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Abstract: A distributed leader-follower flocking problem of multiple robotic fish governed by ex-

tended second-order unicycles is studied in this paper. The multi-agent system consists of only one 

leader with pre-appointed and bounded speeds. A distributed flocking algorithm on the basis of the 

combination of consensus and attractive/repulsive functions is investigated, in which adaptive strategy 

is adopted to compute the weight of the velocity coupling strengths. The proposed control algorithm 

enables followers to asymptotically track the leader’s varying velocities and approach the equilibrium 

distances with their neighbors. Furthermore, the arbitrarily-shaped formation flocking problem of the 

system can also be solved by adding the information of a desired formation topology to the potential 

function term. Finally, simulations are carried out to verify the effectiveness of the proposed theoretical 

results. 
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1. INTRODUCTION 

 

In nature, flocking phenomenon can be widely ob-

served among social animals, in which a group of scat-

tered agents maintain a cohesive or geometric formation 

based on neighbor information and simple rules. Therein, 

leaders commonly play an important role in guiding the 

behaviors of the group. 

In the literatures on flocking [1-5], the existence of 

virtual leaders is a common assumption to expediently 

guide the flocking behaviors of the group. Beyond that, a 

new solution has emerged that assigns one or more real 

vehicles as leaders [6]. Since the real leaders participate 

in the energy distribution and formation construction of 

the whole system, it brings new challenges to the 

research on flocking. In this paper, we study the leader-

follower flocking problem of multiple robotic fish 

considering its kinematic constraints.  

Gu et al. [6] studied a leader-follower flocking prob-

lem concerning multiple leaders, and followers use the 

position of flocking center to keep their connections. The 

flocking group proposed by Gu et al. [6] was just able to 

track a specific trajectory led by group leaders, while Yu 

et al. [4] have given a distributed leader-follower 

algorithm considering the group consisting of one leader 

with time-variable speeds. However, the leader involved 

in Yu’s work [4] is still a virtual one. Thus, it is 

necessary to study a distributed flocking algorithm for 

the multi-agent system consisting of one real leader with 

varying speeds. Besides, Savkin et al. [7] studied the 

formation flocking problem aiming to obtain a geometric 

formation for a network of unicycles with hard con-

straints, but they didn’t involve any leaders. To this end, 

another task in this paper is to further extend the de-

signed control algorithm to solve the relative formation 

flocking problem. 

Adaptive strategy has been widely applied to 

synchronization of complex networks, especially for the 

cases include uncertain terms [8-12]. For example, Hou 

et al. [8] given a robust adaptive control approach to 

solve the consensus problem of multi-agent systems, 

whose dynamics included the uncertainties and external 

disturbances. In Demetriou et al.’s work [9], the adapta-

tion of the consensus gains is used in the disagreement 

terms of local filters for a sensor network consisting of 

groups of sensors. Min et al. [10] studied adaptive 

consensus protocols for non-point, non-linear networked 

Euler-Lagrange systems with unknown parameters. Su et 

al. [11] introduced local adaptation strategies for both the 

weights on the velocity navigational feedback and the 

velocity coupling strengths that enable all agents to 

synchronize with the virtual leader. Liu et al. [12] 

proposed an adaptive protocol to solve the consensus 

problem of multi-agent systems with high-order nonlin-

ear dynamics by using neural networks to approximate 

the unknown nonlinear system functions. It thus appears 

that adaptive control could be an effective method 

approaching to the unknown varying speed of the leader. 
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In this paper, we present a distributed adaptive 

flocking algorithm to solve the cohesive flocking and 

geometric-formation flocking of multiple robotic fish 

consisting of only one leader with varying and bounded 

speeds. Therein, consensus algorithm is adopted for 

realizing the velocity alignment, while the problems of 

connectivity preservation and distance equilibrium are all 

solved by artificial potential field method [13]. Adaptive 

strategy is introduced to deal with the varying speeds of 

the leader. The stability of the closed-loop system is 

analyzed by means of LaSalle-Krasovskii invariance 

principle, provided that the initial interaction network 

among the followers is an undirected connected graph, 

and there exists at least one follower having a leader 

neighbor at the initial time. Furthermore, by adding the 

information of a desired formation topology to the 

potential function term, the proposed flocking algorithm 

can be extended to solve arbitrarily shaped formation 

flocking problem. Finally, the simulation results are 

given to verify the effectiveness of the proposed algo-

rithms. 

The rest of this paper is organized as follows: Section 

2 formulates the flocking problem of multiple robotic 

fish with one variable-speed leader. Two distributed 

adaptive flocking algorithms are presented, and the 

stability analysis of the closed-loop system is also 

provided in Section 3. The simulation results are given in 

Section 4. Finally, the conclusions are drawn in Section 5. 

 

2. FORMAT PROBLEM STATEMENT 

 

The multi-agent system under consideration consists 

of N robotic fish traveling in a two-dimensional 

Euclidean space. Robotic fish was modeled as a unicycle 

during the research on cooperation control of multiple 

robotic fish [14,15]. Considering that the main propul-

sive force of the robotic fish comes from the latter part of 

its body, we make further efforts to draw the swimming 

robotic fish by a dynamic model named an extended 

second-order unicycle model, whose geometrical center 

and mass center don’t coincide. Let Z
+ denote the set of 

positive integers, R the set of real numbers, and R+ the 

set of positive real numbers. As shown in Fig. 1, the 

robotic fish is modeled by the following kinematic 

equation 

( ) ( ) cos ( ) ( ) sin ( ),

( ) ( )sin ( ) ( ) cos ( ),

( ) ( ),

( ) ( ),

( ) ( ) / ,

i i i i i i

i i i i i i

i i

i i

i i i

x t t t t l t

y t t t t l t

t t

t a t

t b t l

υ θ ω θ

υ θ ω θ

θ ω

υ

ω

= −

= +

=

=

=

�

�

�

�

�

 (1) 

where 2( ) [ ( ), ( )]T
i i i
p t x t y t R= ∈  is the position vector, 

( )
i
t Rθ ∈  the heading angle, ( )

i
t Rυ ∈  the thrusting 

speed, ( )
i
t Rω ∈  the rotational speed, 

i
l R

+
∈  the 

distance between the geometrical center Ci and the mass 

center Mi, ( ) ( )
i i i
t t l Rϑ ω= ∈  the tangential speed, 

( )
i
a t R∈  the thrusting acceleration, and ( )

i
b t R∈  the 

rotational acceleration. Here, ( ) [0, 2 )
i
tθ π∈  is measured 

from the x-axis in the anticlockwise rotation. In this 

paper, we do not consider the individual difference 

during the theoretical analysis. Thus, it should be noted 

that ,
i d
l l= ,1, ,i N= �  where ld is a constant. 

We consider the robotic fish system with only one 

leader. If an agent has external control input, we call it a 

leader; else, we call it a follower. Without loss of 

generality, let leader set be {1}=L  and follower set be 

{2, , }.N= �F  Each agent only interacts with its 

neighbor due to its limited interaction capability. We 

suppose that interconnection with the leader is 

unidirectional, while interconnection with the follower is 

bidirectional [16]. Let ( )
i

N t  denote the neighbor set of 

the follower i∈F  at time t, and the initial neighbor set 

of the follower i is defined as 

{ }(0) (0) (0) , 1, , , ,
i i j

N j p p D j N j i= − < = ≠�  (2) 

where 0D >  is a constant. 

The interaction network G(t) is a dynamic directed 

graph consisting of a vertex set {1, , }Nν = �  indexed 

by robotic fish and a time-varying edge set ( )tε =  

{( , ) | ( , ) , ( )}.
i

i j i j j N tν∈ × ∈F  Therein, the followers’ 

interaction network ˆ ( )G t  with vertex set F  and edge 

set ˆ( ) {( , ) | ( , ) , ( )}
i

t i j i j j N tε = ∈ × ∈F F  is an undirect-

ed graph. The matrix ( ) [ ( )]
ij N N

A t a t
×

=  with definition 

1, 1, 1

( ) 1, , ( )

0, otherwise

ij i

i j

a t i j N t

= =⎧
⎪

= ∈ ∈⎨
⎪
⎩

F  (3) 

represents the coupling configuration of the network G(t). 

Let cij denote the coupling strengths between node i and 

node j. Define the matrix of the weighted coupling 

configuration of the network G(t) as follows: 

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

( ) [ ( )]

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
,

( ) ( ) ( ) ( ) ( ) ( )

ij N N

N N

N N

N N N N NN NN

B t b t

c t a t c t a t c t a t

c t a t c t a t c t a t

c t a t c t a t c t a t

×
=

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

�

�

� � � �

�

 (4) 

where ,( )
ij
b t R∈ ( ) ,

ij
c t R

+
∈ , .i j ν∈  The Laplacian 

matrix 
1 ( 1) ( 1)
( ) [ ( )]

N ij N N
L t l t

− − × −

=  of the graph ˆ ( )G t  is 

 

Fig. 1. The simplified model of the robotic fish. 
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given by 

2,

( ) ( ),

( )
( ) ( ), .

ij ij

ij N

ik ikk k i

c t a t i j

l t
c t a t i j

= ≠

− ≠⎧
⎪

= ⎨
=⎪⎩∑

 (5) 

For ˆ ( )G t  is an undirected graph, the Laplacian matrix 

1
( )

N
L t

−

 is symmetric and positive semi-definite. Fig. 2 

gives a sample of the interaction network for the robotic 

fish system. 

Define that the interaction network G(t) switches at tp, 

, .1, 2p = �  Thus, G(t) is a fixed graph in each nonempty, 

bounded, and contiguous time-interval 
1
,[ , )

r r
t t

+
 where 

0,1,r = �  and 
0

0.t =  Given that ˆ (0)G  is an undirected 

connected graph, and there exists at least one follower 

having a leader neighbor at the initial time 
0

0.t =  In 

order to preserve the connectivity of the interaction 

network G(t), the hysteresis adding new edges to the 

network is introduced [17,18], such that 

1)  if ( , ) ( )i j tε
−

∈  and ˆ ˆ( ) ( ) 2 ,
i j
p t p t D− <� �  where 

*ˆ ( ) ( ) ( )
i i i
p t p t p t= −  and *

1 1
0

( ) ( ) ( )
t

T

i i i
p t w t H t q dτ= ∫  

( 1, ),,i N= �  then ( ,, ) ( )i j tε∈  for 0;t >  

2)  if ( , ) ( )i j tε
−

∉  and ( ,( ) )
i j
p t p t D− <� �  then 

( ,, ) ( )i j tε∈  for 0.t >  

 

3. FLOCKING ALGORITHM 

 

Let ( ) [ ( ), ( )]T
i i i
q t t tυ ϑ=  be the velocity vector of 

agent i, the model (1) can be rewritten in matrix form as 

( ) ( ) (

) )

,)

,( (

T

i i i

i i

t H t q tp

q t u t

=

=�

�

 (6) 

where 
cos ( ) sin ( )

( )
sin ( ) co

,
s ( )

i i

i

i i

t t
H t

t t

θ θ

θ θ

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 and ( ) [ ( ),
i i
u t a t=  

i =1,…, N.  

The external control input of the leader is given by 

1
( ) ( ),u t f t=  (7) 

where 2

1 2
( ) [ ( ), ( )]Tf t f t f t R= ∈  is bounded, who satis-

fies that 

1
lim ( ) 0,
t

f t
→∞

=  (8) 

2
lim ( ) 0.
t

f t
→∞

=  (9) 

In addition, the control input of the follower i (i =  

2, , )N�  is designed by 

( )

( )

ˆ ( )

( )

ˆ ˆ( ) ( )( ( ) ( ))

ˆ( ) ( ) ( )

ˆ( ( ) ) ( ),

i

i

ij

i

i ij i j

j N t

T
ij ij i

j N t

T
p t ij i

j N t

a t c t t t

c t p t t t

V p t t t

υ υ

∈

∈

∈

= − −

−

− ∇

∑

∑

∑

�

�
� �

�
 

( )

( )

( )

ˆ ( )

( )

ˆ ˆ( ) ( ) ( ( ) ( ))

ˆ ˆ( ) ( ( ) ( ))

ˆ( ) ( ) ( )

ˆ( ( ) ) ( ),

i

i

i

ij

i

i ij d i j

j N t

ij d i j

j N t

T
ij ij i

j N t

T
p t ij i

j N t

b t c t l t t

c t l t t

c t p t n t

V p t n t

θ θ

ω ω

∈

∈

∈

∈
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∑
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 (10) 

ˆ ˆ ˆ ˆ( ) ( ( ) ( )) ( ( ) ( ))

ˆ ˆ( ) ( ),

T
ij ij i j i j

T
ij ij ij

c t k q t q t q t q t

k p t p t

= − −

+

�
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where 
1 1

ˆ ( ) ( ) ( ) ( ),
i i i
t t a t tυ υ υ= −

1 1
ˆ ( ) ( ) ( ) ( ),
i i i
t t a t tω ω ω= −  

1 1
ˆ ( ) ( ) ( ) ( ),
i i i
t t a t tθ θ θ= −  and ˆ ˆ ˆ( ) ( ) ,( )

ij i j
p t p t p t= − (0)

ij
c  

,0≥
ij
k  is the weight of the adaptive parameter ( ).

ij
c t  

Here, *

1 1
0

( ) ( ) ) ( .( )
t

T

i i i
p t a t H t q t dτ= ∫  Thus, we have 

*

1 1

ˆ ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

ˆ( ) ( ,)

i i i

T T

i i i i

T

i i

p t p t p t
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where 
1 1

ˆ ( ) ( ) .( ) ( )
i i i
q t q t a t q t= −  Besides, 

cos ( )

sin ( )
( ) i

i

t

i
t

t t
θ

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=

�

 

and 
sin ( )

cos ( )
( ) i

i

t

i
t

n t
θ

θ

⎡ ⎤−
⎢ ⎥
⎢ ⎥⎣ ⎦

=

�

 are two unit vectors orthogonal to 

each other, and ˆ ( ) ˆ( ( ) )
ijp t ij

V p t∇ � �  is the gradient of an 

artificial potential function ˆ( ( ) )
ij

V p t� �  with the fol-

lowing definition: 

Definition 1: Potential ˆ( ( ) )
ij

V p t� �  is a differentia-

ble, nonnegative, radially unbounded function of the 

Euclidean norm ˆ ( )
ij
p t� �  between agent i and j, such 

that 

1)  ˆ( ( ) )
ij

V p t →∞� �  as ˆ ( ) 0
ij
p t →� � ; 

2)  ˆ( ( ) )
ij

V p t →∞� �  as ˆ ( ) 2
ij
p t D→� � ; 

3)  ˆ( ( ) )
ij

V p t� �  attains its unique minimum when the 

Euclidean norm ˆ
ij
p� �  equals to a certain value be-

tween 0 and 2D. 

Then, we have Theorem 1 to solve the leader-follower 

cohesive flocking problem. 

Theorem 1: Consider a system of N agents with dy-

namics (1). The leader and the followers are respectively 

steered by control protocols (7) and (10). Suppose that 

the initial interaction network among the followers is an 

undirected connected graph, and there exists at least one 

follower having a leader neighbor at the initial time. 

 

Fig. 2. An example of the interaction network. 
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Then the following statements hold: 

1) The connectivity of the interaction network is pre-

served at all times, that is, 
1

( ) ( ).
r r
t tε ε

+
⊆  

2) The thrusting speed, the rotational speed, and the 

heading angle of each follower asymptotically become 

the same as those of the leader, that is, lim( ( )i
t

tυ
→∞

−  

( )) ,0
j
tυ = lim( ( ) ( ,)) 0i j

t
t tω ω

→∞

− =  and lim( ( ) ( ))i j
t

t tθ θ
→∞

−  

,0=  where , , .i j i jν∈ ≠  

3) The system approaches a cohesive configuration 

that minimizes the total potential, that is, 

ˆ ( ) ˆ( ( ,) ) 0
ij

i

p t ij

j N

V p t

∈

∇ =∑ � �  

1
ˆ ( ) 1ˆ( ( ) ) 0.

j

l

p t j

j N

V p t

∈

∇ =∑ � �  

Proof: Consider the system (1) with control input (7) 

and (10) on time interval 
1
,[ , )

r r
t t

+
 where the interac-

tion network of the robotic fish system is fixed. Define 

that 
11 1 1
ˆ ˆ ˆ ˆ( ) [ ( ) , , ( ) , , ( ) , , ( ) ] ,T T T T T

N N NN
p t p t p t p t p t=� � � �  

2
ˆ ˆ ˆ( ) [ ( ) , ( ) ] ,,T T T

N
q t q t q t= �  and 

2
ˆ ˆ ˆ( ) [ ( ), , ( )] .T

N
t t tθ θ θ= �  

Let 
1

{ | 1, }
l i

N i a i= = ∈F  denote the set of followers 

who have one leader neighbor on time interval 
1
.[ , )

r r
t t

+
 

Consider the following energy function as the common 

Lyapunov function 

1 2 3 4
ˆˆ( ( ), ( ), ( )) ( ) ( ) ( ) ( ),E p t q t t E t E t E t E tθ = + + +�  (11) 

where 

1

1
( ) ( ),

2
E t V t=  (12) 

2
( )

1
ˆ ˆ( ) ,

2
( )T

i i

i

t tE t q q
∈

= ∑
F

 (13) 

3

1
( ) ( ),

2
E t t= Θ  (14) 

2

4

( )

( ( ) )1
( ) ,

4
i

ij

iji j N t

c t m
E t

k
∈ ∈

−

= ∑ ∑
F

 (15) 

where ( ) ( )1

( ) ( )

,ˆ ˆ( ) ( ) ( )

i l

ij j

i j N t j N t

V t V p t V p t

∈ ∈ ∈

= +∑ ∑ ∑
F

 and 

2

( )

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ).( )

i

d ij i i j

i j N t

t l c t t t tθ θ θ

∈ ∈

Θ = −∑ ∑
F

 

Suppose that the interaction network ( )G t  switches 

at ,
p
t , .1,2p = �  ( )G t  is a fixed graph in each non-

empty, bounded, and contiguous time-interval 
1
,[ , )

r r
t t

+
 

, .0,1r = �  Here, 
0

0.t =  Then the derivative of ( ,E p�  
ˆˆ, )q θ  w.r.t. the time 1[ , )r rt t t

+
∈  is 

31 2 4
.

dEdE dE dEdE

dt dt dt dt dt
= + + +  (16) 

We will respectively express the four parts on the right 

side of equation (16) in the following paragraphs. 

Firstly, we have that 

1
ˆ ( )

1
ˆ ˆ( ) ( ( ) )

2 ij

i

T
ij p t ij

i j N

dE
p t V p t

dt
∈ ∈

= ∇∑ ∑
F

�� �  (17) 

1

1

1

ˆ1 ( ) 1

ˆ ( )

/{1}

ˆ1 ( ) 1

ˆ1 ( ) 1

1
ˆ ˆ( ) ( ( ) )

2

ˆ ˆ( ) ( ( ) )

1
ˆ ˆ( ) ( ( ) )

2

1
ˆ( ) ( ( ) ).

2

j

l

ij

i

i

l

j

l

T
j p t j

j N

T
i p t ij

i j N

T
i p t i

i N

T
j p t j

j N

p t V p t

p t V p t

p t V p t

p t V p t

∈

∈ ∈

∈

∈

+ ∇

= ∇

+ ∇

+ ∇

∑

∑ ∑

∑

∑

F

�

�

�

� �

� �

� �

� ��

 

Due to ˆ ˆ( ) ( )T T
ij jip t p t= −

� �  and the symmetric nature 

of ( ( ) ),
ij

V p t� �  one gets 

1

1

1

ˆ1 ( ) 1

ˆ1 ( ) 1

ˆ1 ( ) 1

1
ˆ ˆ( ) ( ( ) )

2

1
ˆ ˆ( ) ( ( ) )

2

1
ˆ ˆ( ) ( ( ) ).

2

j

l

j

l

i

l

T
j p t j

j N

T
j p t j

j N

T
i p t i

i N

p t V p t

p t V p t

p t V p t

∈

∈

∈

∇

= ∇

= ∇

∑

∑

∑

�

�

� �

��

� �

�

 (18) 

With 
1 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ,)T T T T

i i i
p t p t p t p t= − =

� � � �  we have 

1

1

1
ˆ ( )

/{1}

ˆ1 ( ) 1

ˆ ( )

/{1}

ˆ ( ) 1

ˆ ( )

ˆ ˆ( ) ( ( ) )

ˆ ˆ( ) ( ( ) )

ˆ ˆ( ) ( ( ) )

ˆ ˆ( ) ( ( ) )

ˆ ˆ( ) ( ( ) ).

ij

i

i

l

ij

i

i

l

ij

i

T
i p t ij

i j N

T
i p t i

i N

T
i p t ij

i j N

T
i p t i

i N

T
i p t ij

i j N

dE
p t V p t

dt

p t V p t

p t V p t

p t V p t

p t V p t

∈ ∈

∈

∈ ∈

∈

∈ ∈

= ∇

+ ∇

= ∇

+ ∇

= ∇

∑ ∑

∑

∑ ∑

∑

∑ ∑

F

F

F

� �

� �

�

�

�

�

�

�

� �

�

�

�

 (19) 

Secondly, since 
1

0,ˆ ( )tθ = ( )tΘ  can be rewritten by 

2

/{1}

2 2
1

ˆ ˆ ˆ( ) ( ) ( )( ( ) ( ))

ˆ( ) ( ).

i

l

d ij i i j

i j N

d i i

i N

t l c t t t t

l c t t

θ θ θ

θ

∈ ∈

∈

Θ = −

+

∑ ∑

∑

F

 (20) 

Furthermore, we have 

22

/{1}

2
1

2

2

ˆ ˆ ˆ( ) ( )( ( ) ( ))

ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( )( ( ) ( ))

ˆ ˆˆ( ) ( )( ( ) ( )).

i

l

i

i

d ij i i j

i j N

d i i i

i N

d ij i i j

i j N

d ij i i j

i j N

dE
l c t t t t

dt

l c t t t

l c t t t t

l c t t t t

θ θ θ

θ θ

θ θ θ

ω θ θ

∈ ∈

∈

∈ ∈

∈ ∈

= −

+

= −

= −

∑ ∑

∑

∑ ∑

∑ ∑

F

F

F

�

�

�

�

 (21) 

Thirdly, let * * *

1 1
ˆˆ ( ) ( ) ( ) ,( ) [0, ( )]T

i i i d i
q t q t a t q t l tθ= − =  

*( ) [0, ,( )]T
i d i
q t l tθ= .1, ,i N= �  The control protocol 

(10) can be rewritten as 
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* *

ˆ ( )

ˆ ˆ( ) ( )( ( ) ( ))

ˆ ˆ( )( ( ) ( ))

ˆ( ) ( ) ( )

ˆ( ) ( ( ) ),

i

i

i

ij

i

i ij i j

j N

ij i j

j N

i ij ij

j N

i p t ij

j N

q t c t q t q t

c t q t q t

H t c t p t

H t V p t

∈

∈

∈

∈

= − −

− −

−

− ∇

∑

∑

∑

∑ � �

�

�
 (22) 

ˆ ˆ ˆ ˆ( ) ( ( ) ( )) ( ( ) ( ))

ˆ ˆ ˆ ˆ( ( ) ( )) ( ( ) ( )).

T
ij ij i j i j

T
ij i j i j

c t k q t q t q t q t

k p t p t p t p t

= − −

+ − −

�

� � � �

 

Due to 
1 1 1

ˆ ( ) ( ) ( ) ( ) ( )
i i i i i
q t q t a q t q t a f t= − = −

�

� � �  and 

ˆ ˆ( ) ( ) ( ),T T

i i i
p t q t H t=

�  we have 

3

1

* *

ˆ ( ) 1

ˆ ˆ( ) ( )

ˆ ( ) ( ( ))

ˆ ˆ ˆ( ) ( ( )( ( ) ( ))

ˆ ˆ ˆ( )( ( ) ( )) ( ) ( ) ( )

ˆ( ) ( ( ) ) ( ))

ˆ ( ) (

i

i i

ij

i

T
i i

i

T
i i i

i

T
i ij i j

i j N

ij i j i ij ij

j N j N

i p t ij i

j N

T
i ij

i

dE
q t q t

dt

q t q a f t

q t c t q t q t

c t q t q t H t c t p t

H t V p t a f t

q t c

∈

∈

∈ ∈

∈ ∈

∈

∈

=

= −

= − −

− − −

− ∇ −

= −

∑

∑

∑ ∑

∑ ∑

∑

∑

F

F

F

F

� �

�

�

�

* *

ˆ ( )

1

2

ˆ ˆ)( ( ) ( ))

ˆ ˆ ˆ( ) ( )( ( ) ( ))

ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ( ) )

ˆ ( ) ( )

ˆ ˆˆ( ) ( )( ( ) ( ))

i

i

i

ij

i

i

i j

j N

T
i ij i j

i j N

T
i i ij ij

i j N

T
i i p t ij

i j N

T
i i

i

d ij i i j

i j N

t q t q t

q t c t q t q t

q t H t c t p t

q t H t V p t

q t a f t

l c t t t tω θ θ

∈

∈ ∈

∈ ∈

∈ ∈

∈

∈ ∈

−

− −

−

− ∇

−

= − −

∑

∑ ∑

∑ ∑

∑ ∑

∑

∑ ∑

F

F

F

F

F

�

� �

ˆ ( )

1

ˆ ˆ ˆ( ) ( ) ( ( ) ( ))

ˆ ˆ ˆ( ) ( ) ( ( ) ( ))

ˆ ˆ( ) ( ( ) )

ˆ ( ) ( ).

i

i

ij

i

T
ij i i j

i j N

T
ij i i j

i j N

T
i p t ij

i j N

T
i i

i

c t q t q t q t

c t p t p t p t

p t V p t

a q t f t

∈ ∈

∈ ∈

∈ ∈

∈

− −

− −

− ∇

−

∑ ∑

∑ ∑

∑ ∑

∑

F

F

F

F

�

�� �

� �  

Finally, we have 

4
( ( ) ) ( )1

2

1
ˆ( ( ) )(( ( )

2

ˆ ˆ ˆ( )) ( ( ) ( )))

i

i

ij ij

iji j N

ij i

i j N

T

j i j

c t m c tdE

dt k

c t m q t

q t q t q t

∈ ∈

∈ ∈

−

=

= −

− −

∑ ∑

∑ ∑

F

F

�

 (23) 

1
ˆ( ( ) )( ( )

2

ˆ ˆ ˆ( )) ( ( ) ( ))

ˆ ˆ ˆ( ( ) ) ( ) ( ( ) ( ))

ˆ ˆ ˆ( ( ) ) ( ) ( ( ) ( )).

i

i

i

ij i

i j N

T

j i j

T

ij i i j

i j N

T

ij i i j

i j N

c t m p t

p t p t p t

c t m q t q t q t

c t m p t p t p t

∈ ∈

∈ ∈

∈ ∈

+ −

− −

= − −

+ − −

∑ ∑

∑ ∑

∑ ∑

F

F

F

�

� � �

� � �

 

Thus, dE/dt can be simplified by 

1

ˆ ˆ ˆ( ) ( ( ) ( ))

ˆ ˆ ˆ( ) ( ( ) ( ))

ˆ ( ) ( )

ˆ ˆ ˆ( ) ( ( ) ( ))

ˆ ˆ ˆ( ) ( ( ) ( ))

ˆ ( ) ( ).

i

i

i

i

l

T
i i j

i j N

T
i i j

i j N

T
i i

i

T
i i j

i j N

T
i i j

i j N

T
i

i N

dE
m q t q t q t

dt

m p t p t p t

a q t f t

m q t q t q t

m p t p t p t

q t f t

∈ ∈

∈ ∈

∈

∈ ∈

∈ ∈

∈

= − −

− −

−

= − −

− −

−

∑ ∑

∑ ∑

∑

∑ ∑

∑ ∑

∑

F

F

F

F

F

� � �

� � �

 (24) 

Owing to 
1̂

0,q =  one gets 

/{1}

1 2

ˆ ˆ ˆ( ) ( ( ) ( ))

ˆ ˆ ˆ( ) ( ( ) ( ))

ˆ ˆ( ) ( )

ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( ) 0,

i

i

l

l

T
i i j

i j N

T
i i j

i j N

T
i i

i N

T
N

T
i i

i N

m q t q t q t

m q t q t q t

m q t q t

mq t L I q t

m q t q t

∈ ∈

∈ ∈

∈

−

∈

− −

= − −

−

= − ⊗

− ≤

∑ ∑

∑ ∑

∑

∑

F

F

 (25) 

where I2 denotes the 2×2 identity matrix, and LN –1 is 

symmetric and positive semi-definite. Let 0 denote the 

zero vector. Besides, ˆ ˆ ˆ( ) ( ( ) ( )) 0

i

T
i i j

i j N

m q t q t q t

∈ ∈

− − =∑ ∑
F

 

if and only if ˆ ˆ( ) ( )
i j
q t q t=  for all i∈F  and .

i
j N∈  

Similarly, due to 
1

) ,ˆ (p t = 0�  we have 

1 2

ˆ ˆ ˆ( ) ( ( ) ( ))

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) 0,

i

l

T
i i i

i j N

T T
N i i

i N

m p t p t p t

mp t L I p t m p t p t

∈ ∈

−

∈

− −

= − ⊗ − ≤

∑ ∑

∑

F

� � �

� � � �

 (26) 

where 

2
ˆ ˆ ˆ( ) [ ( ) , ( ) ] ,,T T T

N
p t p t p t= �  and 

ˆ ˆ ˆ( ) ( ( ) ( )) 0

i

T
i i j

i j N

m p t p t p t

∈ ∈

− − =∑ ∑
F

� � �  

if and only if ˆ ˆ( ) ( )
i j
p t p t=

� �  for all i∈F  and .

i
j N∈  

If ˆ ˆ( ) ( )
i j
q t q t=  and ˆ ˆ ,( ) ( )

i j
p t p t=

� �  we have 
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1 2

1 2

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ( ) ( ) 0.

l

l

l

T T

N i i

i N

T T

N i i

i N

T

i

i N

dE
mq t L I q t m q t q t

dt

mp t L I p t m p t p t

q t f t

−

∈

−

∈

∈

= − ⊗ −

− ⊗ −

− =

∑

∑

∑

� � � �  (27) 

If ˆ ˆ( ) ( )
i j
q t q t≠  or ˆ ˆ ,( ) ( )

i j
p t p t≠
� �  then we have 

ˆ ˆ ˆ( ) ( ( ) ( )) 0

i

T
i i j

i j N

m q t q t q t

∈ ∈

− − <∑ ∑
F

 or ˆ ˆ( ) ( ( )

i

T
i i

i j N

m p t p t

∈ ∈

− ∑ ∑
F

� �

ˆ ) .( ) 0jp t− <

�  Since f (t) is bounded, as long as the posi-

tive constant m is sufficiently large, then we have 

1 2

1 2

ˆ ˆ ˆ ˆ/ ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

l

l

T T

N i i

i N

T T

N i i

i N

dE dt mq t L I q t m q t q t

mp t L I p t m p t p t

−

∈

−

∈

= − ⊗ −

− ⊗ −

∑

∑� � � �

 

ˆ ( ) ( ) 0.

l

T

i

i N

q t f t

∈

− <∑  (28) 

Therefore, we have ./ 0dE dt ≤  The initial potential 

energy of the system is finite, and the initial speeds and 

initial heading angles of all agents are also finite. Thus, 

the initial energy ˆˆ( (0), (0), (0))E p q θ�  of the system is 

finite, and the supremum of E is obviously its initial val-

ue ˆˆ( (0), (0), (0 ).)E p q θ�  Then, the potential energy V of 

the system is finite, and the potential energy ˆ( ( ) )
ij

V p t� �  

between agent i and j is finite. 

If for some ( , ) ,i j ε∈ ˆ 2 ,
ij
p D→� �  then according to 

rule (2) of definition 1, one gets ( ) ,ˆ
ij

V p →∞� �  which 

violates the conclusion that ˆ( )
ij

V p� �  remains finite. It 

follows that ˆ 2
ij
p D<� �  for all ( , )i j ε∈  and [ ,

r
t t∈  

1
).

r
t
+

 Hence, whenever there is a link between two 

agents, the link is never lost during each time-interval 

1
,[ , )

r r
t t

+
 that is, 

1
( ) ( ).
r r
t tε ε

+
⊆  Note that when 

ˆ ( ) 2 ,
ij
p t D<� �  one gets *

2 .
ij ij
p R D p< = +� � � �  It is 

obvious that ,R D>  which ensures that if an edge 

( , )i j ε∉  is added to ε, the associated potential 

ˆ( )
ij

V p� �  is bounded and hence, so is the new potential 

V. Consequently, the connectivity of the communication 

network can be preserved all the time. Conclusion 1 of 

Theorem 1 is proved. 

Assume that there are 
r

m Z
+

∈  new links being add-

ed to the interaction network at switching time tr, 

, .1,2r = �  We have supposed that the initial interaction 

network should satisfy the system topology is a leader-

follower connected graph. Let G1 denote the initial inte-

raction network of the system, and Gc denote the set of 

all graphs meeting the proposed two conditions on the 

vertices. The proposed control algorithm can guarantee 

that the sequence of switching topologies 
1r

G
+
 within 

1
[ , )
r r
t t

+
 consists of such graphs satisfying 

1
.

r c
G G

+
∈  

The number of the vertices is finite, thus Gc is a finite set. 

Assume that there are at most +
M Z∈  new links that 

can be added to the initial interaction network G1. Clear-

ly, 0
r

m M< ≤  and .r M≤  Therefore, the number of 

switching times of the system is finite, and the interac-

tion network ( )G t  eventually becomes fixed. Suppose 

that the last switching time is tf, the following discus-

sions are restricted on the time interval [ ).,ft ∞  

Note that the distance between neighbors is no longer 

than D. Hence, the set 

ˆ ˆ ˆˆ ˆ ˆ{ , , | ( , , ) ( (0), (0), (0))}
p

B p D q E p q E p qθ θ θ= ∈ ≤� � �  (29) 

is positively invariant, where ˆ{ | (0,2 ),
p ij

D p p D= ∈�� �  

( , ) }.i j ε∀ ∈  Since ( )G t  is connected for all 0,t ≥  

one gets ˆ 2( 1)
ij
p N D< −� �  for all i and j. Since 

ˆ ˆˆ ˆ( ( ), ( ), ( )) ( (0), (0), (0) ,)E p t q t t E p qθ θ≤� �  

we have ˆˆ ˆ ˆ2 ( (0), (0), (0 ,))T
q q E p q θ≤ �  i.e., 

ˆˆ ˆ2 ( (0), (0), ( .0))q E p q θ≤� ��  

In addition, ˆ ( 2 ,2 ),
i

θ π π∈ − .1, ,i N= �  Thus, the set B 

is closed and bounded, hence compact. Note that the 

system (1) with control input (7) and (10) is an autonom-

ous system on the concerned time interval. 

Then, according to the LaSalle-Krasovskii invariance 

principle [19], the trajectories of the followers will con-

verge to the invariant set ˆˆ{ , , | / 0}.S p q dE dtθ= =�  

Clearly, / 0dE dt =  if and only if ˆ ˆ( ) ( )
i j
q t q t=  and 

ˆ ˆ( ) ( )
i j
p t p t=

� �  for all i∈F  and .

i
j N∈  Then, we have 

1
ˆ ˆ ˆ( ) ( ) ( )
i j
q t q t q t= =  for ,

l
i N∈ .

i
j N∈  With 

1
0,ˆ ( )q t =  

one gets 
1

( ) ( )
i
q t q t=  and 

1 1
( ) 0.( )j jq t a q t− =  If j∉  

,
l

N  one gets ,( ) 0jq t =  which means that agent j stops 

moving. The state of agent j cannot be maintained, be-

cause its neighbor i always follows the moving leader 

and the distance between agent i and agent j will change 

to cause the control protocol (10) to work. Thus, there is 

only .

l
j N∈  As mentioned above, followers asymptot-

ically approach a configuration that every follower has 

one leader neighbor, that is, .
l

N = F  Discussion about 

ˆ ˆ( ) ( )
i j
p t p t=

� �  is similar. In a word, / 0dE dt =  means 

1
( ) ( )
i
q t q t=  and 

1
( ) ( )
i
p t p t=� �  for .2, ,i N= �  

According to (1), 
1

( ) ( )
i
p t p t=� �  is equivalent to 

1 1 1 1

1 1 1 1

( ) cos ( ) ( ) sin ( )

( )cos ( ) ( ) sin ( )

( )sin ( ) ( ) cos ( )

( )sin ( ) ( ) cos ( ).

i i i d i

d

i i i d i

d

t t t l t

t t t l t

t t t l t

t t t l t

υ θ ω θ

υ θ ω θ

υ θ ω θ

υ θ ω θ

−

= −

+

= +

⎧
⎪
⎪
⎨
⎪
⎪⎩

 (30) 

In terms of 
1

( ) ( )
i
q t q t=  and 0,

d
l >  (30) can be ex-

plicitly expressed by 

2 2 2

1 1

2 2 2

1 1 1

2 2 2

1 1

2 2 2

1 1 1

( ( ) ( ))sin ( )

( ( ) ( ))sin ( )

( ( ) ( )) cos ( )

( ( ) ( )) cos ( ).

d i

d

d i

d

t l t t

t l t t

t l t t

t l t t

υ ω θ

υ ω θ

υ ω θ

υ ω θ

⎧
⎪

+

=⎪⎪ +

+

= +

⎨
⎪
⎪
⎪⎩

 (31) 
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With 
1
( ) ,q t ≠ 0  thus we have 

1
( ) ( ) [0,2 ).
i
t tθ θ π= ∈  

As previously mentioned, the thrusting speed, the rota-

tional speed, and the heading angle of each follower 

asymptotically become the same with those of the leader, 

that is, lim( ( ) ( ,)) 0
i j

t

t tυ υ

→∞

− = lim( ( ) ( ,)) 0
i j

t

t tω ω

→∞

− =  and 

lim( ( ) ( ,)) 0
i j

t

t tθ θ
→∞

− =  where , , .i j i jν∈ ≠  Conclusion 

2 of Theorem 1 is proved. 

Due to 
1

lim ( ) 0
t

f t
→∞

=  and 
2

lim ( ) 0,
t

f t
→∞

=  that is, 
1

lim ( )
t

q t
→∞

�  

,= 0  one gets 1( ) ( )iq t q t= = 0� �  in steady state, .i∈F  

With ˆ ˆ ,( ) ( )
i j
t tθ θ= ˆ ˆ ,( ) ( )

i j
q t q t=  and ˆ ˆ ,( ) ( )

i j
p t p t=

� �  

( )
i
q t = 0�  can be simplified as 

ˆ ( )

ˆ ( )

ˆ( ( ) ) ( ) 0

ˆ( ( ) ) ( ) 0.

ij

i

ij

i

T
p t ij i

j N

T
p t ij i

j N

V p t t t

V p t n t

∈

∈

− ∇ =⎧
⎪⎪

⎩
−

⎨
⎪
⎪

∇ =

∑

∑

�

� �

�
�

�  (32) 

For 
cos ( )

( )
sin ( )

i

i

i

t

t t

t

θ

θ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

�

 and 
sin ( )

( )

cos ( )

i

i

i

t

n t

t

θ

θ

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

�

 are 

unit vectors orthogonal to each other, as well as ld ≠ 0, 

(32) is equivalent to 

ˆ ( ) ˆ( ( ) ) 0, ,
ij

i

p t ij

j N

V p t i

∈

∇ = ∈∑ � � F  (33) 

where /{ }
i

N i= ∪L F .  

Further, we get 

ˆ ( ) ˆ( ( ) ) 0,
ij

i

p t ij

i j N

V p t

∈ ∈

∇ =∑ ∑ � �

F

 (34) 

i.e., 
1

ˆ ˆ( ) ( ) 1

/{1}

ˆ ˆ( ( ) ) ( ( ) )
ij i

i l

p t ij p t i

i j N i N

V p t V p t

∈ ∈ ∈

∇ + ∇∑ ∑ ∑
F

� � � �  

= 0. Owing to ˆ ( )

/{1}

ˆ( ( ) ) 0,
ij

i

p t ij

i j N

V p t

∈ ∈

∇ =∑ ∑ � �

F

 one 

obtains 
1

ˆ ( ) 1 ,ˆ( ( ) ) 0
i

l

p t i

i N

V p t

∈

∇ =∑ � �  i.e., 

1
ˆ ( ) 1ˆ( ( ) ) 0,

j

l

p t j

j N

V p t

∈

∇ =∑ � �  (35) 

where .

l
N = F  (33) and (35) mean that the total poten-

tial of the system is minimized. Thus, conclusion 3 of 

Theorem 1 is proved. � 

According to the above analysis, the whole system 

stabilizes the inter-agent distances when the total poten-

tial of the system is minimized. Thus, any desired rigid 

formations can be obtained, provided that the potential 

function reaches its minimal value at the point of the 

desired inter-agent distance. Given a desired geometric 

pattern χ  that has N vertices , ,[ ]
d d d T

i i i
p x y= 1,i =  

.,N�  The follower’s control protocol is revised by 

( )

( )

( )

( )

ˆ ˆ( ) ( )( ( ) ( ))

ˆ( ) ( ) ( )

( ( ) ) ( ),

i

i

ij

i

i ij i j

j N t

T
ij ij i

j N t

T
p t ij i

j N t

a t c t t t

c t p t t t

V p t t t

υ υ

∈

∈

∈

= − −

−

− ∇

∑

∑

∑ �

��

�
�� �

 (36) 

( )

( )

( )

( )

( )

ˆ ˆ( ) ( ) ( ( ) ( ))

ˆ ˆ( ) ( ( ) ( ))

ˆ( ) ( ) ( )

( ( ) ) ( ),

i

i

i

ij

i

i ij d i j

j N t

ij d i j

j N t

T
ij ij i

j N t

T
p t ij i

j N t

b t c t l t t

c t l t t

c t p t n t

V p t n t

θ θ

ω ω

∈

∈

∈

∈

= − −

− −

−

− ∇

∑

∑

∑

∑ �

��

�
� ��

 

ˆ ˆ ˆ ˆ( ) ( ( ) ( )) ( ( ) ( ))

ˆ ˆ( ) ( ),

T
ij ij i j i j

T
ij ij ij

c t k q t q t q t q t

k p t p t

= − −

+

�

� �

 

where 
ˆ ( )

) ,(
ij

d
ij

p t

ij
p

p t =

� �

� �
� ��  and the potential function 

( ( ) )
ij

V p t�� �  is required to reach its minimal value at the 

point of ( ) 1.
ij
p t =� ��  Then, we have the following Co-

rollary 1. 

Corollary 1: Consider a system of N agents with dy-

namics (1). The leader and the followers are respectively 

steered by control protocols (7) and (36). Suppose that 

the initial interaction network among the followers is an 

undirected connected graph, and there exists at least one 

follower having a leader neighbor at the initial time. 

Then the following statements hold: 

1) The connectivity of the interaction network is pre-

served at all times, that is, 
1

( ) ( ).
r r
t tε ε

+
⊆  

2) The thrusting speed, the rotational speed, and the 

heading angle of each follower asymptotically become 

the same as those of the leader, that is, lim( ( )i
t

tυ
→∞

−  

( )) ,0
j
tυ = lim( ( ) ( ,)) 0i j

t
t tω ω

→∞

− =  and lim( ( ) ( ))i j
t

t tθ θ
→∞

−  

,0=  where , , .i j i jν∈ ≠  

3) The system approaches a desired geometric confi-

guration χ that minimizes the total potential, that is,  

( ) ( ( ) ) 0,
ij

i

p t ij

j N

V p t

∈

∇ =∑ �

� ��  and  

1 ( ) 1( ( ) ) 0.
j

l

p t j

j N

V p t

∈

∇ =∑ �

�� �  

The proof of Corollary 1 is similar to that of Theorem 

1. Thus, it is omitted here. 

 

4. SIMULATION VALIDATION 

 

In this section, we will show the simulation results of 

the proposed theoretical results. According to definition 

1, we design the following potential function 

2 2

2
ˆ ˆ( ) ln(4 ) ,

ˆ
ij ij

ij

b
V p a D p c

p
= − − +� � � �
� �

 (37) 

where a and b are positive constants, c is constant. 

Therein, the first part is the repulsive potential term, and 

the second part is the attractive potential term, and c is 

just used to guarantee the potential function positive at 

all times. Then, the gradient of the potential function is 

obtained by 
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ˆ 4 2 2
ˆ ˆ( ) 2

ˆ
.

ˆ4ijp ij ij

ij ij

b a
V p p

p D p
∇ = −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝

+

⎠−
� �

� � � �
 (38) 

Specially, it should be noted that parameters a and b at 

least satisfy the constraint condition 
2 2

16 2

2
.

b abD b

a
D

+ −

<  

Besides, the formation flocking task requires that the 

potential function ( ( ) )
ij

V p t�� �  reaches its minimal 

value at the point of 
ˆ ( )

.( ) 1
ij

d
ij

p t

ij
p

p t = =

� �

� �
� ��  Thus, the 

parameter a and b should also satisfy another constraint 

condition 2 1 .(4 )a b D= −  Fig. 3 gives an example of 

the potential function, which satisfies the three rules of 

Definition 1. 

Agents with generic initial conditions are employed, 

on condition that the initial interaction network among 

the followers is an undirected connected graph and there 

exists at least one follower having a leader neighbor at 

the initial time. According to Theorem 1 and Corollary 1, 

the connectivity of the interaction network can be 

preserved at all times. 

Firstly, we assign five agents to achieve the leader-

follower cohesive flocking task. Leader swims with 

bounded varying speeds that 
1
( ) 0.1/( 1)f t t= +  and 

2
( ) 0.1 1),/(f t t= +  while followers try to track the 

velocities of the leader and construct a cohesive 

formation together with the leader at the same time. The 

simulation results are shown in Fig. 4. 

In Fig. 4(a), the green star point is the initial position 

of each agent, while the centre of the colored ball 

denotes the final position of each agent at time t = 200s, 

which has been enlarged for more details. The rough red 

circle line denotes the trajectory of the leader. It is clear 

to see that the five agents asymptotically converge to a 

stable flocking formation. Figs. 4(b) and (c) tell us that 

the thrusting speed, the rotational speed, and the heading 

angles of the followers asymptotically track those of the 

leader. Fig. 4(d) gives the distances between any two 

agents. The distances are all asymptotically stable. 

 

 

Fig. 3. The potential function (37). For example, a = 625, 

b =1, c = 5120, and D = 30. 

 
(a) Trajectories of the five agents. 

 

 
(b)  The thrusting speeds and the rotational speeds of the 

five agents with time t. 

 
(c) The heading angles of the five agents with time t. 

 
(d) The distances between any two agents with time t. 

Fig. 4. Simulation results of the leader-follower cohesive 

flocking task. 
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Fig. 5. Simulation results of the leader-follower ring-

shaped formation flocking task. 

 

Besides, the initial adjacency matrix of the system is 

1 0 0 0 0

1 0 1 1 1

(0) ,1 1 0 1 1

1 1 1 0 1

0 1 1 1 0

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (39) 

which indicates that the followers’ interaction network is 

a complete graph, and only part of the followers have a 

leader neighbor. We output the adjacency matrix of the 

whole system in real time, according to which we 

conclude that the connectivity of the system is preserved 

at all times. Finally, the interaction network of the whole 

system is fixed, which can be expressed by the following 

adjacency matrix 

1 0 0 0 0

1 0 1 1 1

(200) .1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (40) 

Secondly, we verify the leader-follower formation 

flocking algorithm by five gents similarly. For the sake 

of simplicity, we only show the trajectory of the five 

agents to complete the leader-follower ring-shaped 

flocking task in Fig. 5, and the final position of the five 

agents has also been enlarged for more details. 

 

5. CONCLUSION 

 

A distributed leader-follower adaptive flocking prob-

lem of multiple robotic fish governed by extended 

second-order unicycles has been investigated in this 

paper. The system is consisted of only one leader with 

varying but bounded speeds. Two leader-follower adap-

tive flocking algorithms are proposed with the combina-

tion of consensus and attraction/repulsion functions to 

respectively solve the cohesive flocking problem and the 

formation flocking problem. Provided that the initial 

interaction network among the followers is an undirected 

connected graph, and there exists at least one follower 

having a leader neighbor at the initial time, the followers 

asymptotically converge to a cohesive flocking configur-

ation or formation flocking configuration together with a 

variable-speed leader. The stability of the closed-loop 

system is analyzed based on LaSalle-Krasovskii invari-

ance principle. Finally, simulation results verify the ef-

fectiveness of the proposed control algorithms.  
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