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Abstract: Model Predictive Control (MPC) is a modern technique that, nowadays, encapsulates differ-

ent optimal control techniques. For the case of non-linear dynamics, many possible variants can be de-

veloped which can lead to new control algorithms. In this manuscript a novel generic control system 

method is presented. This method can be applied to control, in an optimal way, different systems hav-

ing non-linear dynamics. Particularly, in this paper, the proposed technique is presented in the context 

of developing a control system for autonomous flight of UAVs. This technique can be used for differ-

ent types of aerial vehicles having any type of generic non-linear dynamics. The presented method is 

based on the use of iteratively defined optimal candidate state-space trajectories in global state-space. 

The method uses a generalized linearization process which, opposite to standard methods, does not 

need to be predefined in a certain equilibrium state but instead it is performed along any arbitrary state. 

The technique allows the inclusion of constraints with ease. The presented technique is used as a cen-

tralized control system unit that is able to control the full aircraft dynamics without the need of de-

coupling the system in different reduced modes. The technique is tested by making a Cessna 172 air-

plane model to perform the following autonomous unmanned maneuvers: climbing at constant speed to 

a desired altitude, heading change to a desired flight direction, and, coordinate turn. 

 

Keywords: Non-linear model predictive control, optimization, state-space trajectories prediction, 

unmanned aerial vehicles. 

 

1. INTRODUCTION 

 

In the last decades, navigation and control techniques 

such as feedback control [1-3] have led to modern 

control techniques such as model predictive control 

(MPC) [4-7] and others [8-11]. With MPC one can work 

with multi-variable discrete state space models [12]. 

MPC allows the treatment of physical systems 

constraints and fits well in the case of aircraft dynamics 

[13-16] where control inputs as well as states variables 

must meet certain limits. 

MPC is formulated by solving an on-line optimal 

control problem [17,18]. Control inputs are determined 

with a refresh rate equal to a given discretization period 

.
s

TΔ  The optimal control sequence valid for a given 

time control horizon c
h
t  is calculated by minimizing an 

objective function subject to state and inputs constraints 

during a prediction time horizon .

ph
t  The control 

sequence is assumed to remain constant for .

p c
h h
t t t≥ ≥   

The obtained optimal control input corresponding to 

the first sampling instant is then applied to the system 

and the calculation is restarted displacing the prediction 

horizon forward to the next sampling instant ( p p
t t←  

).
s

T+Δ  The computation of new predictions at each 

sampling rate compensate for unmeasured disturbances. 

A review of MPC can be found in [19,20]. 

This paper presents a novel non-linear optimal 

predictive control algorithm that can be used for general 

non-linear system dynamics [21]. The method uses an 

iterative state-space trajectories linearization process to 

find the optimal discrete control inputs. The 

mathematical algorithm is presented in the application 

context of controlling unmanned aerial vehicles. Both, 

the automatic control operation and the non-linear 

predictive control method are presented. The presented 

technique, named Iterative Non-linear Model Predictive 

Control (INL-MPC), is used as an automatic control 

system unit which allows an unmanned aircraft to fly and 

perform different autonomous maneuvers, such as, 

climbing, descend, change of heading and coordinated 

turns, in an optimal way. For this specific application, 

the UAV state-space representation consists of twelve 

differential equations that describe the behavior and 

dynamics of a complete six degrees of freedom (6-DOF) 

aircraft [2]. In Section 2, the non-linear aircraft model is 

presented. In Section 3, the theoretical linearization 

approach on generalized state-space trajectories is 

presented. In Section 4, the proposed non-linear MPC 
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method is described. In Section 5, a group of selected 

automatic control maneuvers are presented using a 

Cessna 172 aircraft model as the unmanned vehicle. The 

following maneuvers are tested: 1) Climbing at constant 

speed, 2) Change of heading direction of the flight path 

maintaining constant speed and altitude and 3) 

Coordinated turn at constant speed and altitude. 

The proposed control system has been implemented in 

the flight simulator Excalibur for its evaluation. This 

simulator has been developed at the Research Center of 

Computational Methods (CIMEC) [22]. The use of the 

flight simulator facilitates the testing of different control 

systems and it enables to verify that the desired 

maneuvers are performed in real time. The control 

module is implemented as an independent subsystem. 

 

2. NON-LINEAR SYSTEM DYNAMICS 
 

A general representation of the non-linear dynamics of 

an arbitrary system is given by the following first-order 

differential equation: 

),( ,=x f x u�  (1) 

where x  is the vector of system’s states, u  is the 

vector of system’s inputs or controls, x�  is the vector of 

state rates and f  is a vector function that depends on 

the system being modeled. 

 

2.1. Non-linear aircraft dynamics 

In the context of applications to developing control 

systems for autonomous flight of unmanned aircrafts, the 

full order aircraft system is represented by the following 

state vector: 

1 2 3 4 5 6 7 8 9 10 11 12

N E

[

[

]

]

T

T

t

x x x x x x x x x x x x

v p q r x y hα β φ θ ψ

=

=

x

 (2) 

of dimension 12
s

N =  whose components are given by: 

- ,
t
v α  and β  are the true airspeed, the angle of at-

tack and the sideslip angle, respectively. 

- ,φ θ  and ψ  are the Euler angles that define the 

roll, pitch and yaw orientation of the Body frame 

with respect to the North-East-Down (NED) refer-

ence frame.  

- ,p q  and r  are the components of the aircraft’s 

angular velocity vector in Body axes 
Body

(ˆ ,x
Body
ˆ ,y  

Body
ˆ ),z  respectively. 

- 
N
,x

E
y  and 

D
z h= −  are the components of the 

aircraft’s CG position with respect to the NED refer-

ence frame. 

The vector u is assumed here to be given by the follow-

ing 4
i

N =  aircraft control variables:  

1 2 3 4
[ [ ,]]

T T

e a r
u u u u thtl δ δ δ= =u  (3) 

where 
e

δ  is the elevator deflection in degrees, 
a

δ  is the 

aileron deflection in degrees, 
r

δ  is the rudder deflection 

in degrees and thtl  is the position of the throttle column 

whose value is between zero and one. 

Following [2], in the case of arbitrary aerial vehicles, 

the vector function ( , )f x u  is given by: 

2 2

2
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 (4) 

where 

- 
ij
b  are the components of the rotation matrix 

B
B  

defined in page 37, Eq. (1.4-10) of [2] 

- 
i
c are coefficients related to the aircraft’s inertia 

moments and are defined in page 80, Eq. (2.4-6) of [2] 

- sin /
x

u rv qw g F mθ= − − +�  

- sin cos /
y

v ru pw g F mφ θ= − + + +�  

- cos cos /
z

w qu pv g F mφ θ= − + +�  

- ( ) /
t t
v uu vv ww v= + +� � � �  

- ( ),,
x x

F F= x u ( ),,
y y

F F= x u ( , )
z z

F F= x u  are the 

total forces (aerodynamic plus propulsion forces) act-

ing on the UAV expressed in Body Frame coordi-

nates. These forces explicitly depend on the state and 

control variables x, u. 

- ( ),,
x x

M M= x u ( ),,
y y

M M= x u ( , )
z z

M M= x u  are 

the total moments (aerodynamic plus propulsion 

moments) with respect to the CG position acting on 

the UAV, expressed in the Body Frame system. 

These moments also explicitly depend on the state 

and control variables. 

The aerodynamic and propulsion forces and moments 

depend on the unmanned aircraft being modeled. 

 

2.2. Predicted state-space trajectories 

Now, consider the airplane at certain time t0, and as-

sume it is in an arbitrary state 0 0( , ).x u  Now assume 

that the airplane is going to be controlled by a series of 

hp consecutive piecewise constant controls (See Fig. 1) 

1 2 p

T
hk

p
⎡ ⎤= ⎢ ⎥⎣ ⎦

U u u u u� �  (5) 

during a time period 0
].[ , ph

t t  Each control k
u  in (5) 

is applied during a time interval 1
[ , ]
k k
t t

−  of length 

.sTΔ  The discrete times are defined as 0
.

k

s
t t k T= + Δ  

Notation: From now on superscripts to denote the 

discrete values of variables at different discrete times k
t  

will be used. For example, the value of variable ( )y t  at 

time k
t  will be denoted by .

k
y  
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Fig. 1. Time discretization scheme. 

 

 

Fig. 2. Predicted state-space trajectories. 

 

With the airplane at the initial state 0
x  and given the 

first control input 1(1) ,
p

=U u  (1) can be integrated 

using for example a Runge-Kutta integration algorithm, 

to find the airplane’s new state 1
x  at time t1. Iteratively, 

the subsequent states k
x  associated to the control 

sequence Up defined in (5) can be determined to find the 

vector of predicted states: 

�
1 2

.

p

T
hk⎡ ⎤= ⎢ ⎥⎣ ⎦

X x x x x� �  (6) 

The above defines an airplane state-space trajectory 

( ),
p

T U  as shown in Fig. 2. Of course, a different control 

sequence ( )
:

i
pU  

,( )( ) 1,( ) 2,( ) ,( ) p

T
h ii i i k i

p
⎡ ⎤= ⎢ ⎥⎣ ⎦

U u u u u� �  (7) 

will generate a different state-space trajectory ( )( )i
pT U  

with its corresponding vector of predicted states �

( )
:

i

X  

�

( ) ,( )1,( ) 2,( ) ,( )
.

p

Ti h ii i k i⎡ ⎤= ⎢ ⎥⎣ ⎦
X x x x x� �  (8) 

This is also shown in Fig. 2. 

 

3. GENERALIZED LINEARIZATION, 

CONSTRAINTS AND TIME-DISCRETIZATION 

 

3.1. Linearization 

The non-linear state equation (1) can be linearized by 

expanding ( , )f x u  into first order (or into a higher order 

[23]) Taylor series around an arbitrary operating point 

( , )
e e

x u  ([2,17]): 

( , ) ( , )( , ) | ( ) | ( ),
e e e e

e e e e

∂ ∂
≈ + − + −

∂ ∂
x u x u

f f
x u x x u u

x u

x f�  (9) 

where ∂

∂

f

x
 and ∂

∂

f

u
 are the system’s Jacobian matrices 

evaluated at ( ).,
e e

x u  

The linearization point ( , )
e e

x u  is an arbitrary point, 

physically realizable, defined by a flying state x
e
 in 

which the position of the controls are specified by the 

control vector u
e
. Note that ( , )

e e
f x u  can be calculated 

for every ( , )
e e

x u  using (4) and can take nonzero val-

ues. Then, if 

( , ) ( , ) ,| , |

( , )

e e e e

e e e e

∂ ∂
= =
∂ ∂

= − −

x u x u

f f
A B

x u

d f x u Ax Bu

 (10) 

are defined, equation (9) can be written in compact form 

as 

( ) ( ) .( )t t t= + +x Ax Bu d�  (11) 

The general solution of (11) is 

( ) ( )

( )

( ) ( ) ( )

.

e

e

e

t
t t t

e
t

t
t

t

t e t e d

e d

τ

τ

τ τ

τ

− −

−

= +

+

∫

∫

A A

A

x x Bu

d

 (12) 

 

3.2. Linearization along a predicted state-space trajectory 

As can be seen in subsection 2.2, different control 

inputs sequences define different state-space trajectories. 

Then, assume that, at time t0, the airplane is at a known 

state 0 0( , )x u  and that during the prediction horizon 
0

[ , ]ph
t t  it will closely move along a predicted state-

space trajectory ( )( )i
pT U  which is defined by the vector 

of control inputs ( )i
pU  and predicted states �

( )i
X  given 

in (7) and (8). Now, proceed to linearize (1), in each 

time-interval 1
,[ , ]

k k
t t

+  using as linearization points 

( ),,
e e

x u  the states and control inputs ,( ) ,( )( , )k i k i
x u  

associated to the predicted state-space trajectory ( )( .)i
pT U  

Then, for each time interval 1
,[ , ]

k k
t t

+  the linearized 

matrices given in (10) become: 

,( ) ,( )

,( )

,

| ,k i k i

k k i ∂
= =

∂ x u

f
A A

x
 

,( ) ,( )

,( )

,

| ,k i k i

k k i ∂
= =

∂ x u

f
B B

u
 (13) 

,( ) ,( ) ,( ) ,( ) ,( )( , ) .k k i k i k i k k i k k i
= = − −d d f x u A x B u  

Now, these matrices can be used in (12) to predict the 

state 1k+
x  at time 1k

t
+  given the state k

x  at time k
t  

and the applied constant control 1k+
u  (see Fig. 1), then: 

� � �
1 1

,

k k kk k k k+ +

= + +x A x B u G d  (14) 

where 

� � � �

0
, ,

k k
s

s
Tkk k kT k

e e d
τ

τ

Δ
Δ

= = =∫
A A

A G B G B  (15) 

are the discretized versions of the linear system matrices 

(13). Equation (14) becomes the discrete state-space 

representation of the linearized airplane model. 
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Iterating the model described by (14) along the 

consecutive times k
t  with 0,1, ,, 1pk h= … −  it can be 

seen that the vector of predicted states, defined in (6), 

can be calculated as: 

�
0

.

u p g
= + +X Px H U H D  (16) 

Matrices D, P, Hu and Hg are defined in the Appendix. 

 

3.3. Constraints 

In discrete time, the constraints in control inputs, con-

trol inputs rates and states can be expressed as follows: 

k k k
m M≤ ≤u u u    ,1, ,

p
k h= �  (17) 

k k k
m M≤ ≤u u u� � �    ,1, ,

p
k h= �  (18) 

and 

k k k

m M
≤ ≤x x x    ,1, ,

p
k h= �  (19) 

where ( , )
k k

m M
u u  represent the min-max constraints on 

the controls, ( , )
k k

m M
u u� �  represent the min-max constraints 

on the controls rates and ( , )
k k

m M
x x  represent the min-

max constraints on the states. 

Equation (17) can be written in matrix form as: 

,

p M
p

mp

⎡ ⎤ ⎡ ⎤
≤⎢ ⎥ ⎢ ⎥−−⎢ ⎥ ⎣ ⎦⎣ ⎦

I U
U

UI
 (20) 

where UM and Um are vectors that contain the upper and 

lower limits of the control inputs respectively and Ip is an 

identity matrix of dimension ( ) ( ).
i p i p

N h N h× × ×  

Similarly, evaluating for ,1, ,
p

k h= �  equation (18) 

can be written as follows: 

,

p

m M

sT

Δ
≤ ≤

Δ

U
U U� �  (21) 

where 
M

U�  and 
m

U�  are vectors that contain the upper 

and lower limits of the control inputs rates, respectively, 

and where: 

0 ,p p
Δ = +U EU U  (22) 

where E and U0 are defined in the Appendix. 

The control inputs rates constraints (21) can be 

expressed in matrix form as follows: 

0

0

.

M
p s

m

T
−⎡ ⎤ ⎡ ⎤⎡ ⎤

≤ Δ +⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦

UE U
U

UE U

�

�

 (23) 

Using (14), the states constraints (19) become: 

0 gu M

p

gu m

−−

≤ + +

− −

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

HH X P
U x D

HH X P

 (24) 

where XM and Xm are vectors that contain the upper and 

lower limits of the states, respectively. 

Finally, putting together (20), (23) and (24), the 

restrictions can be grouped as 

ineq ineq .p
≤A U b  (25) 

Matrices ineqA  and 
ineq

b  are defined in the Appendix. 

 

4. ITERATIVE NON-LINEAR MODEL 

PREDICTIVE CONTROL (INL-MPC) 

 

The proposed INL-MPC algorithm is a general algo-

rithm extending classical MPC capabilities in order to 

control non-linear systems. The proposed method reduc-

es the problem of non-linear optimal control of a non-

linear system to a series of iterative, easily solvable, qua-

dratic optimization suproblems (later defined in (40)). In 

order to achieve this, it uses a generalized linearization 

process which is performed along iteratively defined 

candidate state-space trajectories in global state-space, 

while classical MPC generally uses a linearized model in 

one or more certain equilibrium states. The presented 

method does not require the definition of equilibrium 

states. The INL-MPC method can be seen as an iterative 

succession of time-varying linear MPC methods. 

 

4.1. Quadratic objective function 

MPC uses the prediction of future behavior of a sys-

tem in order to determine a sequence of optimal control 

inputs which minimize an objective function or cost 

function J(x, u). The cost function J penalizes the errors 

between predicted states x and desired states xsp. It can 

also penalize changes in control inputs u. 

A quite general continuous-time form of the objective 

function J can be written as: 

0
( , ) ( ) ( )

hpt T
sp x sp

t
J ⎡= − −⎣∫x u x x Q x x  

( ) ( ) ( ) ( )T T
sp x sp sp u sp+ − − + − −x x Q x x u u R u u

�

� � � �  

( ) ( ) ,T
sp u sp dt⎤+ − − ⎦u u R u u

�

� � � �  (26) 

where xQ  and xQ
�

 are positive semidefinite matrices 

and uR  and uR
�

 are positive definite matrices and ,
sp

x  

,
sp

x�
sp

u  and 
sp

u�  specify the setpoints of the states 

variables, states variables rates, control inputs and con-

trol inputs rates respectively, and are defined as follows: 

[ ] ,
T

sp t sp sp sp sp sp sp sp sp N E spsp sp sp
v p q r x y hα β φ θ ψ=x  

 (27) 

] ,[
T

sp t sp sp sp sp sp sp sp sp N E spsp sp sp
v p q r x y hα β φ θ ψ=x

�� � �

� �� � � � � � �  (28) 

,[ ]
T

sp sp e a rsp sp sp
thtl δ δ δ=u  (29) 

] .[
T

sp sp e a rsp sp sp
thtl δ δ δ=u � � � �

�  (30) 

In this work, it will be enough to consider a reduced 

cost function penalizing states deviations and rate-

changes in control inputs, only. As a consequence, ma-

trices xQ
�

 and uR  are assumed to be zero. Additional-

ly, control inputs with minimum motion are desired, so 

sp
u�  is set equal zero. With these assumptions, the dis-

crete form of (26) becomes: 
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1

1 1

[( ) ( )

( ) ( ) ,]

ph

k k T k k k
sp x sp

k

k k T k k k
u

J

=

− −

= − −

+ − −

∑ x x Q x x

u u R u u
�

�

�

 (31) 

where 

k k

x s x
T= ΔQ Q�  and .

k

k u

u

s
T

=
Δ

R
R

�

�

�  (32) 

Using (22), (31) can be written in matrix form as fol-

lows: 

� � �

0 0

( , ) ( ) ( )

,( ) ( )

T
p sp x sp

T
p u p

J = − − +

+ + +

X U X X Q X X

EU U R EU U
�

�

�

 (33) 

where ,
x

Q
�

uR
�

�

 and spX  are defined in the Appendix.  

Using (16) into (33) and discarding constant terms, the 

objective function (33) can be written as a function of the 

control sequence only, as follows: 

( ) ,T T
p p p pJ = +U g U U HU  (34) 

where 

0

0
2 ( )

T T
u x g sp u

⎡ ⎤= + − +⎣ ⎦g H Q Px H D X E R U
�

� �

 (35) 

and 

.

T T
u x u u= +H H Q H E R E

�

� �

 (36) 

From (34), it can be seen that the control problem has 

been reduced to the one of finding an optimal control 

sequence *

p
U  that minimizes a quadratic objective func-

tion subject to the constraints defined in (25). 

 

4.2. How MPC works 

In MPC, the control values are assumed to remain 

constant once the time control horizon c
h
t  has been 

reached. This means that the values ( )
p
kU  of the con-

trol sequence Up remain equal to c
h

u  for 1,
c

k h= +  

.,
p

h�  As a consequence, it is possible to express the 

complete control sequence Up in terms of the effective 

control sequence Uc as follows: 

,
p c
=U TU
�

 (37) 

where the effective control sequence vector is given by 

1 2
c

T
h

c
⎡ ⎤= ⎣ ⎦U u u u�  (38) 

and where matrix T
�

 is given by 

,

c
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

I
T

V

�

 (39) 

where matrices Ic and V are defined in the Appendix. 

Note that, while Up is a vector of dimension p i
h N×  

containing the complete control sequence, Uc is a vector 

of dimension 
c i
h N×  containing the controls applied 

during the control time horizon ( ).1, ,
c

k h= �  

 

Fig. 3. Control loop scheme. 

 

The last step in this formulation consists in expressing 

the cost function J(Up) and the constraints in terms of the 

effective control sequence Uc. This can be done 

straightforwardly by replacing (37) into (34) and (25). 

Finally, the minimization problem can be written in 

terms of Uc as: 

ineq ineq
.

min ( )

.

c

T T T

c c c c

c

J

st

= +

≤

U

U g TU U T HTU

A TU b

� � �

�

 (40) 

The solution of the minimization problem of (40) gives 

the optimal control input sequence * *

c p
→U U  which 

will command the airplane towards the desired maneuver. 

The proposed INL-MPC control algorithm operates 

on-line as indicated below. 

First, the current airplane’s state x0 and current control 

inputs u0 are measured, then the optimal control se-

quence *

c
U  is computed by solving (40). Then, only the 

control input 1 * (1)
c

=u U  corresponding to the first 

sampling interval is applied to the aircraft. The control 

loop operation is shown in Fig. 3. 

 

4.3. Algorithm 

It assumed that the control algorithm is in a control 

unit embedded within the airplane. The control unit runs 

with a refresh rate equal to the discretization period 

;
s

TΔ  therefore, as shown in Fig. 1, the aircraft controls 

remain constant at uk until it is refreshed to a new value 
1
.

k+
u  The algorithm and the control procedure using the 

present INL-MPC technique are given in Table 1. 

 

5. APPLICATIONS 

 

This section presents three aircraft’s automatic 

maneuvers done with the presented INL-MPC technique: 

1) Climb to a desired altitude at constant speed 

2) Change of heading in the flight path at constant speed 

and altitude 

3) Perform a coordinated turn at constant speed and alti-

tude 

For the presented applications it was assumed that the 

UAV is a Cessna 172 airplane. The state vector function 

( , )f x u  is given in (4). The necessary aerodynamic and 

propulsion forces and moments, together with the cha-

racteristic data of a Cessna 172 airplane were included in 

[24]. Sampling period of 0.5
s

TΔ = sec, prediction hori-
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zon 20
p

h =  and control horizon 17
c
h =  are adopted. 

Both, hp and hc have been selected empirically, increas-

ing the horizons beyond those values produced no signif-

icant changes in the system response and would produce 

an unnecessary increase in computing times. 

In order to properly weight physical states of different 

order of magnitude, the weights �
k

xQ  are re-normalized 

taking into account typical values 
Typ
x  of states devia-

tions. The generic typical deviation for the state compo-

nent ( )ix  is noted as .( )
Typ

ix  Then, the values of the 

weighting matrices (32) are selected as: 

�

2

( , )
( , ) .

{ ( ) ( ), ( )}

k
k x s
x

sp Typ

i i T
i i

max i i i

Δ
=

−

Q
Q

x x x
 (41) 

Furthermore, ( , ) 0k

x
i j =Q  and ( , ) 0k

u
i j =R

�

 for .i j≠  

Typical values of states deviations are selected as: 

m

sec

5.0 , 1.0deg, 1.0deg,

5.0deg, 5.0deg, 100.0m.

Typt Typ Typ

Typ Typ Typ

v

z

α β

φ ψ

= = =

= = =

 (42) 

The weights ( , )k

x
i iQ  and ( , )k

u
i iR

�

 are defined for each 

example. Their weighting values have been selected 

empirically by simply weighting more the states and 

inputs according to the desired airplane maneuver. 

For the three examples, the following inputs con-

straints have been used: ,0.0
m

thtl = ,1.0
M

thtl =
em

δ =  

20.0− deg, 20.0
eM

δ = deg, 20.0
am

δ = − deg, 
aM

δ =  

20.0 deg, 15.0
rm

δ = − deg, 15.0
rM

δ = deg. 

The inputs rates constraints used in the examples are: 

0.2
m

thtl = −

� 1/sec, 0.2
M

thtl =

� 1/sec, 2.0
em

δ = −

� deg/sec, 

2.0
eM

δ =
� deg/sec, 2.0

am
δ = −
� deg/sec, 2.0

aM
δ =
� deg/ 

sec, 2.0
rm

δ = −
� deg/sec, 2.0

rM
δ =
� deg/sec. 

Finally, the states constraints used are: 10.0
m
t
v = m/ 

sec, 76.0
Mt

v = m/sec, 16.0
m

α = − deg, 16.0Mα = deg, 

βm 15.0= − m, 15.0Mβ = deg, 0.0
m
h = m, hM = 

4000.0 m. 

 

5.1. First example: climbing maneuver at constant speed 

The proposed INL-MPC technique is applied to the 

aircraft, initially flying at an altitude 1000.0h = m and 

speed 45.0tv = m/sec, to perform a climbing maneuver 

to a new altitude 1500.0h = m while keeping a constant 

speed. So the elements of the setpoint vector are selected 

as: (1) 45.0,
sp

sp tv= =x (3) 0.0,
sp sp

β= =x (4)
sp sp

φ=x  

0.0,= (6) 0.0
sp sp

ψ= =x  and (12) 1500.0.
sp sp

h= =x  

To perform the climbing maneuver, the optimization 

weights are chosen as follows: (1,1) 10.0,k

x
=Q (3,3)k

x
Q  

= 10.0, (4,4) 10.0,k

x
=Q (6,6) 10.0,k

x
=Q (12,12) 10.0k

x
=Q  

and (1,1) 0.1,k

u
=R

�

(2,2) 0.1,k

u
=R

�

(3,3) 0.1,k

u
=R

�

(4,4)k

u
R

�

 

0.1,=  with .1, ,
p

k h= �  Note that only the states in-

volved in the climbing maneuver have been weighted: 

velocity vt, sideslip angle β, Euler angles φ  and ψ  

and height h. The Euler angles are weighted in order to 

maintain the straight and level flight condition. 

In Fig. 4, it can be seen the evolution of the aircraft al-

titude and speed when the climbing maneuver indicated 

by the INL-MPC control commands is performed. Note 

how the INL-MPC automatic control system allowed the 

aircraft to reach the desired altitude while maintaining 

the speed practically constant. In Fig. 5, it is shown the 

evolution of throttle and elevator inputs, respectively. 

The commanded throttle increases so as the airplane 

starts climbing. When the airplane is near the desired 

Table 1. INL-MPC algorithm. 

Algorithm 

Step 1: Initialize the variables tol and maxIter which 

indicate the accepted tolerance to break the iteration loop 

and the maximum number of iterations respectively. Set the 

iteration index i =1. 

Step 2: Initialize the control inputs sequence ( )i

p
U  of (7) 

with the current control input u0 and consider it remains 

constant along the predictive interval 0
].,[ p

h

t t  

Step 3: Given the current airplane state x0 and the control 

input sequence ( )i

p
U  find the vector of predicted states 

�

( )i

X  defined in (8) associated to the state-space trajectory
( )( .)i

p
T U  

Step 4: Linearize the non-linear aircraft system along the 

state-space trajectory 
( )

( )
i

p
T U  to calculate the state-space 

system matrices as defined in (13). Then, compute the 

prediction matrices defined in (A.1)-(A.3). 

Step 5: Calculate the objective function’s matrices defined 

in Eqs. (35) and (36) and the constraints matrices given in 

(A.5) so as to set the matrices of the minimization problem 

(40). 

Step 6: Compute the optimal control input *

c
U  with a 

suitable quadratic program algorithm. Recall that the 

control inputs for 
c

k h>  remain constant so that the 

complete control input sequence can be calculated as
* *

.

p c
=U TU
�

 

Step 7: If, * ( )i

p p
tol− ≥U U  and i maxIter≤  increment 

the iteration index ,1i i← +  update the control input 

sequence ( ) *i

p p
=U U  for the next iteration and go back to 

Step 3. 

Else, break the iteration loop and go to Step 8. 

Step 8: Apply the first control input 1 *
(1)

p
=u U  to the 

airplane and move the time horizon one step ahead to the 

next sampling step 0 0
.

s
t t T← + Δ  

 

 

 

Fig. 4. Climbing maneuver. 
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altitude the throttle is reduced to prevent the aircraft con-

tinuing climbing. The elevator moves to produce a varia-

tion in the angle of attack so as to maintain constant 

speed. 

 

5.2. Second example: change of heading in the flight 

path at constant speed and altitude 

Consider that the unmanned airplane is again initially 

flying at an altitude 1000.0h = m and speed 45.0tv =  

m/sec. The INL-MPC algorithm is applied to the UAV to 

perform a change of 90 deg in the direction of the flight 

path, while keeping constant both altitude and speed. 

Thus, the desired values of the setpoint vector are confi-

gured as follows: (1) 45.0,
sp

sp tv= =x (3) 0.0,
sp sp

β= =x  

2
(6)

sp sp

π

ψ= =x  and (12) 1000.0.
sp sp

h= =x  The state 

weights are chosen as follows: (1,1) 10.0,k

x
=Q (3,3)k

x
Q  

1.0,= (6,6) 1.0,k

x
=Q (12,12) 1 .0.0k

x
=Q  Only the states 

involved in this maneuver have been weighted: velocity 

vt, sideslip angle β, yaw angle ψ  and height h. The 

input weight are chosen as follows: (1,1 0. ,) 1k

u
=R

�

(2,2)k

u
R

�

 

,0.1= (3,3 0. ,) 1k
u =R
�

(4, 4 0. ;) 1k

u
=R

�

 with .1, , pk h= �  

The evolution of the aircraft’s position trajectory is 

shown in Fig. 6.  

As it can be seen, the INL-MPC automatic control sys-

tem allowed the aircraft to perform the ninety-degrees 

heading change. The maneuver was performed keeping 

constant altitude and speed. The evolution of the four 

control inputs which are involved in the maneuver are 

shown in Figs. 7(a) to 7(b). The throttle and the elevator 

move jointly to maintain constant values of altitude and 

velocity. The aileron and rudder produce a change in roll 

and yaw moments and as a result the airplane performs 

the change of heading in the flight path. 

 

5.3. Third example: coordinated turn at constant speed 

and altitude 

The last autonomous maneuver to be performed is a 

coordinate turn at constant speed and altitude. Once 

again, the airplane is initially flying at an altitude 

1000.0h = m and speed 45.0tv = m/sec. The INL-MPC 

control technique is applied to the unmanned aircraft to 

perform a coordinated turn while keeping constant speed 

and altitude. So, the setpoint vector is configured as fol-

lows: ,(1) 45.0
sp

sp tv= =x (3) 0.0,sp spβ= =x (4)
sp

=x  
15.0

180.0sp

π

φ =  and (12) 1000.0.
sp sp

h= =x  The state weights 

are chosen as follows: (1,1) 10.0,k
x =Q (3,3) 1.0,k

x =Q  

(4, 4) 1.0,k

x
=Q (12,12) 1 .0.0k

x
=Q  Only the states that 

concern involved in this maneuver have been weighted: 

velocity vt, sideslip angle β, roll angle φ  and height h. 

The input weights are chosen as follows: (1,1) 0.1,k

u
=R

�

 

Fig. 5. Control inputs - climbing maneuver. 

 

Fig. 6. Change of heading. 

(a) Control inputs: throttle and elevator. 

(b) Control inputs: aileron and rudder. 

Fig. 7. Control inputs - change of heading. 
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(2, 2) 0.1,k

u
=R

�

(3,3) 0.1,k
u =R
�

(4,4) 0.1;k

u
=R

�

 with k =  

1, ., ph�  Form Fig. 8 it can be seen that the resulting 

airplane position trajectory clearly corresponds to a 

coordinated turn. The maneuver was performed keeping 

constant altitude and speed. The evolution of the four 

control inputs are shown in Figs. 9(a) to 9(b). The throt-

tle and elevator inputs move together to maintain both 

altitude and velocity at constant values. It can be seen 

that the aileron and the rudder reach a final position that 

makes the roll angle to go to the desired value. 

 

 

Fig. 8. Coordinated turn maneuver. 

 

 
(a) Control inputs: throttle and elevator. 

 
(b) Control inputs: aileron and rudder. 

Fig. 9. Control inputs - coordinated turn maneuver. 

5.4. Additional comments 

For the presented application, the well-posedness of 

each iterative minimization sub-problem, defined in (40), 

has been evaluated and tested. Meaning that at each ite-

ration a correct convex sub-problem is being solved. 

Because of the convexity, the termination of the optimi-

zation problem can be guaranteed. As a consequence, the 

resulting optimization problems of the INL-MPC algo-

rithm are always well-possed. 

The proposed algorithm has several advantages: 1) It 

allows the inclusion of generic non-linear systems, 2) 

The algorithm can be used as a centralized unit, which is 

very important as it can take into account the dynamic 

couplings between different reduced modes, 3) The pro-

posed method reduces the problem of non-linear optimal 

control of a non-linear system to a series of iterative, 

easily solvable, quadratic optimization sub-problems, 

and 4) With the proposed method constraints can be han-

dled with ease, also, state and control inputs rates can be 

penalized, allowing to take into account different physi-

cal limitations of real systems.  

Regarding the selection of the sampling period ,
s

TΔ  

it must be mentioned that, as the maximum natural fre-

quency of the modeled system is always below 
max
f  

0.71= Hz, the sampling theorem requires that 
s

TΔ ≤  

0.7 sec, so 0.5
s

TΔ = sec was chosen. 

A few additional comments regarding the implementa-

tion of the INL-MPC are given below. The UAV model 

and the INL-MPC have been programmed in C++, using 

the LTensor Library for matrix computations [25], they 

run in parallel in independent computing units. Both the 

UAV model and the INL-MPC algorithm run in real-

time. At the point of solving the quadratic optimization 

problem (40) and Step 6 of Algorithm given in Table 1 a 

call to Matlab’s quadprog function (accessed from C++ 

as a dynamic library) is made. Within this function, the 

Interior Point algorithm was chosen. The maximum 

computing time of the INL-MPC implementation is 

cpu
0.3tΔ = sec (with three iterations in the trajectory 

optimization loop). This is always less than the control 

refresh rate 0.5
s

TΔ = sec, guaranteeing a real-time si-

mulation and control. 

 

6. CONCLUSIONS 

 

In this article, an iterative non-linear MPC (INL-MPC) 

technique for controlling general non-linear systems is 

presented. The INL-MPC algorithm is based on a recur-

sive linearization of the non-linear system’s dynamics 

along iteratively defined state-space trajectories. The 

proposed method reduces the problem of non-linear op-

timal control of a non-linear system to a series of itera-

tive, easily solvable, quadratic optimization sub-

problems. The proposed technique allows the inclusion 

of constraints with ease. General constraints have been 

addressed. Finally, the control algorithm’s performance 

is demonstrated through the realization of three different 

autonomous maneuvers on a full 6-degree of freedom, 

Cessna 172 aircraft model. In all cases the autonomous 

maneuvers were performed successfully. 
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APPENDIX A 

Matrix definitions: 

 

0

1

2

1

,

ph −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

d

d

D d

d

�

  

�

� �

� � �

� �

0

1 0

2 1 0

1 0

,

ph −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A

A A

P
A A A

A A

�

�

 (A.1) 

�

� � �
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0

1 0 1

2 1 0 2 1

1 1 0 1 2 1 1

,

p p p

u

h h h− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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B 0 0

A B B 0

H
A A B A B 0

A A B A A B B

�

�

�

� � � �

� � �

 (A.2) 

�

� � �

� � � � �
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0

1 0 1

2 1 0 2 1

1 1 0 1 2 1 1

,

p p p

g
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⎢ ⎥
⎢ ⎥
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G 0 0

A G G 0

H
A A G A G 0

A A G A A G G

�

�

�

� � � �
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N

N

N N
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⎢ ⎥
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I I 0 0
u

0 0 I 0 0
E U

0 0 I 0 0

0 0 I I
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�
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�
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 (A.4) 

where 
iN

I  is an identity matrix of dimension .

i i
N N×  
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where 
iN

I  and I
c
 are an identity matrices of dimension 

i i
N N×  and ( ) ( ),

i c i c
N h N h× × ×  respectively. V is a 

matrix of dimension ( ( )) ( ).
i p c i c

N h h N h× − × ×  
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