
International Journal of Control, Automation, and Systems (2015) 13(2):327-335 
DOI 10.1007/s12555-013-0480-3 

 

ISSN:1598-6446  eISSN:2005-4092
http://www.springer.com/12555

Global Output Feedback Regulation of Uncertain Nonlinear Systems with 
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Abstract: This paper investigates the problem of global output feedback regulation for a class of non-

linear systems with unknown time delay. It is also allowed to contain uncertain functions of all the 

states and input as long as the uncertainties satisfying certain bounded condition for the considered 

systems. In this paper, a constructive control technique has been proposed for controlling the systems. 

By using dynamic high-gain scaling approach and choosing an appropriate Lyapunov-Krasovskii func-

tional, a delay-independent robust adaptive output feedback controller is constructed such that the 

states of the considered systems achieve global regulation. Two simulation examples are provided to 

demonstrate the effectiveness of the proposed design scheme. 
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1. INTRODUCTION 

 

The problem of global output feedback stabilization 

for nonlinear systems has received considerable attention 

over the past few years (see e.g., [1-4] and the references 

therein). Recently, the output feedback control problem 

has been investigated for nonlinear systems with 

unmeasured states dependent growth and known output 

function or known growth rates ([5-7]). More generally, 

when the growth rate is an unknown positive constant, 

the problem of global robust output feedback control of 

the uncertain system becomes much more involved and 

difficult. The systems were also investigated in [8-10]. 

Using new high-gain K-filters techniques ([11]), a 

constructive design procedure was proposed for a class 

of systems with uncertain control coefficient and 

unmeasured states dependent growth multiplying an 

unknown constant. In practice, a number of physical 

devices ([see 12-14]), after a change of feedback, can be 

described by equations with the feedforward structure. 

Furthermore, output feedback stabilization or regulation 

were also addressed by [15-18] for feedforward systems 

with uncertain functions involving all unmeasurable 

states and the assumed bounds on uncertain functions. 

On the other hand, systems with time delays are 

frequently encountered. Various engineering systems 

have the characteristics of time delay, such as turbojet 

engines, nuclear reactors, chemical process. Time delay 

usually leads to poor performances and often causes 

instability. So far, there have been tremendous efforts in 

stability analysis and robust control for these time-delay 

systems (see e.g., [19-21] and the references therein). In 

Zhang and Cheng [22] and Guan [23], output feedback 

controllers were constructed to stabilise a class of time-

delay nonlinear systems that are dominated by a lower 

triangular time-delay system satisfying linear growth in 

unmeasured states. Recently, the output feedback control 

problem for feedforward nonlinear time-delay systems 

were also addressed by dynamic gain scaling in 

Krishnamurthy et al. [24] and Zhang et al. [25]. In 

[24,25], the growth rate is a known or partially known 

positive constant. However, there is few papers focused 

on the case that the growth rate is an unknown positive 

constant for the feedforward nonlinear time-delay (in the 

input and states) systems.  

Motivated by [8,16] and [25], in this paper, a delay-

independent controller for a class of nonlinear time-delay 

systems is constructed. To the best of our knowledge, 

there is no work dealing with such a class of systems 

satisfying Assumption 1 in the literature at present. So 

the proposed method expands the class of nonlinear 

systems that can be handled using dynamic gain scaling 

technique.  

 

2. SYSTEM DESCRIPTION AND 

PRELIMINARIES 

 

Consider the following single-input-single-output (SISO) 

time-delay systems 
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where 
1 2

( ) [ ( ), ( ), , ( )] ,T n

n
x t x t x t x t= … ∈� ( )u t ∈�  

and ( )y t ∈�  are the states, control input, and output of 

system, respectively. The constant 0τ ≥  is an unknown 

time delay of the system, and there exists a known 

positive constant d such that .dτ ≤  In this paper, we 

always denote ( ),
i
x t ( ),

i
tε ( )

i
z t  by ,

i
x ,

i
ε .

i
z  The 

uncertain functions 2( 1)
: ,

n

i
φ + +

× →� � � 1, , 1,i n= … −  

are continuously differentiable with respect to all the 

variables. We have that the following assumption for the 

uncertain system (1). 

 

Assumption 1: For the uncertain functions ( ),
i
φ ⋅  

there exists an unknown constant 0C >  such that for 

any (0,1],s∈  the following inequality holds 
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Remark 1: It is not difficult to prove that if the 

following condition for some unknown constant c > 0 

2

| ( ) | (| | | ( ) |) | | | ( ) |
n

i j j

j i

c x x t u u tφ τ τ
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is satisfied, then Assumption 1 is always satisfied, but 

not vice versa. So the system (1) is of a more general 

form than a class of feedforward systems satisfying (2). 

 

The following Lemma is used in this paper. 

 

Lemma 1: There exist two constant symmetric 

matrices 0,P > 0,Q >  and two vectors 
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diag{ , 1, ,1}.D n n= − …  

Similar lemmas have been announced in [16,25] and 

[27], and we omit its proof here. 

 

3. MAIN RESULT 

 

This section is devoted to the design of the observer-

based controller. By appropriate choice of parameters we 

show that a linear-like controller is able to bring the 

states of the nonlinear time-delay system to the origin. 

 

Theorem 1: For the system (1) satisfying Assumption 

1, the following output feedback makes the solutions of 

the closed-loop system bounded and ,
i
x 1 ,i n≤ ≤  

converge to the origin: 
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a and b are the appropriately chosen parameters such that 

Lemma 1 holds. 
 

Proof: Consider the following rescaling transforma-

tion 

1
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L
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x
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Then, by (5), the closed-loop system (1) and (4) can be 

given by a simple calculation 
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where a, A, B and D are defined by Lemma 1, 
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2
( ) ( ),

L
T φΦ ⋅ = ⋅  

and we have .T
u b z= −  

Consider an observer Lyapunov function :
n

V
ε

+

→� �  

and a controller Lyapunov function :
n

z
V

+
→� �  

given by 

,

T
V P
ε

ε ε=   ,

T

z
V z Qz=  (7) 

where P and Q are constant matrices chosen as in 

Lemma 1. 

Observe that by construction, 
2
1

2
0

L

L
ε

= ≥
�  and hence 

( ) ( ) 1,L t L t τ≥ − ≥  for [0 ).ft t∀ ∈ ,  Then, using (6) and 
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(3), we obtain that the derivatives of V
ε
 and 

z
V  can 

be bounded as 

21
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Construct the Lyapunov-Krasovskii functional 
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From (13) and (14), we get 
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It is easy to prove that the solution ( )L zε, ,  of the 

closed-loop systems (4)-(6) exists and is unique on the 

maximally extended interval [0, ).fT  In what follows, 

using (16), we will first prove that the states variables 

( , , )L zε  are bounded on [0, ).fT  

Firstly, we claim that L is bounded on [0, ),fT  which 
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Since L is bounded on [0, ),fT  we can conclude from 
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ed on [0, ).+∞  Then, L, ε and z are well defined and all 

bounded on [0, ).+∞  Furthermore, we can obtain 

2
,Lε ∈ Lε

∞
∈�  and 

2
,z L∈ .z L

∞
∈�  By the Barbalat’s 

Lemma, we have lim ( ) lim ( ) 0,
t t

z t tε

→+∞ →+∞

= =  which 

together with (5) results in ˆlim ( ) lim ( ) 0.
t t

x t x t

→+∞ →+∞

= =   � 
 

Remark 2: It is worth pointing out that Theorem 1 

also holds when the delay τ  is a bounded time-varying 

function ( )tτ  satisfying 0 ( ) 1.t dτ< ≤ <�  

 

4. EXTENSIONS 

 

In this section, we consider an extended nonlinear 

system with delay in the input 

0 0 2

1 1

0

( ) ( ) ( )

( , , ( ), ( ), ( )),

( ) ( ),

x t A x t B u t

t x u t x t u t

y t C x t

τ

φ τ τ

= + −

+ − −

=

�

 (25) 

where 
0
,A

0
,B

0
,C u  and ( )φ ⋅  are defined in the 

system (1). 0 ,
i

dτ≤ ≤ 1,2,i =  are unknown constant 

time delays. 

Lemma 2 [28]: For any constant 0τ >  and con-

tinuous vector ( ) ,nt Rη ∈  the following inequality holds 

2( )d ( )d ( ) d .
t t t

T

t t t
s s s s s s

τ τ τ

η η τ η
− − −

≤∫ ∫ ∫ � �  (26) 

Under Assumption 1, we can obtain a result similar to 

Theorem 1, which is described in the following theorem. 

 

Theorem 2: Suppose that Assumption 1 holds, There 

exist two appropriate vectors 
1

( ,a a= ,… ) ,T

n
a b =  

1
( ,b ,… )T

n
b  such that the output feedback controller 

(4) globally regulates the uncertain nonlinear system (25). 

 

Proof: We give the outline of the proof. Let 

2
1 1 1 1

[ , , , ] , , , ( )d ,
t

T

n n n n
t

x x x x x x u s s

τ
− −

−

⎡ ⎤… = … +
⎢ ⎥⎣ ⎦∫� � �  (27) 

then the system (25) becomes 

2
0 0 1

0

( ) ( ) ( ) ( )d ( ),

( ) ( ),

t

t

x t A x t B u t B u s s

y t C x t

τ

φ
−

⎧ = + − + ⋅⎪
⎨
⎪ =⎩

∫�

� �

�

 (28) 

where 
1 1

[ , , , ] ,
T

n n
x x x x

−

= …� � � �

1
[0, ,1,0] .

T n
B = … ∈�  

Define 

1

ˆ
,i i

i n i

x x

L

ε
− +

−

=

�

  
1

ˆ
,i

i n i

x
z

L
− +

=   1,2, , .i n= …  (29) 

From (28) and (4), a simple calculation gives 

2
12

1

1 1
( )d ( ) ,

1 1

t

t

L
A B u s s D

L LL

L
z Bz a Dz

L L L

τ

ε ε ε

ε

−

⎧
= − +Φ ⋅ −⎪⎪

⎨
⎪ = + − .⎪⎩

∫
�

�

�

�

 (30) 

Let ,

T
V P
ε

ε ε= .

T

z
V z Qz=  Note that T

u b z= −  and 

Lemma 2, then 

( )

2

2

2

2

1

2

2

2

21 1

2 2

2

21

1 22 2

2 ( )d

2 ( ) d

( ) d

( )
d

( )

t
T

t

t

t

t

t

t

t

PB
u s s

L

P b
z s s

L

z s s

L L

z s
s

L L s

τ

τ

τ

τ

ε

ε

μ μ
ε

μ
ε μ τ

−

−

−

−

−

≤

≤ +

≤ + ,

∫

∫

∫

∫

� �� �
� � � �

� � � �

� �
� �

 (31) 

where µ1 is defined by (10). Using Assumption 1, (10) 

and (27), we get 

2

1

1 2

2 1

1

1

11

12

1

1 1

3

1

2

1

2 ( )

1
2 [ (

( )
) ( ) ]

1
2 [ ( ( )

( ) ) ( ) ]

1
2 [ ( )d

( )d ]

(
( )

T

n

i

n i

i

i

n i

n

i i i

i

i

t

t

t

t

P

x
C P

L L

x t
u u t

L

C P z t

L

z t u u t

C P u s s

L

u s s

C

L t

τ

τ

τ τ

ε

ε

τ
τ

ε ε ε τ

τ τ

ε

μ

τ

− +

=

− +

=

−

−

− −

| Φ ⋅ |

≤ | |

−
+ | | + | | + | − |

≤ | | + | | + | − |

+ | − | + | | + | − |

+ | |

+ | |

≤
−

∑

∑

∫

∫

� �� �

� �� �

� �� �

2

2

2 2

1 1

2 21

2

1

12

2 21

1 12

1

2 21

2

2 21 2

12

2 21

1 12

1

( ) ( ) )

( )

2 [ ( ) ( ) ]d

( ( ) ( ) )
( )

3
( )

[ ( ) ( ) ]d

( ( ) ( ) )
( )

t

t

t

t

t z t

C
z

L

C
z s z s s

L

C
t z t

L t

C
z

L

C
z s z s s

L

C
t z t

L t

τ

τ

ε τ τ

μ
ε

μ
ε τ

μ
ε τ τ

τ

μ
ε

μ τ
τ

μ
ε τ τ

τ

−

−

− + −

+ +

+ + −

≤ − + −
−

+ +

+ + −

≤ − + −
−

+

∫

∫

� � � �

� � � �

� � � � � �

� � � �

� � � �

� � � �

� � � �

2 21

2

3
( )

C
z

L

μ
ε +� � � �

 

2

22

1

1 2 2 2

1

( )( )
[ ]d

( ) ( )

t

t

z sz s
C s

L s L sτ

τ
μ τ

τ−

−
+ + .

−
∫

� �� �
 (32) 

Consider the Lyapunov-Krasovskii functional 

2

22
0

1

1 1 2 2 2

1

( )( )
( ) [ ]d d

( ) ( )

t

t

z sz s
V t C s

L s L sτ θ

τ
μ τ θ

τ− +

−

= +

−
∫ ∫

� �� �
 

2

2
0

1 2 2

( )
d d ,

( )

t

t

z s
V s

L s
ε

τ θ
μ τ θ

− +

+ + ∫ ∫
� �

 (33) 
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we have 

2 2 21

1 2

2 21

1 12

1

22

2 1

1 2 2 2

1

2

2 21

1 22 2

2

2 2 21 2

2

31
( ) ( )

( ( ) ( ) )
( )

( )

( )

(3 1) ( 1)1
( )

C
V t z

L L

C
t z t

L t

z tz
C

L L t

z

L L

C
z

L L

μ
ε ε

μ
ε τ τ

τ

τ
μ τ

τ

μ
ε μ τ

μ τ
ε ε

≤ − + +

+ − + −
−

⎛ ⎞−
+ +⎜ ⎟⎜ ⎟−⎝ ⎠

+ +

+ +
≤ − + +

� � � � � � �

� � � �

� �� �

� �
� �

� � � � � �

  

 
2

2 21 2

1 12

1

(3 1) ( 1)
( ( ) ( ) ),

( )

C
t z t

L t

μ τ
ε τ τ

τ

+ +

+ − + −

−

� � � �  

 (34) 

which is similar to (13). Then, the reminder of the proof 

is very similar to that of Theorem 1. We can conclude 

that ˆlim ( ) lim ( ) lim ( ) 0.
t t t

x t x t u t

→+∞ →+∞ →+∞

= = =�  Therefore, using 

(27), we have ˆlim ( ) lim ( ) 0.
t t

x t x t

→+∞ →+∞

= =  � 

 

5. SIMULATION EXAMPLES 

 

Example 1: In [30], Jo et al. have shown that the 

nonlinear LLC resonant circuit system, through 

appropriate transformation, can be changed into the 

following system 

1 2 0 3

2 3

3

1

( ) ( ) ( ),

( ) ( ),

( ) ( ),

( ) ( ).

x t x t c x t

x t x t

x t u t

y t x t

= +⎧
⎪

=⎪
⎨

=⎪
⎪ =⎩

�

�

�

 (35) 

Since time delay and the uncertainty are frequently 

encountered in a variety of practical systems, we 

consider the following three-order time-delay system 

1 1 1 3 1

1 2 2 32

1 1

2 2

2 3 3 1

3

1

( )[ ( ) ( )]
( ) ( ) ( ),

1 ( )

( ) ( ) ln[1 ( )],

( ) ( ),

( ) ( ),

c x t x t u t
x t x t c x t

x t

x t x t c u t

x t u t

y t x t

τ τ

τ

τ

− − +⎧
= + +⎪

+ −⎪
⎪

= + + −⎨
⎪

=⎪
⎪ =⎩

�

�

�

 

 (36) 

where , 1, 2,3,
i
c i =  are unknown parameters. The un-

known time-delay constants τ1 satisfies 1
0 1.τ< ≤  

It is not difficult to prove that the uncertain time-delay 

system (36) satisfies Assumption 1. In fact, we have 

1 1 1 3 1

1 2 32

1 1

3 3 1

( )[ ( ) ( )]
( ) ( )

1 ( )

[ ( ) ( ) ( ) |],

c x t x t u t

c x t

x t

c x t x t u t

τ τ
φ

τ

τ

− − +
| ⋅ |=| + |

+ −

≤ | | + | − | + |

 

2 2

2 3 1 1
( ) ln[1 ( )] | | ( ) |,c u t c u tφ τ τ| ⋅ |=| + − ≤ −  

where 1| |

2 32
max{ ,| |,| |}.

c

c c c=  Then, by Remark 1, we 

get that there exists an unknown constant C > 0 such that 

Assumption 1 holds. 

According to Theorem 1, we construct the observer 

dynamics and the output feedback controller for (36) 

1 2 1

2 3 12

3 13

31 2

3 2

2

1

2 3

3
ˆ ˆ ˆ( ),

3
ˆ ˆ ˆ( ),

1
ˆ ˆ( ),

ˆˆ ˆ
3 3 ,

ˆ1
, with ( ) 1, for [ 1,0].

x x y x
L

x x y x

L

x u y x

L

xx x
u

LL L

y x
L L t t

L L

⎧
⎪ = + −
⎪
⎪
⎪ = + −
⎪
⎪
⎪

= + −⎨
⎪
⎪ ⎛ ⎞

= − + +⎪ ⎜ ⎟
⎝ ⎠⎪

⎪
−⎛ ⎞⎪ = = ∈ −⎜ ⎟⎪ ⎝ ⎠⎩

�

�

�

�

 (37) 

Picking 
1 2

1,c c= =
3

2c =  and 
1

1,τ =  the simulation 

results are shown in Fig. 1 for the closed-loop system 

consisting of (36) and (37). The initial condition is 

chosen as for [ 1,0],t∈ − 1 21 2 3
[ ( ) ( ) ( ) ( ) ( )ˆ ˆx t x t x t t tx x, , , , ,  

3( ), ( )] [7,2, 3,5,3, 1,1].ˆ t L tx = − −  
 

Example 2: Consider the following time-delay system 

4 4

1 2 1 2 1

2 3 2 1

3 2

1

( ) ( ) ln[1 ( )]ln[1 ( )],

( ) ( ) ( ),

( ) ( ),

( ) ( ),

x t x t c x t u t

x t x t c u t

x t u t

y t x t

τ

τ

τ

⎧ = + + − +
⎪
⎪ = + −
⎨

= −⎪
⎪ =⎩

�

�

�

 (38) 

where 0,
i
c ≠ 1,2,i =  are unknown parameters. The un-

known time-delay constants jτ  satisfy 0 1jτ< ≤ ,  

1,2.j =  Then, for any 0s >  

4 4

1 1 2

1 2

1
2

( ) ln[1 ( )]ln[1 ( )]

9 ( )

9
( ) .

2

c x t u t

u

c s x t

s

uc
s x t

s

φ τ

τ

τ

| ⋅ |=| + − + |

| |
≤ | | | − |

| || |⎡ ⎤≤ | − | +⎢ ⎥
⎣ ⎦

 

Accordingly, for 0s∀ >  

3 2

1 2

2 2 21

2 2

2 2

2

3

2 4

1

( ) ( )

9
[ ( ) ] ( )

2

[ ( ) ( ) ]

( ( ) ) ( ) ,i

i i

i

s s

c
s s x t u c s u t

Cs s x t u u t

Cs s x x t u u t

φ φ

τ τ

τ τ

τ τ−

=

| ⋅ | + | ⋅ |

| |
≤ | − | + | | + | | | − |

≤ | − | + | | + | − |

⎡ ⎤
≤ | | + | − | | | + | − |⎢ ⎥

⎣ ⎦
∑

 

where 19| |

22
max{ ,| |}

c

C c≥  is an unknown positive con-

stant. Therefore, the system (38) satisfies Assumption 1. 

It is easy to see that (3) does not hold. 

Based on Theorem 2, the output feedback controller is 

designed as 
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(a) Trajectories of x1 and 1̂

.x  

 
(b) Trajectories of x2 and 2

ˆ .x  

 
(c) Trajectories of x3 and 3

ˆ .x  

 
(d) The control input u and the observer’s gain L. 

Fig. 1. Transient response of the closed-loop system 

consisting of (36) and (37). 

 
(a) Trajectories of x1 and 1̂

.x  

 
(b) Trajectories of x2 and 2

ˆ .x  

 
(c) Trajectories of x3 and 3

ˆ .x  

 
(d) The control input u and the observer’s gain L. 

Fig. 2. Transient response of the closed-loop system 

consisting of (38) and (39). 
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1 2 1

2 3 12

3 13

31 2

3 2

2

1

2 3

4
ˆ ˆ ˆ( ),

5
ˆ ˆ ˆ( ),

2
ˆ ˆ( ),

ˆˆ ˆ
2 5 4 ,

ˆ1
, with ( ) 1, for [ 1,0].

x x y x
L

x x y x

L

x u y x

L

xx x
u

LL L

y x
L L t t

L L

⎧
⎪ = + −
⎪
⎪
⎪ = + −
⎪
⎪
⎪

= + −⎨
⎪
⎪ ⎛ ⎞

= − + +⎪ ⎜ ⎟
⎝ ⎠⎪

⎪
−⎛ ⎞⎪ = = ∈ −⎜ ⎟⎪ ⎝ ⎠⎩

�

�

�

�

 (39) 

Let 
1 2

1c c= =  and 
1

1,τ =
2

0.5,τ =  the simulation 

results are shown in Fig. 2 for the closed-loop system 

consisting of (38) and (39). The initial condition is 

chosen as, for [ 1,0],t∈ − 1 21 2 3
[ ( ) ( ) ( ) ( ) ( )ˆ ˆx t x t x t t tx x, , , , ,  

3( ), ( )] [7, 3,5, 2, 1,2,1].ˆ t L tx = − − −  

 

6. CONCLUSIONS 

 

In this paper, we have investigated the problem of 

global states regulation by output feedback for a class of 

nonlinear time-delay systems whose nonlinearity 

satisfies certain growth condition. The uncertainty of 

unknown time delays has been compensated by the use 

of appropriate Lyapunov-Krasovskii functionals. By 

designing the dynamic gain observer and using the 

rescaling transformation of coordinates, a dynamic 

output feedback controller which has a linear-like 

structure can be constructed to achieve a global adaptive 

regulation of system. Simulation results have been 

provided to show the effectiveness of the proposed 

approach.  
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