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Abstract: An approach for eigenvalue assignment in strongly controllable and observable linear de-

scriptor systems using dynamic compensators is proposed. Parametric expressions for the controller 

coefficient matrices are given. The approach assigns the full number of distinct finite closed-loop ei-

genvalues, guarantees the closed-loop regularity and overcomes the defects of some previous works. In 

addition, using the proposed eigenvalue assignment approach, a sufficient condition for generic eigen-

value assignability using dynamic compensators is proved. 

 

Keywords: Descriptor systems, dynamic compensators, eigenvalue assignment, regularity. 

 

1. INTRODUCTION 

 

Consider the following linear descriptor system 

,Ex Ax Bu= +�  ,y Cx=  (1) 

where ,

n

x∈R ,

m

u∈R
p

y∈R  are, respectively, the 

state vector, the input vector and the output vector; 

, ,

n n

E A
×

∈R ,

n m

B
×

∈R
p n

C
×

∈R  are known matrices 

with 
0

rank( ) ,E n n= ≤ rank( )B m=  and rank( ) .C p=  

Assume that the system (1) is strongly controllable and 

observable, i.e., the following conditions hold [1,2]: 

rank[ ] rank ,
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rank[ ] rank[ ] ,
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∞ ∞

= =  (3) 

where V
∞

 and T
∞

 are 
0

( )n n n× −  matrices defined 

by 0,EV
∞
= 0,

T
T E
∞

=
0

rank( ) rank( ) .V T n n
∞ ∞

= = −  If 

a dynamic compensator of order q 
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 (4) 

is applied to system (1), then the closed-loop system is 

11 12
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q
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�
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 (5) 

where q
z∈R  is the compensator state vector and ,

ij
K  

, 1,2i j =  are four controller coefficient matrices of 

appropriate dimensions. This paper studies the problem 

of eigenvalue assignment (Problem EA) in the system (1) 

using the dynamic compensator (4). The problem can be 

stated as: Given the strongly controllable and observable 

system (1), find real controller coefficient matrices ,
ij

K  

, 1,2i j =  such that the finite generalized eigenspectrum 

of the closed-loop system (5) equals an arbitrary self-

conjugate set Λ  of 
0
n q+  distinct complex numbers. 

Eigenvalue assignment in linear descriptor systems is 

a very important problem in descriptor systems theory 

and has been studied by a lot of researchers [3-30]. 

Among these reported results on eigenvalue assignment 

in linear descriptor systems, only a few are concentrated 

on the dynamic output feedback case [8,9,16]. Wang et 

al. [8] studied the problem of eigenvalue assignment in 

descriptor systems using dynamic compensators of the 

form of (4). They proved that for a strongly controllable 

and observable system (1) there exists a dynamic 

compensator of order 
0

q n=  such that the closed-loop 

eigenvalues are assigned arbitrarily to prespecified 

locations. However, the requirement of 
0

q n=  is too 

conservative. Sakr and Khalifa [16] also studied the 

problem of eigenvalue assignment in descriptor systems 

using dynamic compensators of the form of (4). The 

basis of this work was a demonstration of the 

equivalence between eigenvalue assignment in descriptor 

systems using dynamic compensators and in state space 

systems using static output feedbacks. From this result, 

they identified the order of the dynamic compensator 

required for full assignment of an almost arbitrary set of 

closed-loop eigenvalues as 

0
max{0, 1}.q n m p≥ − − +  (6) 

This result improves considerably the one obtained in [8]. 

Unfortunately, an example shows that the equivalence of 

eigenvalue assignability obtained in [16] may not hold 

(see Remark 2). Shayman [9] studied the problem of 
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eigenvalue assignment in descriptor systems using 

alternative dynamic compensators which are not in the 

form of (4). He showed that for a completely controllable 

and observable system (1) there exists a dynamic 

compensator of order 1q ν= − (ν  is the largest homo-

geneous index) such that the closed-loop eigenvalues are 

assigned arbitrarily close to prespecified locations. 

However, his theory is not applicable to strongly 

controllable and observable systems.  

In this paper, an approach for eigenvalue assignment 

in the strongly controllable and observable system (1) 

using the dynamic compensator (4) is proposed. 

Parametric expressions for the controller coefficient 

matrices , , 1, 2
ij

K i j =  are given. The approach assigns 

0
n q+  distinct finite closed-loop eigenvalues, guarantees 

the closed-loop regularity and overcomes the defects of 

some previous works [8,9,16]. In addition, it is shown 

using the proposed eigenvalue assignment approach that 

(6) is a sufficient condition for generic eigenvalue 

assignability using dynamic compensators. 

 

2. SOLUTION TO PROBLEM EA 

 

It is known from [30] that if 
0

max{ , }m p n≥  then 

eigenvalue assignment for the system (1) can be 

achieved by static output feedback. Due to this reason, 

we assume in this paper that 
0

max{ , } .m p n<  

Denote 

0 0
, , ,

0 0 0
c c

q

Ex A
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Iz
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Then (5) can be written as 

( ) .
c c c c c

E A B K Cξ ξ= +
�  (7) 

Let Λ  be a self-conjugate set of 
0
n q+  distinct com-

plex numbers 
01 2

, , ,
n q

λ λ λ
+

�  such that the decomposi-

tion 
1 2

Λ = Λ Λ∪  exists, where 
1 1 2

{ , , , }
p q

λ λ λ
+

Λ = �  

and 
02 1 2

{ , , , }
p q p q n q

λ λ λ
+ + + + +

Λ = �  are self-conjugate 

subsets. Denote the right eigenvector of the closed-loop 

system (7) associated with eigenvalue 
1i

λ ∈Λ  by 
i
v  

and the left eigenvector associated with eigenvalue 

2jλ ∈Λ  by tj. Then we have by definition,  

( ) 0,
c c c c i c i

A B K C E vλ+ − =  1,2, , ,i p q= +�  (8) 

0

( ) 0,

1, 2, , .

T
c c c c j c jA B K C E t

j p q p q n q

λ+ − =

= + + + + +�

 (9) 

Let 

, 1,2, , ,
i c c i

w K C v i p q= = +�  

0
, 1, 2, , .

T T
j c c jz K B t j p q p q n q= = + + + + +�  

Then (8) and (9) become 

( ) 0, 1,2, , ,
c i c i c i

A E v B w i p qλ− + = = +�  (10) 

0

( ) 0,

1, 2, , .

T T
c j c j c jA E t C z

j p q p q n q

λ− + =

= + + + + +�

 (11) 

Let ( )λΞ  and ( )λΠ  be matrices whose columns span 

the nullspaces ker([ ])A E Bλ−  and ker([
T T

A Eλ−  

])
T

C  respectively. Partition ( )λΞ  and ( )λΠ  into 

( ) ( )
( ) , ( ) ,

( ) ( )

( ) , ( )m m p p

N M

D L

D L

λ λ
λ λ

λ λ

λ λ
× ×

⎡ ⎤ ⎡ ⎤
Ξ = Π =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

∈ ∈C C

 (12) 

and let 

( ) 0 ( ) 0
( ) , ( ) ,

0 0c c

q q

N D
N D

I I

λ λ
λ λ

λ

⎡ ⎤ ⎡ ⎤
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( ) 0 ( ) 0
( ) , ( ) .

0 0c c

q q
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λ
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 (14) 

Then the general parametric solutions for ,
i
v iw  satis-

fying (10) and ,jt jz  satisfying (11) are given by 

( ) , ( ) , 1, 2, , ,
i c i i i c i i
v N f w D f i p qλ λ= = = +�  (15) 

0

( ) , ( ) ,

1, 2, , ,

j c j j j c j jt M g z L g

j p q p q n q

λ λ= =

= + + + + +�

 (16) 

where ,

m q

i
f +
∈C 1,2, , ,i p q= +� ,

p q
jg

+
∈C j p= +  

0
1, 2, ,q p q n q+ + + +�  are two groups of free param-

eter vectors. Let 

1 2

1 2

,

.

p q

p q

V v v v

W w w w

+

+
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Lemma 1: Let ,
c

E ,
c

A ,
c

B ,
c

C ,cK ,V
∞

T
∞

 be ma-

trices as described previously and [ 0 ],
n q

B B
×

=

�

[
T

C C=

�

 

0 ] .
T

n q×  Then degdet( ) rank( )c c c c c cE A B K C Eλ − − =  

if and only if  

11
det( ( ) ) det( ( ) ) 0.

T T

c
T A BK C V T A BK C V
∞ ∞ ∞ ∞

+ = + ≠

��

 

Proof: Apply Theorem 3.2 of Fletcher [11] to the ma-

trix pair ( , )c c c c cE A B K C+  directly. � 

Theorem 1: Given the strongly controllable and ob-

servable system (1) with 
0

max{ , } .m p n<  Then Problem 

EA has solutions if there exist vectors 
1 2
, , ,

p q
f f f

+
�  

in m q+

C  and vectors 
01 2

, , ,
p q p q n q

g g g
+ + + + +

�  in p q+
C  

satisfying the following conditions: 

(a)  
i j
f f=  for 

1i j
λ λ= ∈Λ  and k lg g=  for 

k
λ =  

2
;

l
λ ∈Λ  

(b)  ( ) ,
c c i i

C N fλ 1,2, ,i p q= +�  are linearly inde-

pendent in ;
p q+

C  

(c)  ( ) ,
c j j

M gλ
0

1, 2, ,j p q p q n q= + + + + +�  are 

linearly independent in ;
n q+

C  

(d)  ( ) ( ) 0,T T
j c j c c i ig M E N fλ λ = 1,2, , ,i p q= +� j =

0
1, 2, , ;p q p q n q+ + + + +�  

(e) 1
det( ( ( ) ) ) 0.

T

c
T A BW C V C V

−

∞ ∞
+ ≠

��

 

When the conditions (a)-(e) are met, all solutions to 
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Problem EA are given by 

11 12 1

21 22

( ) ,
c c

K K
K W C V

K K

−

⎡ ⎤
= =⎢ ⎥

⎣ ⎦
 (18) 

where V, W are given by (12)-(17). 

Proof: Following a similar line as in the proof of 

Theorem 1 in [30] and using Lemma 1, we can prove the 

theorem.  � 

Remark 1: If the decomposition 
1 2
′ ′Λ = Λ Λ∪  exists, 

where 
1 1 2

{ , , , }
m q

λ λ λ
+

′Λ = �  and 
2 1 2

{ ,
m q m q

λ λ
+ + + +

′Λ =  

0
, }

n q
λ

+
�  are self-conjugate subsets, then the solution 

to Problem EA can be obtained by replacing ( , ,
c c

E A  

, )
c c

B C  in Theorem 1 by its dual ( , , , ).T T T T

c c c c
E A C B  

Remark 2: In [16], the system (1) needs to be trans-

formed to the following form 

0 1 21 1 1

3 42 2 2

1

1 2

2

0

0 0

[ ] ,

n
I A Ax x B

u
A Ax x B

x
y C C

x

⎧⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎪⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎪ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦
⎨

⎡ ⎤⎪
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�

�

 (19) 

where 0

1

n

x ∈R  and A4 is nonsingular. If the static 

output feedback u Ky=  (For simplicity, we only 

consider the case 0.)q =  is applied to the system (19), 

then the closed-loop system is obtained as: 

0 1 1 1 2 1 21 1

3 2 1 4 2 22 2

0
.

0 0

n
I A B KC A B KCx x

A B KC A B KCx x

⎡ ⎤ + +⎡ ⎤⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

�

�

 (20) 

Sakr and Khalifa [16] proved that the finite eigenvalues 

of the descriptor system (20) are the same as those of the 

following state space system 

1 0 0 0 1
ˆ( ) ,x A B KC x= +�  (21) 

where 1

0 1 2 4 3
,A A A A A

−

= −

1

0 1 2 4 2
,B B A A B

−

= −
0 1

C C=  
1

2 4 3
,C A A

−

−

1 1

2 4 2
ˆ ˆ( ) .

m
K I KC A B K

− −

= −  Unfortunately, 

this result may not hold. To see this, consider the system 

(19) with 

1

0 0 0

0 0 0 ,

0 1 0

A

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

2

0

2 ,

0

A

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

3
[0 0 1],A =

4
1,A =  

1

1 0

0 1 ,

0 0

B

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

2
[0 1],B =

1

1 0 0
,

0 0 0
C

⎡ ⎤
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⎣ ⎦

2

0

1
C

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

and consider the assignment of the set { 1, }.i− ±  For 

this system, we have 

0 0 0

0 0 0 1 0
1 0 0

0 0 2 , 0 1 , .
0 0 1

0 1 0 0 0

A B C

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥= − = − = ⎢ ⎥⎢ ⎥ ⎢ ⎥ −⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

It is easy to verify that the set { 1, }i− ±  can be assigned 

to the state space system  

1 0 1 0
,x A x B u= +�

1 0 1
y C x=  by 

the output feedback 
1 1

1 0
ˆ .

0 1
u Ky y

−⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
 However, it 

is easy to verify that the set {–1, ±i} cannot be assigned 

to the example descriptor system by any output feedback 

u = Ky. 

Definition 1 [31]: A subset of s t×

R  is a Zariski open 

set of s t×

R  if it is nonempty and its complement is the 

set of solutions in s t×

R  to a finite set of polynomial 

equations. 

Lemma 2: Let s t

X
×

∈R  and ( ),
i

F X 1,2, ,i d= �  

be respectively ,
i i
h l× 1,2, ,i d= �  matrix functions 

whose elements are rational functions of the elements of 

X. Define 

{ , (X) iswelldefined

and rank( ( )) min{ , }, 1,2, , }.

s t

i

i i i

X X F

F X h l i d

×

ℵ= ∈

= =

R

�

 

If ℵ  is nonempty, then it is a Zariski open set of .s t×

R  

Proof: Let 

{ , (X) iswelldefined

and rank( ( )) min{ , }}.

s t

i i

i i i

X X F

F X h l

×

ℵ = ∈

=

R
 

Then 
1

d

ii=
ℵ= ℵ∩ . It is clear that if ℵ  is nonempty, 

then , 1,2, ,
i
i dℵ = �  are all nonempty. From Lemma 6 

in [29], , 1,2, ,
i
i dℵ = �  are all Zariski open sets of 

.s t×

R  Since the intersection of a finite number of 

Zariski open sets is also a Zariski open set, ℵ  is a 

Zariski open set of .s t×

R  � 

In the classical algebro-geometric literature, a property 

depending on a point of 
s t×

R  is often said to be 

“generic” if the set of points where it is true contains a 

nonempty Zariski open subset of .s t×

R  

Theorem 2: Let the strongly controllable and observ-

able system (1) with 
0

max{ , }m p n<  be given. If (6) 

holds, then for generic matrix triples ( , , ),A B C  there 

exists, for almost each self-conjugate set Λ  of 
0
n q+  

distinct complex numbers (It is assumed that the decom-

position 
1 2

Λ = Λ Λ∪  or 
1 2
′ ′Λ = Λ Λ∪  exists (see Theo-

rem 1 and Remark 1)), a dynamic compensator of order q 

in the form of (4) such that the generalized eigenspec-

trum of the closed-loop system (5) (or, equivalently, (7)) 

is Λ. 

Proof: Assume that the decomposition 
1 2

Λ = Λ Λ∪  

exists. It is desired to prove that for generic matrix triples 

( , , )A B C  and almost each self-conjugate set Λ the set 

{ given by (18)

with (a) (e) in Thoerem1 satisfied}

c c c
K Kκ =

−

 

is nonempty. 

We rewrite the condition (d) in Theorem 1 as the 

following linear system of equations with the vectors 

1 2
, , ,

p q
f f f

+
�  as unknown variables: 

0,
i i
fΦ =  1,2, ,i p q= +�  (22) 

with 
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0 0

1 1

2 2

( ) ( )

( ) ( )
.

( ) ( )

T T
p q c p q c c i

T T
p q c p q c c i

i

T T
n q c n q c c i

g M E N

g M E N

g M E N

λ λ

λ λ

λ λ

+ + + +

+ + + +

+ +

⎡ ⎤
⎢ ⎥
⎢ ⎥

Φ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

�
 

Since all 
i

Φ  are 
0

( ) ( )n p m q− × +  matrices with 
0
n −  

,p m q< +  the system of algebraic equations (22) al-

ways has nontrivial solutions. Denote the real number 

i
λ  by 

i
σ  and a pair of conjugate complex numbers 

i
λ  

and λj by .

i j i j
iλ λ σ σ= = +  Let 

01 2
[ ]

T
n qσ σ σ

+
Σ = �  

0
.

n q+

∈R  We identify the space of the matrix quadruples 

( , , , )A B C Σ  with the linear space 0( )
.

n n m p n q+ + + +

R  It is 

easy to see that all the vectors 
1 2 1
, , , , ,

p q p q
f f f g

+ + +
�  

02
, ,

p q n q
g g

+ + +
�  satisfying the conditions (a) and (d) in 

Theorem 1 depend rationally on ( , , , ).A B C Σ  If we de-

note ( , , , )A B C Σ  by ,Θ  then we can write ( ),
i i
f f= Θ  

1,2, , ,i p q= +� ( ),j jg g= Θ 1,j p q= + + 2, ,p q+ + �  

0
.n q+  Let 

1 1
( ) ( ) ( ) ( ) ( ) ,

c c p q p q
V N f N fλ λ

+ +
⎡ ⎤Θ = Θ Θ⎣ ⎦�  

1 1
( ) ( ) ( ) ( ) ( ) ,

c c p q p q
W D f D fλ λ

+ +
⎡ ⎤Θ = Θ Θ⎣ ⎦�  

0 0

1 1
( ) ( ) ( )

( ) ( ) ,

c p q p q

c n q n q

T M g

M g

λ

λ

+ + + +

+ +

⎡Θ = Θ⎣

⎤Θ ⎦

�

( )1( ) ( )( ( )) .T

c
H T A BW C V C V

−

∞ ∞
Θ = + Θ Θ

��

 

Then, the conditions (b), (c), and (e) in Theorem 1 be-

come respectively the following conditions: 

Condition C1: rank( ( ))
c

C V p qΘ = + ; 

Condition C2: 
0

rank( ( ))T n pΘ = − ; 

Condition C3: 
0

rank( ( ))H n nΘ = − . 

When Conditions C1-C3 are met, we have 

1( )( ( )) .
c c

K W C V
−

= Θ Θ  (23) 

Then, the set 
c

κ  can be equivalently written as 

{ | given by (23)

withConditionsC1 C3 satisfied}.

c c c
K Kκ =

−

 

It is desired to prove that for generic Θ  the set 
c

κ  is 

nonempty. For this purpose, it suffices to prove that the 

set 

{ }0( )
| , Conditions C1 C3 holds

n n m p n q

S
+ + + +

= Θ Θ∈ −R  

is a Zariski open set of 0( )
.

n n m p n q+ + + +

R  Notice that 

( ), ( )
c

C V TΘ Θ  and ( )H Θ  are matrix functions whose 

elements are rational functions of the elements of 
0( )

.

n n m p n q+ + + +

Θ∈R  Then, from Lemma 2, it suffices to 

prove that the set S is nonempty. In the following, we 

will produce an example to show that the set S is 

nonempty. 

Since 
0

rank( ) ,E n=  there exist two nonsingular 

matrices P, Q such that 

0
0

.

0 0

n
I

PEQ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

Define matrices A, B and C as follows: 

0 0

0

1 11 1 1

( )

1
1 ( )

0
, ,

0 0

0 ,

n n n n m

p n n

A B
A P Q B P

I

C C Q

− − −

− − ×

−

× −

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎡ ⎤= ⎣ ⎦

 (24) 

where 
1

rank( ) ,B m=
1

rank( )C p=  and the matrix triples 

1 1 1
( , , )A B C  is both controllable and observable. Using 

Theorem 4 of [32], we can show that, for the descriptor 

system (1) with matrices A, B and C  given by (24), if 

(6) holds, then an almost arbitrary set of 
0
n q+  distinct 

closed-loop eigenvalues is assignable using dynamic 

compensators of order q. This means that we can always 

find a matrix triple ( , , )A B C� ��  in the form of (24) and a 

vector Σ�  in 0n q+

R  such that ( , , , ) .A B C SΘ = Σ ∈� �� � �  Thus 

the set S is nonempty and the theorem for the case that 

1 2
Λ = Λ Λ∪  exists follows. 

The theorem for the case that 
1 2
′ ′Λ = Λ Λ∪  exists can 

be proved by replacing ( , , , )E A B C  by its dual ( ,T
E  

, , ).

T T T
A C B   � 

Remark 3: Theorem 2 provides a theoretical proof for 

the sufficient condition (6). The condition (6) is the best 

sufficient condition for eigenvalue assignability so far. 

On the other hand, a dimension argument shows that the 

necessary condition for eigenvalue assignability using 

dynamic compensators is 

0
( ) .q m p mp n q+ + ≥ +  (25) 

This is a generalization to descriptor systems of the result 

of Willems and Hesselink [33] concerning eigenvalue 

assignment using dynamic compensators for state space 

systems, i.e., ( ) .q m p mp n q+ + ≥ +  Thus, it is the au-

thor’s belief that the lower bound on the order of dynam-

ic compensators given by (6) is still very conservative, 

and there remains a wide room for further improvement. 

 

3. AN ILLUSTRATIVE EXAMPLE 

 

Consider a system in the form of (1) with the follow-

ing coefficient matrices 

1 0 0 0 0 0 1 0

0 1 0 0 1 0 0 0
, ,

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1

[0 0 1 0] , [0 0 0 1].
T

E A

B C

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= =

 

For this system we have 4,n =
0

2,n = 1.m p= =  It is 

easy to verify that the system is strongly controllable and 

observable (The theory developed in [9] cannot be ap-

plied since the system is not completely controllable and 

observable). According to Theorem 2, a first-order dy-
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namic compensator is required in order to obtain almost 

arbitrary eigenvalue assignment. Now we consider the 

assignment of a self-conjugate set 
1 2 3

{ , , }λ λ λΛ =  of 

distinct numbers 
1 2 3
, , ,λ λ λ  where 

1 2
,iλ λ α β= = +  

3
, , , .λ γ α β γ= ∈R  Obviously, we have the decomposi-

tion 
1 2

,Λ = Λ Λ∪  where 
1 1 2

{ , }λ λΛ =  and 
2 3

{ }.λΛ =  

For the example system, we have 

2 2

2

10 0

10 0
, ( ) , ( ) ,

1 0

0 1 1

( ) ( ) 1.

V T N M

D L

λ

λ
λ λ

λ λ

λ

λ λ

∞ ∞

−⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎢ ⎥ ⎢ ⎥⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥⎢ ⎥ −
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥ −⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

= =

 

Then, from (15) and (16), we have 

( ) ,
i c i i
v N fλ= ( ) ,

i c i i
w D fλ= 1,2,i =

3 3 3
( ) .

c
t M gλ=  

We may choose 

1 2 3

31 2

11
, , , 1,2,3

i
f f g x i

xx x i

⎡ ⎤⎡ ⎤
= = = ∈ =⎢ ⎥⎢ ⎥+⎣ ⎦ ⎣ ⎦

R  

due to the lack of uniqueness of eigenvectors. It is easy 

to verify that the conditions (a) and (c) in Theorem 1 

hold and the conditions (b) and (d) are respectively 

2 2

1 2
2 ( ) 0,x xαβ α β− − ≠  (26) 

1 3

2 3

0

0.

x x

x x

α γ

β

− − + =⎧
⎨
− + =⎩

 (27) 

From (27) and the condition 0β ≠  (since 
1 2 3
, ,λ λ λ  

are distinct), we have 
3

0x ≠  and 

1 2

3 3

, .x x

x x

α γ β+
= =  (28) 

From (26) and (28), we have 2 2
2 0.α αγ β+ + ≠  From 

(17) and replacing v1 and v2 by 
1

Re( )v  and 
1

Im( ),v  

and w1 and w2 by 
1

Re( )w  and 
1

Im( ),w  we have 

2 2

2 2

3 3

1 0

2
,

2

V

x x

α β

α β αβ

α β αβ

α γ β

− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− + −

= ⎢ ⎥
⎢ ⎥−
⎢ ⎥

+⎢ ⎥
⎢ ⎥⎣ ⎦

 

2 2

3 3

1 0

.2W

x x

α αγ β αβ βγ

⎡ ⎤
⎢ ⎥= + − +⎢ ⎥
⎢ ⎥⎣ ⎦

 

It is easy to verify that the condition (e) in Theorem 1 

holds. From the above, we see that if 
3

0x ≠  and 
2 2

2 0,α αγ β+ + ≠  then the conditions (a)-(e) in Theo-

rem 1 are satisfied, and by (18) the controller coefficient 

matrices , , 1, 2
ij

K i j =  are obtained as 

2

3 3

11 122 2 2 2

2 2 2 2 2

21 222 2 2 2

2
, ,

2 2

2 ( )
, .

2 2

x x
K K

K K

α

α αγ β α αγ β

α β αγ γ α β γ

α αγ β α αγ β

−

= =

+ + + +

+ + + +
= =

+ + + +

 

Specially choosing 1,α = −
3

1,xβ = = 2,γ = −  we have 

11 12 21 22

1 1 5 2
, , ,

6 3 3 3
K K K K= − = − = = − . 

 

4. CONCLUSION 

 

An approach for eigenvalue assignment in the strongly 

controllable and observable system (1) using the dynamic 

compensator (4) is proposed. Parametric expressions for 

the controller coefficient matrices , , 1, 2
ij

K i j =  are 

given. The approach assigns 
0
n q+  distinct finite 

closed-loop eigenvalues, guarantees the closed-loop 

regularity and overcomes the defects of some previous 

results. In addition, it is shown using the proposed 

eigenvalue assignment approach that (6) is a sufficient 

condition for generic eigenvalue assignability using 

dynamic compensators.  
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