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Abstract: This paper deals with the robust H∞ filtering for discrete singular systems with jump para-

meters and interval time-varying delay, whose system mode is transmitted through an unreliable net-

work. The class of systems under consideration is more general and covers the singular jump systems 

with mode-dependent and mode-independent as two special cases, over networks a novel delay-

dependent and partially mode-dependent filter is established via using a mode-dependent Lyapunov 

function and a finite sum inequality based on quadratic terms. The corresponding filter parameters can 

be obtained by solving a set of linear matrix inequalities without decomposing the original system ma-

trix. The proposed linear robust filter ensuring that the filtering error singular jump system is to be reg-

ular, causal, stochastically stable and satisfies H∞ performance. In addition, two numerical examples 

are given to illustrate the effectiveness of the proposed approach. 

 

Keywords: Delay-dependent, discrete singular jump systems, H∞ filtering, interval time-varying delay, 

linear matrix inequality (LMI), partially mode-dependent. 

 

1. INTRODUCTION 

 

As a special class of hybrid systems, Markovian jump 

systems (MJSs) have been attracting extensive research 

attention over the past decades due to their widely 

practical applications in manufacturing systems, power 

systems, aerospace systems and networked control 

systems. The control and filtering problems related to 

MJSs with or without time-delay have been fully 

investigated, see e.g., [1-8] and the references therein. 

Recently, many notions and results in state-space 

systems have been successfully extended to singular 

Markovian jump systems (SMJSs), such as stability and 

stabilization [9,10], H∞ control [11-13], filtering problem 

researching [14-16] and so on. When Markovian jump 

parameters appear, it should be pointed out that the 

problem for SMJSs is much more complicated than that 

of state-space jump systems, because it requires to 

consider not only stability and modes switching, but also 

regularity and impulse elimination (for continuous-time 

singular systems) or causality (for discrete-time singular 

systems) simultaneously, while the latter two do not 

appear in regular ones. 

Filtering is a class of important approaches to estimate 

the state information when the system plant is disturbed. 

Currently there are many approaches proposed for filter 

design, such as Kalman filtering [17,18], H∞ filtering 

[19-21], l2 – l∞ filtering [22-24] etc. In the H∞ filtering, 

the input is supposed to be an energy signal and the 

corresponding energy-to-energy gain can be minimized. 

Recently, many results on the H∞ mode-dependent and 

mode-independent filtering for MJSs have been 

presented in [25-35] and the references therein. However, 

these results on the filtering for the MJSs require critical 

assumption on the accessibility of the jumping mode and 

main classified to three types of stochastic filters, which 

the first type is mode-dependent filtering with completely 

known transition modes of systems [25,26]; the second 

type is mode-independent filtering design ignoring mode 

information in the filter construction [27,28]; the last one 

is with partially unknown transition probabilities of jump 

mode, such as researched in [30-32].  
In practical applications, the aforementioned assump-

tions may sometimes be impossible to satisfy, such as the 
networked control systems (NCSs) [33,34,40-42], the 
introduction of communication networks in feedback 
control loops complicates the system analysis and 
synthesis, which also introduces new interesting and 
challenging problems. For the cases that the underlying 
NCSs is an MJS, both system state and mode are 
transmitted, when the system mode transmitted through 
networks suffers being lost and observed simultaneously, 
it is said that mode-dependent method is too ideal, 
whereas mode-independent algorithm is too absolute. 
Thus, both of the two extreme filter design methods are 
not suitable to the case where the system mode is 
available to a filter with some probabilities and time-
varying delay through unreliable networks. Although in 
[32], a new filtering method was established for a class 
of MJSs, it should be pointed out that discrete-time 
SMJSs with time-varying delay are much more important 
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than their continuous-time counterparts in our digital 
world. The problem of delay-dependent robust H∞ filter- 
ing for discrete-time SMJSs with system mode available 
to a filter through unreliable networks has not been fully 
investigated. It is, therefore, the main purpose of the 
present research to shorten such a gap by making the first 
attempt to deal with the delay-dependent and partially 
mode-dependent H∞ filtering problem of a class of 
discrete-time SMJSs over networks. 

This paper is concerned with the delay-dependent and 
partially mode-dependent robust H∞ filtering problem for 
a class of discrete-time SMJSs over networks. The 
considered systems are more general and cover the 
singular Markovian systems with completely known or 
complete- ly unknown transition modes as two special 
cases. First in contrast with the traditionally mode-
dependent or mode-independent filtering method, the 
accessible probability of mode available to a filter is 
taken into consideration for the partially mode-dependent 
filter design with interval time-varying delay. Based on 
this, a new delay-dependent and partially mode dependent 
filter is established via using a mode-dependent 
Lyapunov function and a finite sum inequality based on 
quadratic terms. The suitable filter parameters which is 
solved by employing the LMIs technique and without 
decomposing the original system matrix. The desired 
filter which guarantees the admissibility and the H∞ 
performance of the corresponding filtering error system. 
Last, two numerical examples are provided to illustrate 
the effectiveness of the developed theoretical results. 

Notations: Throughout this paper, for real symmetric 

matrices X and Y, the notation X Y≥  (respectively, 

X Y> ) means that the matrix X Y−  is semi-positive 

definite(respectively, positive definite); n

R  and n m×

R  

denote the n-dimensional Euclidean space and the set of 

all n×m real matrices, respectively; I is the identity 

matrix with appropriate dimension; the superscript T 

represents the transpose of a matrix; X� �  refers to 

Euclidean norm of the vector X, Z denotes the set of non-

negative integer numbers; { }ε •  denotes the mathemati-

cal expectation, ( )diag •  means block diagonal matrix, 

He(M) stands for M+M
 T, and * denotes the symmetric 

term in a symmetric matrix. 

  

2. PROBLEM STATEMENTS AND 

PRELIMINARIES 

 

In this paper, fix a probability space (Ω, F, P) and 

consider the following discrete SMJSs with interval time 

-varying delay 

( 1) ( ( )) ( ) ( ( )) ( ( ))

( ( )) ( ),

( ) ( ( )) ( ) ( ( )) ( ( ))

( ( )) ( ),

( ) ( ( )) ( ) ( ( )) ( ( ))

( ( )) ( ),

( ) ( ), , 1,...,0,

d

d

d

Ex k A k x k A k x k k

B k k

y k C k x k C k x k k

D k k

z k L k x k L k x k k

G k k

x k k k

θ θ τ

θ ω

θ θ τ

θ ω

θ θ τ

θ ω

φ τ τ

+ = + −⎧
⎪ +⎪
⎪ = + −
⎪⎪

+⎨
⎪ = + −
⎪
⎪ +
⎪

= = − − +⎪⎩

 (1) 

where ( ) n

x k ∈R  is the system state, the matrix E∈  
n n×

R  may be singular, we shall assume that ( )rank E =  

,r n≤ ( ) m

y k ∈R  is the measurement vector, ( )kω ∈  
q

R  is the disturbance input which belongs to 
2
[0, ),L ∞  

( ) p
z k ∈R  is the signal to be estimated, ( )kφ  is a 

known initial condition, where { ( ), }k k Zθ ∈  is discrete 

Markov chains that takes values in {1,2,..., }.l N=  Its 

transition probability matrix is { },
ij

λΛ =  which is defined 

( ( 1) ( ) )
ij

P k j k iλ θ θ= + = =  with 0,
ij

λ ≥ ,i j l∀ ∈  and 

1
1

N

ijj
λ

=

=∑  for all .i l∈  For each possible value of 

θ(k) ,i l= ∈  Ai, Adi, Bi, Ci, Cdi, Di, Li, Ldi and Gi are 

known constant matrices with appropriate dimensions. 

τ(k) is time-varying delay and satisfies 

0 ( ) ,kτ τ τ< ≤ ≤ < ∞  (2) 

where τ  and τ  are known positive integers. 

The objective of this paper is to develop a novel 

partially mode-dependent filter over networks with state-

space realization of the following form: 

( 1) ( ) ( ) ( )( ( ( )) ( )

( ( )) ( )),

( ) ( ) ( ) ( )( ( ( )) ( )

( ( )) ( )),

f f f f f f

f

f f f f f f

f

x k A x k B y k k A k x k

B k y k

z k C x k D y k k C k x k

D k y k

α θ

θ

α θ

θ

+ = + +⎧
⎪

+⎪
⎨

= + +⎪
⎪ +⎩
 (3) 

where ( ) n
fx k ∈R  filter state, and p

fz ∈R  is the esti-

mation single, ,n n
fA

×

∈R ,

n m
fB

×

∈R ,

p n
fC

×

∈R fD  

,

p m×
∈R ( ( )) ,n n

fA kθ
×

∈R ( ( )) ,n m
fB kθ

×

∈R ( ( ))fC kθ  
p n×

∈R  and ( ( )) p m
fD kθ

×

∈R  are filter parameters to 

be determined. 

Notice that filter (3) and system (1) have the same 

mode, θ(k) is assumed to be known in this paper. α(k) is 

an indicator function described as: if θ(k) transmitted 

successfully, then α(k) =1, otherwise α(k) = 0. Assume 

α(k) is a Bernoulli distributed sequence with 

{ ( ) 1} { ( )} ,r k kα ε α αΡ = = = { ( ) 0} 1 ,r kα αΡ = = −  (4) 

where α is a constant 0 1.α≤ ≤  Furthermore, we have 

{ ( ) } 0,kε α α− =
2 2
: {( ( ) ) } (1 ).kβ ε α α α α= − = −  (5) 

In addition, the two random processes α(k) and θ(k) 

are assumed to be independent. Define the augmented 

state vector ( ) [ ( ) ( ) ] ,T T T
fx k x k x k=  and the estima-

tion error ( ) ( ) ( ),fz k z k z k= −  for simplicity, let the 

mode at time k is i, that is ( ) ,k iθ =  then the filtering 

error singular jump system is obtained as follows: 

( 1) ( ) ( ( )) ( )

( )( ( ) ( ( )) ( )),

( ) ( ) ( ( )) ( )

( )( ( ) ( ( )) ( )),

i di i

i di i

i di i

i di i

Ex k A x k A Kx k k B k

k A x k A Kx k k B k

z k L x k L Kx k k D k

k L x k L Kx k k D k

τ ω

α τ ω

τ ω

α τ ω

⎧ + = + − +
⎪

+ + − +⎪
⎨

= + − +⎪
⎪ + + − +⎩

� � �

� � �

 

 (6a) 

( ) [ ( ) 0] , , 1,...,0,T T
x k k kφ τ τ= = − − +  (6b) 
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where 

0
,

0

E
E

I

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
0

,
i

i
f i f

A
A

B C A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 ,

di

di
f di

A
A

B C

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

,

i

i
f i

B
B

B D

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
0 0

,i
fi i fi

A
B C A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

�  
0

,di
fi di

A
B C

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

�  

0
,i

fi i

B
B D

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

�  ,
i i f i f
L L D C C⎡ ⎤= − −⎣ ⎦  

0 ,
di di f di

L L D C⎡ ⎤= −⎣ ⎦  ,
i i f i

D G D D= −  

,
i fi i

D D D= −
�  ,

i fi i fi
L D C C⎡ ⎤= − −⎣ ⎦
�  

,
di fi di

L D C= −
�  [ 0].K I=  

By rewriting (6), it is equivalent to 

( 1) ( ) ( ( )) ( )

( ( ) ( ( )) ( )),

( ) ( ) ( ( )) ( )

( ( ) ( ( )) ( )),

i di i

i di i

i di i

i di i

Ex k A x k A Kx k k B k

A x k A Kx k k B k

z k L x k L Kx k k D k

L x k L Kx k k D k

τ ω

β τ ω

τ ω

β τ ω

⎧ + = + − +
⎪

+ + − +⎪
⎨

= + − +⎪
⎪

+ + − +⎩

� � �

�
� � �

� � �

�
� � �

 

 (7) 

where 

,
i i i

A A Aα= +

�
�  ,

di di di
A A Aα= +

�
�  ,

i i i
B B Bα= +

�
�  

,
i i i
L L Lα= +

�
�  ,

di di di
L L Lα= +

�
�  ,

i i i
D D Dα= +

�
�  

( ) .kβ α α= −

�

 

Remark 1: In system (7) a Bernoulli variable α(k) 

reflects the jam degree of network and denotes whether 

the current mode is accessible or not. In contrast to 

traditional filtering methods, the filter (3) is more 

advantageous in terms of the following two aspects. 

Firstly, compared with fully mode-dependent filter 

needing system mode obtained exactly all the time, filter 

(3) can bear the system mode lost in terms of some 

probabilities. Thus, we can measure or drop the mode 

signal with some probability, which could reduce the 

burden of data transmission. Secondly, different from 

fully mode-independent filter completely ignoring mode 

information in the filter construction, the probability of 

mode accessible to a filter is considered here. Because 

mode-independent filter design method is to find a 

common filter for all modes, the solvable solution set is 

smaller than the one generated by (3). That is, when the 

mode is accessible with some probability and there is no 

solution to a mode-independent filter, we may still get an 

effective filter of form (3) and minimum H
∞
 performance, 

which can be provided from the Example 1. 

We first introduce the following definitions for the 

filtering error system (7): 

Definition 1 [16]: For all ,i l∈  the discrete singular 

system ( 1) ( ) ( ( ))
i di

Ex k A x k A Kx k kτ+ = + −

� �

 is said to 

be 

i) Regular if det( )
i

zE A−

�

 is not identically zero, 

causal if deg(det( )) ( ).
i

zE A rank E− =

�

 

ii) Stochastically admissible if it is regular, causal and 

stochastically stable. 

Definition 2 [26]: The discrete singular filtering error 

system (6) with ( ) 0kω =  is said to be stochastically 

stable, if for any 
0

,

n

x ∈R  there exists 
0 0

( , ) 0xδ θ >  

and a scalar ρ, such that  

{ }2

0 0 0 00
lim , ( , ).

N

k
N

x x xε θ ρδ θ
=

→∞

≤∑  (8) 

Definition 3 [26]: System (7) is said to be robustly 

mean square quadratic stability, if there exists a scalar 

0,γ >  such that 
2 2

( ) ( ) ,z k kγ ω≤  for any nonzero 

disturbance 
2

( ) [0, ),k Lω ∈ ∞  where 

{ }

{ }
2 0

2 0

( ) ( ) ( ) ,

( ) ( ) ( ) .

T

k

T

k

z k z k z k

k k k

ε

ω ε ω ω

∞

=

∞

=

=

=

∑

∑
 (9) 

The objective of this paper is to design a filter (3) such 

that the filtering error system (7) is stochastically stable 

and satisfies H
∞
 performance. 

 

3. MAIN RESULTS 

 

In this section, we first present a performance analysis 

result for the filtering error system (7) and then give a 

representation of filter gains in terms of the feasible so- 

lutions to a set of LMIs. 

For simplicity in the sequel, let the following  

( ) : ( ) ( ( )) ( ) ,
T

T T T T
k x k x k k K kξ τ ω⎡ ⎤= −⎣ ⎦  

( ) : ( 1) ( ),y k x k x k= + −  

then 

[ ]
1 1

2

3 3

( 1) , , ( ) , , ( )

: ( ) ( ),

( ) ( ) , , ( ) : ( ),

( ) , , ( ) , , ( )

: ( ) ( ).

i di i i di i

i i

i di i i

i di i i di i

i i

Ex k A A B k A A B k

k

KEy k A E K A B k k

z k L L D k L L D k

k

ξ β ξ

β ξ

ξ ξ

ξ β ξ

β ξ

⎧ ⎡ ⎤ ⎡ ⎤+ = +⎣ ⎦ ⎣ ⎦⎪
⎪ = Π + Π
⎪⎪

= − = Π⎨
⎪

⎡ ⎤⎡ ⎤= +⎪ ⎣ ⎦ ⎣ ⎦
⎪

= Π + Π⎪⎩

� � ��
� � �

�

�
� � �

�

 (10) 

Before presenting our propose, we introduce the 

following lemma: 

Lemma 1: For any ,i l∈  a positive definite matrix 
n n

i
S

×

∈R  and constant matrices 
1 2

[ ]
i i i

M M M= ∈  
2
,

n n×

R
3

,

n n

i
M

×

∈R ,

n q

i
W

×

∈R  and a positive integer 

time-varying delay ( )kτ  then 

{ }

1

( )

1

( ) ( )

( ) ( ),

k T T T
ij k k

T T
i i i i

y j E K S KEy j

k Y S Y k

τ

ξ τ ξ

−

= −

−

−

≤ Π +

∑
 (11) 

where 

3
[ ],

i i i i
Y M M W=  

3

3 3

( )

.

0

T T T T T T

i i i i

T T T

i i i i

He M EK K E M M E K E W

M E E M E W

⎡ ⎤−
⎢ ⎥

Π = ∗ − − −⎢ ⎥
⎢ ⎥

∗ ∗⎢ ⎥⎣ ⎦
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Proof: When i =1, similar to the proof of Lemma 1 in 

[36], let 
1/ 2 1/ 2

,
0 0

S S Y
C

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1
0,

T

T T

S Y
C C

Y Y S Y
−

⎡ ⎤
= ≥⎢ ⎥
⎣ ⎦

 

it follows that 

1

1
( )

( ) ( )
0.

( ) ( )

Tk

T T
j k k

S YKEy j KEy j

k kY Y S Y
τ

ξ ξ

−

−

= −

⎡ ⎤⎡ ⎤ ⎡ ⎤
≥⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
∑  (12) 

Notice that  

1

( )

2 ( ) ( ) 2 ( ) [ , ,0] ( )

k
T T T T

j k k

k Y KEy j k Y EK E k

τ

ξ ξ ξ
−

= −

− = −∑

 (13) 

rearranging (12) yields (11). 

Obviously, when i > 1, it is also true of (11). 

Theorem 1: Given scalar 0,γ >  for each ,i l∈  if 

and only if there exist positive definite matrices Pi, Si, Q 

and Mi, M3i, Wi, Zi such that 

1 2

3

0,
i i

i

i

Ξ Ξ⎡ ⎤
Ξ = <⎢ ⎥∗ Ξ⎣ ⎦

 (14) 

then the discrete singular filtering error system (7) is 

stochastically stable, moreover, satisfies H∞ performance 

γ norm, where  

1 2 3

1 4

2

,

i i i

T

i i i
E W

Iγ

Γ Γ Γ⎡ ⎤
⎢ ⎥

Ξ = Γ −⎢ ⎥
⎢ ⎥

−⎣ ⎦

 ˆ ( ) ,T T T

i
A K A E= −  

2 3

ˆ

,

T T T T T T

i i i i i

T T T T T T

i i di di di di di

T T T T T T

i i i i i i

M A L L A A

M A L L A A

W B G G B B

τ τ β β

τ τ β β

τ τ β β

⎡ ⎤
⎢ ⎥

Ξ = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

��
��

��
��

� �
� �

 

1 1 1

3
[ , , , , , ],

i i i i i
diag S S I I X Xτ τ

− − −

Ξ = − − − − − −  

1
( ) ( ) ,T T

i i i i i
He Z R A He M EK EPE Qτ

∗

Γ = + − +
�

 

2 3
,

T T T T

i i di i i
Z R A M E K E MΓ = − +

�

 

3
,

T T T

i i i i
Z R B K E WΓ = +

�

 
4 3

( ) ,T

i i
He M E QΓ = − −  

1
,

N

i ij jj
X Pλ

=

=∑  1,τ τ τ
∗

= − +  ( , ),Q diag Q Q=  

( ) ( )n n n n

R
+ × +

∈R  is any matrix with full column satisfy-

ing 0T
E R =  with ( ) 2 .rank R n r= −  

Proof: Under the given condition, we first show that 

system (7) with ( ) 0kω =  is regular and causal. Since 

rank ,E n r= +  we choose two nonsingular matrices 
2 2

,

n n

M N
×

∈R
� �

 such that  

0
,

0 0

n r
I

E M N
+⎡ ⎤

= ⎢ ⎥
⎣ ⎦

� �

 
1 2

3 4

,

i i

i

i i

A A
A M N

A A

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

� � �

 (15) 

then R  can be given as 

0
,

1

T
R M H

−

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

� �

 (16) 

where ( ) ( )n r n r

H
− × −

∈R
�

 is any nonsingular matrix. Write 

1

2

,
iT T

i

i

Z
N Z H

Z

−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

� �

 
1 2

2 3

.
i iT

i T

i i

P P

M PM

P P

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

� �

 (17) 

From inequality (14), it can be obtained that  

1

1
0

i i

i

A

X
−

⎡ ⎤Γ
<⎢ ⎥

∗ −⎢ ⎥⎣ ⎦

�

 (18) 

by Schur complement (18), and 0,Qτ
∗

>  then  

( ) 0,T T

i i i i i i
A X A He Z R A EPE+ − <

� � �

 (19) 

where the partition is compatible with that of 
i

A
�

 in (15). 

Now, substituting (15), (16) and (17) into (19) gives  

# #
0,

#

T
N N

W

⎡ ⎤
<⎢ ⎥

⎣ ⎦

� �

�  (20) 

where # represents matrices that are not relevant in the 

following discussion, and 

2 1 2 4 2 2 2 2 4 4 3 4

2 4 4 2
,

T T T T T

i i i i i i i i i i i i

T T

i i i i

W A P A A P A A P A A P A

Z A A Z

= + + +

+ +

� � � � �

 (21) 

where 
1

,

N

li ij ljj
P Pλ

=

=∑
�

( 1,2,3).l =  

From (20), it is easy to see 0,W <

�

 which implies A4i is 

nonsingular for any i∈ l, thus the pair ( , )
i

E A
�

 is regular 

and causal.  

According to Definition 1, filtering error system (7) with 

( ) 0kω =  is regular and causal.  

Next we will show that system (7) is stochastically 

stable, construct the following Lyapunov function as  

1 2 3 4
( , ( )) ( ) ( ) ( ) ( ),V k k V k V k V k V kθ = + + +  (22) 

where 

1
( ) ( ) ( ),T

i
V k x k EPEx k=  

0 1

2 1 1
( ) ( ) ( ),

k T T T
ij k

V k y j E K S KEy j
θ τ θ

−

=− + = − +
=∑ ∑  

1

3 ( )
( ) ( ) ( ),

k T

i k k
V k x i Qx i

τ

−

= −

=∑  

1 1

4 2 1
( ) ( ) ( ),

k T

j l k j
V k x l Qx l

τ

τ

− + −

=− + = + −

=∑ ∑  

taking the forward difference of ΔV(k) along the 

trajectory of system (7) and taking the mathematical 

expectation, yields 

{ }

{ }
1

1 1 1 1

( ) ( ( 1), ( 1)) ( ( ), ( ))

( 1) ( 1)

( ) ( )

( ){( ) ( ),

T T

i

T T

i

T T

i i i i i

V k V x k k V x k k

k E X E k

k E PE k

k X

ε ε θ θ

ε ξ ξ

ξ ξ

ξ β β

Δ = + + −

= + +

−

= Π + Π Π + Π

 

(23) 

2

1

2 2

1

( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ),

T T T
i

k T T T
ij k

T T
i i i

k T T T
ij k k

V k y k E K S KEy k

y j E K S KEy j

k S k

y j E K S KEy j

τ

τ

ε τ

τξ ξ

−

= −

−

= −

Δ =

−

≤ Π Π

−

∑

∑
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by Lemma 1 to obtain 

{ }1

2 2 2
( ) ( ) ( ) ( ),T T T

i i i i i i i
V k k Y S Y S kε ξ τ ξ

−

Δ ≤ Π + +Π Π  

 (24) 

{ }

3

1

4 1

3 4

( ) ( ) ( ) ( ( )) ( ( ))

( ) ( ),

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( )

( ( )) ( ( ))

( ) ( , ,0) ( ).

T T

k T

i k

kT T

i k

T

T T

T

V k x i Qx i x k k Qx k k

x i Qx i

V k x i Qx i x i Qx i

V k V k x i Qx i

x k k K QKx k k

k diag Q Q k

τ

τ

τ

τ

ε τ τ

ε τ

ε ε τ

τ τ

ξ τ ξ

−

= − +

−∗

= − +

∗

∗

Δ ≤ − − −

+

Δ ≤ −

Δ + Δ ≤

− − −

=

∑

∑
 (25) 

Noting 0
T

E R =  and ( ) : ( 1) ( ),y k x k x k= + −  the fol-

lowing equation holds  

1

1 1 1

2 ( 1) ( ) 0,

0 ( 1) ( 1) (

) ( ).

T T T

i

T T T

i i

T T

i i i i

x k E RZ x k

x k E R PREx k

R X Rβ β

⎧ + =
⎪⎪

= + + = − Π⎨
⎪

+ Π Π + Π⎪⎩

� �

 (26) 

Combining (23)-(26) one obtains 

{

}

2

1 1 1 1

1

2 2

2

( ) ( ) ( )

( ) ( ) ( )

( ,0,0) ( )

( , ,0) (0,0, ) ( )

T

T T

i i i i i

T T T

i i i i i i i i

V k k k

k X

diag E PE Y S Y S

diag Q Q diag I k

ε γ ω ω

ξ β β

τ

τ λ ξ

−

∗

Δ −

≤ Π + Π Π + Π

− + Π + +Π Π

− −

 

( ) ( ),T

i
k kξ ξ= Ξ  (27) 

where 

1 2

4 3

1

1

1

ˆ

0 0 0
.

0 0

0

T T T T

i i i i i

T T T T

i i di di di

i

i

i

i

i

M A A A

M A A A

S

S

X

X

τ τ β

τ τ β

τ

τ
−

−

−

⎡ ⎤Γ Γ
⎢ ⎥

Γ⎢ ⎥
⎢ ⎥

−⎢ ⎥Ξ =
⎢ ⎥−
⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

�
�

�
�

 (28) 

By Schur complement (14), it can be obtained 
i

0,Ξ <  

considering (27) with ( ) 0,kω =  yields  

{ } { }

{ }min 0

( ) (( 1), ( 1)) (0, (0))

( ) ( ) ( ) 0.
v T

i k

V k V k k V

k k

ε ε θ ε θ

λ ε ξ ξ
=

Δ = + + −

≤ − −Ξ <∑
 (29) 

Let 
min

( ),
i

ρ λ= −Ξ  then 0,ρ >  so 

{ } { }
0

1
( ) ( ) ( (0), (0)) ,

v

k
k k Vε ξ ξ ε ξ θ

ρ

Τ

=
≤∑  

let ,v →∞  then 

{ }

{ }

0
( ) ( ) (0), (0)

1
( (0), (0)) .

k
x k x k

V

ε φ θ

ε ξ θ
ρ

∞ Τ

=

≤ < ∞

∑
 (30) 

By Definition 2, one obtains the system (7) is stochas-

tically stable with ω(k) = 0. 

Last, to prove that the system (7) satisfies H
∞
 perfor-

mance. For any nonzero 
2

( ) [0, )k Lω ∈ ∞  and zero initial 

condition, define 

{ }2

0
( ) ( ) ( ) ( ) ,

v T T

k
J z k z k k kε γ ω ω

=

= −∑ ,Zν ∈  (31) 

as 
3 3 3 3

( ) ( ) ( ) ( ) ( ) ( ),T T T

i i i i
z k z k k kξ β β ξ= Π + Π Π + Π  then 

one obtains  

{

} { }

{
}

{ }

0

2

0

3 3

3 3

0

( ( ), ( )) ( ) ( )

( ) ( ) ( ( ), ( ))

( ) ( ,0,0,0) ( ,0,0,0)

( ,0,0,0) ( ,0,0,0) ( )

( ) ( ) ,

v T

k

vT

k

TT

i i i

i i

v T

ik

J V k k z k z k

k k V k k

k

k

k k

ε ξ θ

γ ω ω ε ξ θ

ξ β

β ξ

ε ξ ξ

=

=

=

= Δ +

− − Δ

⎡ ⎤≤ Ξ + Π + Π⎣ ⎦

⎡ ⎤× Π + Π⎣ ⎦

≤ Ξ

∑

∑

∑
�

 (32) 

where  

1 2 3

4

2

2

2

T
T T

i i i i i

T T T
i i i idi di

T T

i i

T
T T

i i

T T
idi di

T T

i i

T
T T

i i

T T

di di

T T

i i

A A

E W XA A

I B B

A A

XA A

B B

L L

L L

G G

γ

β

β

⎡ ⎤ ⎡ ⎤Γ Γ Γ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥

Ξ = Γ − + ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

− ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

+ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

+ +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

� �

� � �

� �

� �

� �

� �

� �

� �

� �

.

T
T T

i i

T T

di di

T T

i i

L L

L L

G G

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

� �

� �

� �

 

By Schur complement (14), it is easy to show that 
i

Ξ <
�

 

0, so 

{ }
0

( ) ( ) 0,lim
v T

ik
v

k kξ ξε
=

→∞

Ξ <∑
�

 .i l∀ ∈  (33) 

That is, 2

0 0
{ ( ) ( )} { ( ) ( )}T T

k k
z k z k k kε γ ε ω ω

∞ ∞

= =

<∑ ∑  is 

true, which completes the proof. 

Remark 2: It should be pointed out that Theorem 1 

established a sufficient existent condition of delay-

dependent and partially mode-dependent filter (3) for 

system (1). Compared with fully mode-dependent filter, 

such as those of [25,26,41], where the system modes 

need to be known exactly, and is thus invalid when the 

jump mode θ(k) is not available to the filter.  

Based on Theorem1, we are now ready to deal with 

the H
∞
 filter design problem for discrete SMJSs with 

interval time-varying delay (1), and a sufficient condition 

for the existence of a suitable filter is presented as 

follows. 

Theorem 2: For a prescribed scalar γ > 0, the filtering 

error system (7) is stochastically stable with H
∞
 perform- 
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ance γ, for each i∈ l, if there exist matrices 
1
,iM

2
,
i

M  

3
,
i

M ,
i

W ,iS ,
i

Z ,Q
1
,H

1
,F

2
,F

1
,X ,fA ,fB ,fC ,fD  

,fiA ,fiB ,fiC fiD  and 1 2

3

0,
i i

i

P P

P

⎡ ⎤
⎢ ⎥
∗⎢ ⎥⎣ ⎦

>  such that the in-

equalities (34) are feasible 

1 2 3 4 5

6

7

8

0 0 0

0 0 0,

0

i i i i i

i

i

i

i

I

Ω Ω Ω Ω Ω⎡ ⎤
⎢ ⎥∗ Ω⎢ ⎥
⎢ ⎥Ξ = ∗ ∗ − <
⎢ ⎥
∗ ∗ ∗ Ω⎢ ⎥

⎢ ⎥∗ ∗ ∗ ∗ Ω⎣ ⎦

�  (34) 

where 

1 2 2 2 3

3 2

1

4

2

,

T T

i i i i i

T

i i

i
T

i i

E M E P

P Q M

E W

I

τ

γ

∗

⎡ ⎤Ω − Ω Ω
⎢ ⎥
∗ − + − ∗⎢ ⎥

Ω = ⎢ ⎥
∗ ∗ Ω −⎢ ⎥

⎢ ⎥
∗ ∗ ∗ −⎢ ⎥⎣ ⎦

 

1 1

2

2

3 1

1

ˆ

0
,

T T T T T T T T
i i i f i fi

T T T
i f fi

i T T T T T T T T
i di di di f di fi

T T T T T T T T
i i i i f i fi

M A H L C D C D

M C C

M A H L C D C D

W B H G D D D D

τ τ α

τ α

τ τ α

τ τ α

⎡ ⎤− −
⎢ ⎥
⎢ ⎥− −
⎢ ⎥Ω =
⎢ ⎥− −
⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

1 1

4

1 1

1 1

1 1

1 1

1 1

T T T T T T T T
i i f i i f

T T
f f

i T T T T T T T T
di di f di di f

T T T T T T T T
i i f i i f

T T T T T T T T
i i fi i i fi

T T
fi fi

T T T T T T T T
di di fi di di fi

T T T T T T
i i fi i

A X C B A F C B

A A

A X C B A F C B

B X D B B F D B

A X C B A F C B

A A

A X C B A F C B

B X D B B F D

α

⎡ ⎤+ +
⎢ ⎥
⎢ ⎥
⎢ ⎥Ω =
⎢ ⎥+ +
⎢ ⎥
⎢ ⎥+ +⎣ ⎦

+ +

+
+ +

+ +

,

T T
i fiB

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

5

0

0
,

0

0

T T
i fi

T
fi

i T T
di fi

T T
i fi

C B

A

C B

D B

β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥Ω =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

{ }6 1 1
, ( ), ,

T

i i i
diag S S H H Iτ τΩ = − − − −  

1 1 1 2 1 2

7 8

3 2 2

,

T T

i i

i i
T

i

X X X X F F

X F F

⎛ ⎞− − − −
Ω = Ω = ⎜ ⎟

⎜ ⎟∗ − −⎝ ⎠
 

1 1 1
( ) ( ) ,T T T T

i i i i i
He A RZ He M E E P E Qτ

∗

Ω = + − +  

2 1 3
,

T T T

i i di i i
Z R A M E E MΩ = − −  

3
,

T T

i i i i
Z R B E WΩ = +  

4 3
( ) ,T

i i
He M E QΩ = − −  

1
( 1,2,3),

N

li ij ljj
X P lλ

=

= =∑  

( )n n r

R
× −

∈R  is any matrix with full column satisfying 

0.
T

E R =  

Then the discrete SMJSs (1) has a desired filter (3) can 

be chosen with parameters as 

1 1

2 2

1 1

2 2

, , , ,

, , , .

f f f f f f f f

fi fi fi fi fi fi fi fi

A A F B B C C F D D

A A F B B C C F D D

− −

− −

= = = =

= = = =

 (35) 

Proof: Similar to the method in [36], by introducing 

the slack variable 
1 2

3 4

,
i

X X
H

X X

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 an equivalent form 

of (14) is given in the following  

1 2

3

ˆ ˆ
ˆ 0,

ˆ

i i

i

i

⎡ ⎤Ξ Ξ
Ξ = <⎢ ⎥

∗ Ξ⎢ ⎥⎣ ⎦
 (36) 

where  

1 1
ˆ ,

i i
Ξ = Ξ  

2 2 1 2 2
ˆ [ , , , , , ] ,

T

i i
I H I I H HΞ = Ξ  

3 1 1
ˆ [ , ( ), , , , ],T

i i i i i
diag S S H H I I X Xτ τΞ = − − − − −  

2 2
.

T

i i
X X H H= − −  

Inequality (36) shows that 
1 1

0,
T

H H+ >  then 
4 4

T
X X+  

0,>  which implies that X4 is invertible, define  

1

2 4

0
,

0

I

J

X X
−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
1 2

3

,

i i T

i

i

P P
JPJ

P

⎡ ⎤
=⎢ ⎥∗⎣ ⎦

 
0

,
0 0

R
R

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

,
0

i

i

Z I
Z

I

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 1

1 2 4 3
,F X X X

−

=  
2 2 4 2

,
T T

F X X X
−

=  

{ }, , , , , , , , .T diag J I I I I I I J J=  

Pre- and post-multiplying the left hand side of (36) by T 

and TT, respectively, and let  

2 4 2
,

T T
f fA X A X X

−

=  
2

,f fB X B=  
4 2

,

T T
f fC C X X

−

=  

,f fD D=  
2 4 2

,

T T
fi fiA X A X X

−

=  
2

,fi fiB X B=  

4 2
,

T T
fi fiC C X X

−

=  .fi fiD D=  

We can find (36) is equivalent to (34). Therefore, the 

partially mode-dependent filtering error singular jump 

system (7) is regular, causal, and stochastically stable 

with H∞ norm bound γ. The desired filter can be obtained 

from (34). This completes the proof. 
 

Remark 3: It is worth noting that by Theorem 2, a 

delay-dependent and partially mode-dependent H∞ filter 

design method for singular jump systems with time-

varying delay is proposed, all solutions including filter 

variables can be directly obtained from the LMI con- 

dition (33) without decomposing the original system 

matrix, and thus making the design procedure reliable. 

The filter existing condition depends on the upper bound 

as well as the lower bound of the time varying delay. 

Moreover, it can be seen that the mode accessible 

probability α is involved, compared with the results in 

[26,28,29] for singular jump systems, our delay-depen-

dent and partially mode-dependent result is much more 

desirable and applicable than that of those.  
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Remark 4: To get the minimum H∞ norm bound γ, 

LMI condition (34) is changed to the optimization 

problem as follows: 

Minimize γ, 

subjects to LMI (34) and 
min

.γ γ=  (37) 

Remark 5: In (3), if α(k) = 0, it reduces to a general 

delay-dependent and mode-independent filter designing 

for discrete-time singular jump system with time-varying 

delay, we have the following corollary based on the 

Theorem 2. 

Corollary 1: For the discrete SMJSs (1), the filtering 

error system 

( 1) ( ) ( ( )) ( )

( ) ( ) ( ( )) ( ),

i di i

i di i

Ex k A x k A Kx k k B k

z k L x k L Kx k k D k

τ ω

τ ω

⎧ + = + − +⎪
⎨

= + − +⎪⎩
 (38) 

is stochastically admissible, moreover, satisfies H
∞ per-

formance γ norm. For each ,i l∈  if there exist matrices 

1
,iM

2
,
i

M
3
,
i

M ,
i

W ,iS ,
i

Z ,Q
1
,H

1
,F

2
,F

1
,X ,fA  

,fB ,fC ,fD ,fiA ,fiB ,fiC fiD  and 1 2

3

0,
i i

i

P P

P

⎡ ⎤
⎢ ⎥
∗⎢ ⎥⎣ ⎦

>  such 

that 

11 12 13

14

15

ˆ 0 0,

i i i

i i

i

Γ Γ Γ⎡ ⎤
⎢ ⎥Ξ = Γ <⎢ ⎥
⎢ ⎥Γ⎣ ⎦

 (39) 

where 

11 1
,

i i
Γ = Ω  

15 7 8
,i i iΓ = Ω = Ω  

{ }14 1 1
, ( ), ,

T

i i i
diag S S H H Iτ τΓ = − − − −  

1 1

2

12

3 1

1

( )

0
,

T T T T T T T
i i i i f

T T
i f

i T T T T T T
i di di di f

T T T T T T
i i i i f

M K A E H L C D

M C

M A H L C D

W B H G D D

τ τ

τ

τ τ

τ τ

⎡ ⎤− −
⎢ ⎥
⎢ ⎥−
⎢ ⎥Γ =
⎢ ⎥−
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

1 1

13

1 1

1 1

.

T T T T T T T T
i i f i i f

T T
f f

i T T T T T T T T
di di f di di f

T T T T T T T T
i i f i i f

A X C B A F C B

A A

A X C B A F C B

B X D B B F D B

⎡ ⎤+ +
⎢ ⎥
⎢ ⎥
⎢ ⎥Γ =
⎢ ⎥+ +
⎢ ⎥
⎢ ⎥+ +⎣ ⎦

 

Then a desired filter  

( 1) ( ) ( ),

( ) ( ) ( ),

f f f f

f f f f

x k A x k B y k

z k C x k D y k

+ = +⎧⎪
⎨

= +⎪⎩
 (40) 

can be chosen with parameters as defined in (35), which 

was researched in [16]. Furthermore, when E = I and I = 

1, it reduces to the results of [36] which is a special case 

of this corollary. 

Remark 6: If 0f f f fA B C D= = = =  in (3), the 

output of measurement and the estimated signal fully 

transmitted under without data loss, that is ( ) 1,kα =  

then a desired delay-dependent and mode-dependent filt- 

er designing in Corollary 1 becomes 

( 1) ( ( )) ( ) ( ( )) ( ),

( ) ( ( )) ( ) ( ( )) ( ),

f f f f

f f f f

x k A k x k B k y k

z k C k x k D k y k

θ θ

θ θ

+ = +⎧⎪
⎨

= +⎪⎩
 (41) 

which was researched in [25,29]. 

 

4. NUMERICAL EXAMPLES 

 

Example 1: For system (1) parameters borrowed from 

the Example 2 in [30], let {0,5},R diag=  given time 

varying delay ( ) [1,4],kτ ∈ [1,5]  and [2,6]  respectively, 

and by solving (36) the minimum allowed γ are obtained 

for the transition probabilities completely known case in 

Table 4 of [30]. The corresponding computation results 

are listed in Table 1 for different α and time-varying 

delay. 

It shows that the lower value of α results the larger 

value of γmin under the same transition matrix and time 

varying delay.  

Remark 7: A key feature of this paper is that singular 

jump, time-varying delay and noise perturbations are all 

considered, moreover, with the probability of mode 

accessible to a filter over networks, we may still get 

effective minimum H∞ performance. The filter design 

methods in [7,31,32,35,39] cannot be applied to this 

example, as there exists singular system matrices.  
 

Example 2: Considering the system (1) with the par-

ameters borrowed from the Example in [29], the same se- 

lecting 
0 0

0 1
,R

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=  the transition probability matrix 
0.7 0.3

0.2 0.8
,

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

Π =  and time-varying delay is assumed to be 

1 ( ) 3.kτ≤ ≤  

Assume γ = 2.6, with α =1, 0.5 and 0.1 respectively, 

using Matlab LMI control Tool box to solve the LMIs in 

(20), we have the filter of form (3) with parameters as: 

Case one: α =0 

0.1945 0.0393
,

0.6114 0.1225
fA

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 
1.0214

,
0.5311

fB
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 

0.1389 0.0270 ,fC ⎡ ⎤= −⎣ ⎦  1.3991,fD =  

1

0.8375 0.1697
,

0.2025 0.0389
fA

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 
1

0.2238
,

0.1126
fB

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

1
0.1095 0.0218 ,fC ⎡ ⎤= −⎣ ⎦  

1
0.8476.fD =  

Case two: α =1 

0.2716 0.0450
,

0.8558 0.1754
fA

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 
1.4297

,
0.7434

fB
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 

 

Table 1. The minimun H∞ performance γmin with differ-

ent α and time-varying delay. 

       α 

γ
min

 
0 0.5 1 

( ) [1,4]kτ ∈ 1.985 1.223 0.697 

( ) [1,5]kτ ∈ 2.212 1.402 0.785 

( ) [2,6]kτ ∈ 2.736 1.779 0.839 
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0.1931 0.0376 ,fC ⎡ ⎤= −⎣ ⎦  1.958,fD =  

1

0.2173 0.0360
,

0.6836 0.1403
fA

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 
1

1.1436
,

0.5947
fB

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

1
0.1545 0.0301 ,fC ⎡ ⎤= −⎣ ⎦  

1
1.5664,fD =  

2

0.1738 0.0288
,

0.5469 0.1122
fA

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 
2

0.9149
,

0.4758
fB

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

2
0.1236 0.0241 ,fC ⎡ ⎤= −⎣ ⎦  

2
1.2531.fD =  

Case three: α = 0.5 

0.1358 0.0275
,

0.4279 0.0877
fA

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 
0.7150

,
0.3717

fB
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 

0.0966 0.0189 ,fC ⎡ ⎤= −⎣ ⎦  0.9793,fD =  

1

0.2513 0.0509
,

0.0608 0.0116
fA

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 
1

0.2145
,

0.0111
fB

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

1
0.0288 0.0056 ,fC ⎡ ⎤= −⎣ ⎦  

1
0.2937,fD =  

2

0.2010 0.0407
,

0.0486 0.0093
fA

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 
2

0.1716
,

0.0890
fB

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

2
0.023 0.0045 ,fC ⎡ ⎤= −⎣ ⎦  

2
0.2350.fD =  

the same initial condition is ( ) [1 1/ 6]Tkφ = −  and the 

noise signal is 0.3( ) 0.5 k
k eω

−

=  with different α the 

trajectory of the filtering error responses are shown in 

Fig. 1.  

 

Remark 8: As discussed in Remarks 1-6, the criteria 

obtained in [7,16,25-29,31,32,35,39,41] fails in Ex-

amples 1 and 2. when there is a jam in network that the 

system mode cannot be observed totally, accessed with 

some probabilities, a partially mode-dependent filter is 

less conservative due to consideration of the distributed 

property of system mode, compared with the previous 

results, which are more realistic in the application.  
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Fig. 1. The trajectory of filtering error. 

5. CONCLUSION 

 

In this paper, the problem of robust H∞ filter design 

has been investigated for discrete-time singular 

Markovian jump systems over networks. Attention has 

been focused on using switched Lyapunov function to 

characterize sufficient conditions for the solvability of 

the switched singular filtering problem in terms of LMIs 

under the mode accessible probability α is involved. 

Based on the obtained analysis result, a novel H∞ filter 

has been designed, which guarantees the filtering error 

system to be regular, causal, and stochastically stable 

with a given H∞ performance γ, the delay-dependent and 

partially mode-dependent result is much more desirable 

and applicable than that of past results. Lastly, numerical 

examples are used to illustrate the benefit and 

applicability of the developed results. 
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