
0 1

[ , ]t t t∈  

be real-valued continuous functions, ( ) 0,b t ≥  satisfying 

0
0 1

( ) ( ) ( ) , [ , ].
t

t

u t a b s u s ds t t t≤ + ∈∫  

Then, for all 0 1[ , ],t t t∈  we have 

( )
0

( ) exp ( ) .
t

t

u t a b s ds≤ ∫  

The somewhat more general extensions of the original 

Gronwall inequality can be found in [3]. 
 

Lemma 1: Let u and v be continuous and nonnegative 

functions defined on 
0

[ , ),J t= +∞  and let η be a 

continuous, positive and nondecreasing function defined 

on J; then 

0

( ) ( ) ( ) ( ) , ,
t

t

u t t v s u s ds t Jη≤ + ∈∫  

implies that 

( )
0

( ) ( ) exp ( ) , .
t

t

u t t v s ds t Jη≤ ∈∫  

A complete description of the modified result may be 

as follows: 

Theorem 1: Suppose that both assumptions (H1) and 

(H2) hold. Then, (1) is globally exponentially stable 

provided 

min(0.5 , ),τ δ τ
∗

<  

where 

1( ( ) ( )) 0ln K ln pδ γ
−

= − >  

and 0τ
∗

>  is the unique positive root to the equation 

1
( ) 1 0,C τ

∗

− =  in which (0,1)p∈  is a free parameter, 

and 

2

( ) 2
1 2 1

1 ( 2 )
1

( ) [

2 (1 )] 1,a a

C Ke B

a e e e

γ δ τ

μ δδ τ τ

τ μ δ τ β μ

μ

− −

− − − −

= + +

+ − =

� �
 

where 



Abdellatif Ben Makhlouf and Mohamed Ali Hammami 

 

1354

1
exp(2( ) ),B A Bμ β α β δ= +� � � � � �  

and 

2 1
( )a A Bμ τμ α β= + + .� � � �  

Before starting the proof, we note the following 

remark concerning the existence and positive uniqueness 

of the root τ*. 
 

Remark 2: Let us define a function 

1
( ) ( ) 1.F Cτ τ= −  

Because 

(0) 1 1 0F Ke p
γδ−

= − = − <  

and 

( ) ,F +∞ = +∞  

there exists at least one root to equation ( ) 0.F τ =  On 

the other hand, it is easy to show that F(τ) is strictly 

monotonously increasing over [0, [+∞  with respect to τ. 

Therefore, there exists a unique positive root τ* to 

equation 
1
( ) 1C τ

∗

=  and for any [0, [,τ τ
∗

∈  one sees 

that 
1
( ) 1.C τ <  

 

Proof: We divide the proof of Theorem 1 into two 

steps: 

Step 1: Fix the initial data t0 and ([ ,0]; ).n

Cϕ τ∈ − �  

Write 
0

( , , ) ( )x t t x tϕ =  and 
0

( , , (0)) ( ).y t t y tϕ =  From 

(1), it follows that 

0

0

0

0
( ) ( ) ( ( ))

( ( )) .

t
atat as

t

t
as

t

e x t e x t e Af x s ds

e Bg x s dsτ

= +

+ −

∫

∫
 

From (7), we deduce 

0

0

0

0
( ) ( ) ( ( ))

( ( )) .

t
atat as

t

t
as

t

e y t e y t e Af y s ds

e Bg y s ds

= +

+

∫

∫
 

Therefore, 

0

0

| ( ( ) ( )) | ( ) | ( )

( ) | | ( ) ( ) | .

t
at as

t

t
as

t

e x t y t A B e x s

y s ds B e x s x s ds

α β

β τ

− ≤ +

− + − −

∫

∫

� � � �

� �

 

By means of Gronwall inequality, we have 

0

0
| ( ( ) ( )) | exp(( )( ))

| ( ) ( ) | .

at

t
as

t

e x t y t B A B t t

e x s x s ds

β α β

τ

− ≤ + −

× − −∫

� � � � � �

 

Then, we obtain 

0

0

( )

| ( ) ( ) | exp(( )( ))

| ( ) ( ) | .
t

a s t

t

x t y t B A B t t

e x s x s ds

β α β

τ−

− ≤ + −

× − −∫

� � � � � �

 

Hence, if 
0 0

2 ,t t t δ≤ ≤ +  it follows that 

0

( )

| ( ) | | ( ) | exp(2( ) )

| ( ) ( ) | .
t

a s t

t

x t y t B A B

e x s x s ds

β α β δ

τ−

≤ + +

× − −∫

� � � � � �

 (8) 

On the other hand, if 
0

t t τ≥ +  one gets 

0

0

0

0

( )

( )

( )

( )

| ( ) ( ) |

[( ) | ( ) |

| ( ) |]

( ) | ( ) |

| ( ) | .

t
a s t

t

t s
a s t

t s

t s
a s t

t s

t s
a s t

t s

e x s x s ds

e ds a A x r

B x r dr

a A e x r dr

B e x r dr

τ

τ τ

τ τ

τ τ

τ

α

β τ

α

β τ

−

+

−

+ −

−

+ −

−

+ −

− −

≤ +

+ −

≤ +

+ −

∫

∫ ∫

∫ ∫

∫ ∫

� �

� �

� �

� �

 (9) 

By changing the order of integration one obtains: 

Case 1: When 
0 0

2 ,t t tτ τ+ ≥ ≥ +  

0

0

0

0

0

( ) | ( ) |

| ( ) | | ( ) |

| ( ) |

| ( ) | .

t s
a s t

t s

t t

t t

t

t

t

t

e ds x r dr

x r dr x r dr

x r dr

x r dr

τ τ

τ τ

τ

τ

τ

τ

−

+ −

− +

−

+

⎡≤ +
⎢⎣

⎤+
⎥⎦

≤

∫ ∫

∫ ∫

∫

∫

 

Case 2: When 
0

2 ,t t τ≥ +  

0 0

0

( ) | ( ) | | ( ) |

| ( ) | .

t s t s
a s t

t s t s

t

t

e ds x r dr ds x r dr

x r dr

τ τ τ τ

τ

−

+ − + −

≤

≤

∫ ∫ ∫ ∫

∫
 

Therefore, for any 
0

,t t τ≥ +  we have 

0 0

( ) | ( ) | | ( ) | ,
t s t

a s t

t s t

e ds x r dr x r dr
τ τ

τ
−

+ −

≤∫ ∫ ∫  (10) 

and 

0

0
0 0

( )

2

| ( ) |

| ( ) | ( sup | ( ) |).

t s
a s t

t s

t

t
t s t

e ds x r dr

x r dr x s

τ τ

τ

τ

τ τ

−

+ −

− ≤ ≤

−

≤ +

∫ ∫

∫
 (11) 

Consequently, substituting (10) and (11) into (9) one 

obtains that, if 
0

,t t τ≥ +  

0

0
0 0

( )

2

| ( ) ( ) | ( )

| ( ) | ( sup | ( ) |).

t
a s t

t

t

t
t s t

e x s x s ds a A B

x r dr B x s

τ

τ

τ τ α β

βτ

−

+

− ≤ ≤

− − ≤ + +

× + ×

∫

∫

� � � �

� �

 

 (12) 

We now restrict 
0 0

2 .t t tτ δ τ δ− + ≤ ≤ − +  
 

Substituting (12) into (8) and using hypothesis (H2), it 

follows that 

( )( ) (0)x t Ke
γ δ τ

ϕ
− −| |≤ | |  

exp(2( ) )B A Bβ α β δ+ +� � � � � �  
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0

2 2 2

( ) ()

exp(2( ) )

t

t
a A  B  xs ds

B A B

τ α  β

τβ α β δ

× + + | |

+ +

∫  

0 0

sup ( )

exp(2( ) )

t st

xs

B A B

τ

β α β δ

−≤≤

× | |

+ +
 

0

0

( ) () ( )
t as t

t
e xs xs ds
τ

τ
+ −× | − − | .∫  (13)  

Note also that, 

0

0 0  0

0
0 0

() () ()

( sup ()) ()

t t  t

t t  t

t

tt st

xs ds xs ds xs ds

xs xs ds

τδ

τδ

τδτδ

δ

−+

−+

−+≤≤ −+

| | = | | + | |

≤ | |+ | | ,

∫ ∫  ∫

∫
 

and 

0

0

0 0

( ) 1 ( 2)|() ( )| 2

(1 ) ( sup | ( )|).

t as t a

t

a

t st

e xs xs ds ae

e xs

τ δ τ

τ

τ τ

τ
+ − − − −

−

−≤≤ +

− − ≤

×− ×

∫
 

Substituting the last two inequality into (13), yields for 

0 0 2,t t tτ δ τ δ− + ≤ ≤ − +  

2

0 0

0 0

( ) 2
2 1

1 ( 2)
1

1

|()|[

2 (1 )]

sup | ( ) |

() sup | ()|.

a a

t st

t st

xt Ke B

ae e

e xs

C xs

γδ τ

δ τ τ

μδ

τ τδ

τ τδ

μδ τ β μ

μ

τ

− −

− − − −

−≤≤ −+

−≤≤ −+

≤ + +

+ −

⎛ ⎞
× ⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞
≤ ⎜ ⎟⎜ ⎟

⎝ ⎠

 (14)  

Note that, since τ τ∗<  we have 1 1.C<  Write 

1C eεδ−=  

with 

1

1
ln .Cε
δ

=−  

It then follows from (14) that, 

0 0 0 02

sup | ( ) | exp( ) sup | ( ) |,
t tt t st

xt xs
τδ τ δ τ τδ

εδ
−+ ≤≤ −+ −≤≤ −+

≤ −  

 (15)  
which holds for any 0 0t≥  and ([ , 0]; ).nCϕ τ∈ −  
 

Step 2: Fix 0 0t≥  and ([ , 0]; )nCϕ τ∈ −  arbitrarily, 
and let 1, 2, ...k=  
Denote 

0 0

0 0

(̂ ( 1);;)

{( ( 1) ; ; ): 0}.

xt k t

xt k st s

δ ϕ

δ ϕ τ

+ −

= + − +  −≤ ≤
 

Thus, by (15) 

0 0

0 0

0 0

( 1)

( 1) ( 1) 2

( 1)

sup | ( ) |

sup | ( ) |

exp( ) sup | ( ) | .

t k tt  k

t k tt k

t k tt k

xt

xt

xt

τ δ τ δ

δτδ δτ δ

τ δ τ δ

εδ

−+ ≤≤ −+ +

+ − −+ ≤≤ + − −+

−+ − ≤≤ −+

=

≤ −

 

By induction 

0 0

0 0

( 1)

sup | ( ) |

exp( ) sup | ( ) | .

t k tt  k

t tt

xt

k xt

τ δ τ δ

τ τδ

εδ

−+ ≤≤ −+ +

−≤≤ −+

≤ − ×
 (16)  

It is easy to show that there exists a positive constant C2 
> 0, such that 

0 0

2
0

sup | ( ) | sup | ( ) | .
t tt s

xt C s
τ τδ  τ

ϕ
−≤≤ −+ −≤≤

≤  

Substituting this into (16), yields 

0 0

2
( 1) 0

sup | ( ) | exp( ) sup | ( ) | .
t k tt  k s

xt C k s
τ δ τ δ τ

εδ ϕ
−+ ≤≤ −+ + −≤≤

≤ −

 (17)  
Now, for any 0 ,t t τ δ≥ − +   one can find a constant k, 
such that 

0 0 ( 1).t k t t  kτ δ τ δ− + ≤ ≤ − + +  

Thus, 

2 0
0

| ( ) | exp( ( )) sup | ( ) | .
s

xt C t t s
τ

εδ ε ϕ
−≤≤

≤ − −  

But this holds for any 0 0t t t τ δ≤ ≤ − +   as well. It fol-
lows that, equation (1) is globally exponentially stable.  
 

Remark 3: For computational consideration, in order 
to find the supper bound of delay such that (1) is globally 
exponentially stable provided ,̂τ τ<  we suggest the 
following optimization problem: 

0 1

1

1

ˆmax sup min , ,
2

()
., 1 0, ( ) 1,

(ln ln ) 0.

p
P
st p C

K p

δ
τ τ

τ

δ γ

∗

<<

∗

−

⎧ ⎛ ⎞⎧ ⎫
= ⎨ ⎬⎪ ⎜ ⎟

⎩ ⎭⎝ ⎠⎪
⎨

> > =⎪
⎪ = − >⎩

 

Using Matlab, the problem (P) can provide the optimal 
value of the root of equation 1( ) 1.Cτ∗ =  
 

The result established in Theorem 1 is given for 
constant-delay case which still holds when the time delay 
is time-varying. More precisely, let : [0,]τ τ+→  be 
a Borel measurable function, where 0.τ>   In this case, 
equation (1) is rewritten as the form 

0

0 0  0

() () ( ()) ( ( ())), ,

() ( ), ,

xt axt Af xt Bg xt t t t

xt t t t t t

τ

ϕ τ

=− + + − ≥

= − − ≤ ≤
 (18) 

where 

{ ( ) : 0} ([ , 0]; ),ns s Cϕ ϕ τ τ= −≤ ≤ ∈ −  

the matrices A and B, functions f and g are the same as 
defined in (1). 
 

Next, we can establish the following result when the 
time delay is time-varying. 
 

Theorem 2: Suppose that both assumptions (H1) and 
(H2) hold. Then, (18) is globally exponentially stable 
provided 
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0

sup min(0.5 , ),
tt

τ δτ∗

≥

<  

where τ* > 0 and δ are the same as defined in Theorem 1. 
 

Proof: The proof is similar to that of Theorem 1, and 
therefore,  omitted  here.             
 

Next, we will show the validity of the modified and 
corrected result given in Theorem 1 via the examples 
utilized in [5]. 
 

3. EXAMPLES 
 
Three examples are considered in this paragraph. 
 

Example 1: Consider a one-dimensional differential 
delay equation 

0

0 0  0

() () 2sin( ( )),

() ( ), ,

xt xt xt t t

xt t t t t t

τ

ϕ τ

=− − − ≥

= − − ≤ ≤
 (19)  

where φ is the same as defined in (1). 
The corresponding differential equation has the form 

0

0

() () 2sin( ()), ,

() (0).

yt yt  yt t t

yt ϕ

=− − ≥

=
 (20)  

The solution of (20), denoted by 0( , , (0)),yttϕ  satisfies: 

0( )
0 0|(;;)| |(0)|, .ttytt e t tϕ ϕ− −≤ ≥  

Hence, one sees that the standing assumptions (H1) and 

(H2) are satisfied with 0,α= 2,β= 1K= and 1.γ=  
By solving problem (P) yields that 

0 835p=.  

(therefore, 0.1803)δ  and τ∗ 0.0133 the maximum 

ˆ 0.0133.τ  

It follows from Theorem 1 that the delay equation (19) 
remain exponentially stable provided τ < 0.0133.  How-
ever, if we apply the result in [7], the modified version of 
[6], the threshold value of the delay ensuring exponential 
stability will be 0.0093, which is much smaller that our 
value. Moreover, it is easy to verify that the results in [8-
10] are not available for this example. 
 

Example 2: Consider a two-dimensional differential 
delay equation 

1 1  2

2 2  1  0

() 2 () sin( ( ))

( ) 2 ( ) 2sin( ( )), .

xt xt x t

xt xt xt t t

τ

τ

=− + −⎧
⎨

=− − − ≥⎩
 (21)  

The initial value is assumed to be 

1 2 0() [ (), ()] ( )Txt x t x t t tϕ= = −  

on 0 0,t t tτ− < ≤  where ([ , 0]; ).nCϕ τ∈ −  
The corresponding differential equation has the form: 

1 1  2

2 2  1

() 2 () sin( ())

() 2 () 2sin( ())

yt yt y t

yt yt yt

=− +⎧
⎨

=− −⎩
 (22)  

on 0t t≥   with initial value 

0 1 0 2 0() [ (), ()] (0).Tyt y t y t ϕ= =  

The solution of (22), denoted by 0( , , (0)),yttϕ  satisfies 

0 0 0| ( , , (0)) | | (0) | exp( ( )), ,ytt K t t t tϕ ϕ γ≤ − − ≥  

where 

1 and 1.K γ= =  

Note that 2,a= 0α=, 1,β=  

0 0

0 0
A
⎛ ⎞
=⎜ ⎟
⎝ ⎠

 

and 

0 1
.

2 0
B
⎛ ⎞
=⎜ ⎟
−⎝ ⎠

 

By solving Problem (P) yields that 

0.84p=  

(therefore, 0.1744)δ  and τ∗ 0.0129 the maximum 

ˆ 0.0129.τ  

However, if we apply the modified result [7] of the 
reference [6] the threshold value of the delay ensuring 
exponential stability will be 0.0045574, which is also 
much smaller that our value. 
 

Example 3: Consider a two-neuron cellular neural 
network system with delay 

1 1  1  2

1 2

2 2  1  2

1 2 0

() 2 () 0.5 ( ()) 0.1 ( ())

0.1 ( ( )) 0.2 ( ( )),

() 2 () 0.2 ( ()) 0.1 ( ())

0.2 ( ( )) 0.1 ( ( )), ,

xt xt fxt fx t

fxt fx t

xt xt fxt fxt

fxt fx t t t

τ τ

τ τ

=− − +⎧
⎪ − − +  −⎪
⎨

=− + −⎪
⎪ + − + − ≥⎩

 (23) 

where () 0.5(| 1| | 1|).fx x x= + − −  
The initial value is assumed to be 

1 2 0() [ (), ()] ( )Txt x t x t t tϕ= = −  

on 0 0,t t tτ− < ≤  where ([ , 0]; ).nCϕ τ∈ −  
In [10,11], the authors studied the asymptotic stability of 
the analog of (23) respectively. The upper bounds of 
delay estimated in [10] and [11] are τ∗<0.17 and τ∗< 
0.0279, respectively. The corresponding differential 
equation has the form: 

1 1  1  2

2 2  1

( ) 2 ( ) 0.6 ( ( )) 0.3 ( ( ))

() 2 () 0.4 ( ())

yt yt fyt fy t

yt yt fyt

=− − +⎧
⎨

=− +⎩
 (24)  

on 0t t≥   with initial value 

0 1 0 2 0() [ (), ()] (0).Tyt y t y t ϕ= =  

The solution of (24), denoted by 0( , , (0)),yttϕ  satisfies 

0 0 0| ( , , (0)) | | (0) | exp( ( )), ,ytt K t t t tϕ ϕ γ≤ − − ≥  
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where 

1 and 1.41095.K γ= =   

Note that 2,a = 1,α β= =  

0.5 0.1

0.2 0.1
A

−⎛ ⎞
= ⎜ ⎟

−⎝ ⎠
 

and 

0 1 0 2
.

0 2 0 1
B

− . .⎛ ⎞
= ⎜ ⎟

. .⎝ ⎠
 

By solving Problem (P) yields that 

0.469p =  

(therefore, 0.536)δ �  and 0.184τ
∗

�  the maximum 

ˆ 0.184,τ �  

which is larger than those in [10,11]. 
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