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Abstract: This paper presents a new game theory based method to control multi-agent systems under 

directed and time varying interaction topology. First, the sensing/communication matrix is introduced 

to cope with information sharing among agents, and to provide the minimal information requirement 

which ensures the system level objective is desirable. Second, different from traditional methods of 

controlling multi-agent systems, non-cooperative games are investigated to enforce agents to make ra-

tional decisions. And a new game model, termed stochastic weakly acyclic game, is developed to cap-

ture the optimal solution to the distributed optimization problem for multi-agent systems with directed 

topology. It is worth noting that the system level objective can be achieved at the points of the corres-

ponding equilibriums of the new game model. The proposed method is illustrated with an example in 

smart grid where multiple distributed generators are controlled to reach the fair power utilization pro-

file in the game formulation to ensure the aggregated power output are optimal. 
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1. INTRODUCTION 

 
Recent technological advances have spurred a broad 

interest in distributed coordination of dynamic agents in 
the presence of uncertainty and limited information 
exchange [1-10]. The study forms an active area of 
research, giving rise to new control paradigms such as 
the fields of formation control [6], autonomous 
underwater vehicles [7], smart grid control [8,9] and so 
on. Although each of these areas poses its own unique 
challenges, several common threads can be found. In 
most cases, the central problem for multi-agent system is 
to design appropriate local control laws for each agent 
such that system level objective can be achieved. And 
the local control laws should possess several desirable 
attributes such as the real-time adaption and robustness 
to dynamic uncertainties [22]. However, realizing these 
benefits comes with several underlying challenges, such 
as dealing with overlapping and distributed information, 
as well as making decisions for a potentially large 
number of interacting and self-interested agents. 
Interestingly, these paradigms of making distributed 
decisions with such challenges perfectly fit into the 
framework of non-cooperative game theory [10-16]. 

Recently, the appeal of applying game theoretic 
methodology to multi-agent systems is receiving 

significant attention [10,13-16]. In order to utilize game 
theory, system designer must set up game model for the 
individual agent and specify the distributed learning 
algorithm that enables all the self-interested agents to 
reach desirable global behaviors. The most advantage by 
using game theoretic approach is that it provides a 
hierarchical decomposition between the game model 
design and the distributed learning algorithm design 
[10,13-16]. As is nature, by using the language of 
learning in game theory, the problem of designing local 
control laws for multi-agent system becomes the problem 
of designing game model for each agents [10,13,14, 
21,22]. There is a large and growing literature that 
focuses on this topic. In [10], by designing potential 
game [11] models for agents, the relationship between 
potential game and multi-agent cooperative control is 
established. And the class of potential games captures 
many application domains and is beginning to receive 
great interest in multi-agent systems. However, the 
framework of potential game is not broad enough or even 
impossible to meet the diverse set of challenges such as 
locality of the designed agent objective functions as well 
as efficiency guarantees for the resulting equilibriums 
[13,14,21]. Inspired by [19], where the moods (or states) 
are introduced into game theory and a payoff based 
learning algorithm is developed to implement desired 
equilibriums, in [14,21,22], an additional state space is 
introduced into potential game model to cope with the 
design challenges mentioned above. 

Generally, the approach in [14,21,22] is based on the 

framework of state based potential game [23] and it 

requires the information exchange among agents should 

be undirected. However, there are a variety of practical 

situations where information among agents may be 

directed and time-varying, such as the leader-following 

scenarios [3,4]. As a result, there is a need to extend the 
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results in [14,21-23] to conditions where information 

exchange can be directed and the interaction topology 

may be not connected at some time instants. This 

requires a deep inspection into a more general game 

theoretical framework beyond potential games. 

Compared with existing results, the main contribution 

of this paper is twofold. First is to develop a novel game 

framework termed stochastic weakly acyclic games to 

deal with the directed and time-varying information flow 

among agents. The new game model introduces an 

underlying state space into the weakly acyclic games 

[16,19,20], which are a class of games particularly 

relevant for multi-agent cooperative control problems. 

The new game model possesses several desired attributes. 

First, different from potential games [10,11], the inherent 

structure of new game allows the interaction topology to 

be directed. It is noticed that the games in [14,21-23] are 

a special case of the game model in this paper. Second, 

much like potential games, the new game model 

possesses an underlying structure that can be exploited 

by using the existing distributed learning algorithms for 

state based games [14-16,19]. Third, the state can be 

considered as the coordinating entity which decouples 

the system level objective of the multi-agent system into 

agent objectives of virtually any degree of locality. It 

provides much more degree of freedom for us to design 

local control laws for multi-agent systems, especially 

with time varying topologies or certain physical 

meanings. Besides, the state can be used to improve 

group behaviors of agents and provide system designer 

the mechanism to choose the desirable equilibriums for 

distributed engineering systems. 

By using the time varying and binary-valued matrix to 

capture the changes of sensing/communicating among 

agents, the second contribution of this paper is to extend 

both cases of connected and undirected communication 

requirements in [14,22] to practical conditions such as 

directed, time-variant and not always connected 

topologies. Different from and complementary to graph 

theory [2,4], matrix theory not only can be used to deal 

with agents with high order dynamics, but also provides 

a new more intuitive concept to explore the convergence 

of the system dynamics by analyzing the property of 

matrix sequence. Specifically, the matrix theory based 

analysis admits the best results obtained by using graph 

theory [7], and all the existing graph theory results have 

their counterparts in algebraic matrix theory. Besides, the 

minimal requirement of the communication topology 

under which the equilibriums are efficient with regards 

to the system level objective is also provided in the 

language of matrix theory. 

The rest of this paper is organized as follows. In 

Section 2, we present the background and problems to be 

solved in the distributed optimization formation of multi-

agent systems. The matrix theory based communication 

description and minimal information requirement on the 

matrix sequences are introduced in Section 3. In Section 

4, the stochastic weakly acyclic games are introduced to 

design local control laws for agents under directed 

information network. And the analytical properties of the 

game model are given to show the efficiency of the 

resulting equilibriums. After that the simulation results 

are shown in Section 5 and finally conclusions are given 

in Section 6. 

 

2. PROBLEM SETUP 

 

2.1. Background 

For multi-agent problems, we are interested in 

optimization algorithms that can be distributed across 

individual agents. Suppose the set of agents is denoted 

by set {1,2, , },N n= �  and each agent i N∈  is endowed 

with a set of possible actions (or decisions) denoted by Vi, 

which is a nonempty and convex subset of R. Any 

specific joint action profile is denoted by the vector 

1 2
( , , , ),

n
v v v v� �  where 

ii N
v V V

∈

∈ =∏  and V is the 

closed, convex and nonempty set consisting of all 

possible joint decisions. Suppose the global objective of 

the multi-agent system can be captured by a differentiable 

and convex function : .V Rφ →  More specifically, the 

distributed optimization formulation of the multi-agent 

cooperative control problem takes on the general form: 

1 2
min ( , , , ).

. . , .

n
v V

i i

v v v

s t v V i N

φ
∈

∈ ∈

�

 (1) 

The well known distributed optimization algorithms, 

such as the gradient or gradient related methods [17,18], 

always have limited applicability because of local or 

overlapping information between agents and the inherent 

structure constraints of the system. As we know, game 

theory is powerful to analyze interactions between agents 

and to react to limited or overlapping information. In 

addition, it provides a way for agents to make individual 

and rational decisions to capture the system level objec-

tive through optimizing their local objectives. In this 

paper, we are interested in solving the distributed optimi-

zation problem by designing game models for agents in 

the framework of non-cooperative game [12]. In order to 

use game theory for agents to make rational decisions 

{ ( )}
i i N
v t

∈
 to solve the optimization problem (1), there 

are some problems to be solved as follows. 

 

2.2. Problems to be solved 

Problem 1: Design game models for agents to 

produce desirable decisions { ( )} .
i i N
v t

∈
 Specifically, the 

new decision of agent i at time t, denoted by vi (t), can be 

formulated by the local objective function based on the 

available information at time t –1: 

1 2
( ) ( ( 1), ( 1), , ( 1)),
i i n
v t U v t v t v t= − − −�  (2) 

where 1,2, , ,i n= � ( )
i

U i  is the local objective function 

of agent i at time t that we want to design. In order to 

make sure the decision vi (t) is feasible, the local control 

law Ui (t) must change according to the available 

information at time t. Generally, the more information 

the agents share between each other, the faster the 

system converges. As a result, this will bring out the 
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problem of determining minimum information sharing 

among agents. This is the problem as follows. 

Problem 2: Design the interaction topology to ensure 

the global objective is desirable and the local control 

laws are robust with respect to possible variations and 

limitations of communication networks among agents, as 

well as minimizing information flowing between agents. 

After the game models for agents are established 

through such a design of local communication network, a 

sequence of decisions of agents are produced by the 

designed local objective functions. However, whether the 

decisions will converge to one equilibrium and whether 

the equilibrium will be the desired result become our 

main concern. In other words, there may exist 

equilibriums that are suboptimal and fail to solve the 

distributed optimization problem for multi-agent systems. 

This will be the problem as follows. 

Problem 3: When distributed optimization problem is 

formulated in game model, whether the equilibriums 

solve the optimization problem should be verified further. 

For the multi-agent systems, operation at the point of 

equilibrium may reflect certain degree of optimization 

for the global objective. The game model developed in 

[10,13] asymptotically guarantee that the actions of 

agents will constitute at least one equilibrium. However, 

the equilibriums may fail to optimize the global objective 

due to the inherent limitations of non-cooperative games 

[13,21], where each agent aims to optimize its own 

performance without regarding to the costs it imposes on 

others. To that end, we aim to develop a novel game 

model to suppress the aggressive competition among 

agents as well as taking into account the individual 

agent’s effect on the performance of equilibriums. 

 

3. COMMUNICATION TOPOLOGY DESIGN 

 

In order to solve Problem 2, first the matrix based to-

pology model is introduced in Section 3.1. Based on the 

model, in Section 3.2, the rule of the topology design is 

introduced to ensure the desirable system dynamics with 

minimal information requirements. 

 

3.1. Matrix based topology model 

Different from the representation of information flow 

among agents in the fashion of graph theory, a matrix 

theory based model is proposed to analyze and design the 

information sensing and communication for a group of 

individual agents [7]. Generally, the sensing and 

communication is described mathematically by a time-

varying and piecewise-constant matrix whose dimension 

is equal to the number of dynamical agents and whose 

elements assume binary values. And the sensing/ 

communication matrix can be defined without loss of 

any generality [7]: 

11 12 1

21 22 2

1 2

( ) ( ) ( )

( ) ( ) ( )
( ) ,

( ) ( ) ( )

n

n

n n nn

s t s t s t

s t s t s t
S t

s t s t s t

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

�

�

� � � �

�

 

where ( ) 1
ii
s t =  because agent i can always acquire its 

own information, whether other agent’s information can 

be acquired or not by agent i is completely determined 

by the binary entry in the i th row of the matrix. In 

general, for any ,i j≠  at time t, ( ) 1
ij
s t =  if the agent 

i can get the information of agent j, and ( ) 0
ij
s t =  if 

otherwise. Over time, binary changes of matrix S(t) 

occur at an infinite sequence of time instants denoted by 

{ : },
k
t k ∈Ω  where {0,1, , }Ω ∞� �  and S(t) is piecewise 

constant as ( ) ( )
k

S t S t=  for all 
1

[ , ).
k k

t t t
+

∈  

Remark 1: By utilizing the piecewise-constant and 

binary-valued matrix, dynamical changes of sensing and 

communication among agents can be captured. In 

addition, based on augmentation of irreducible and 

reducible matrix theory, not only identical agents but 

also heterogeneous dynamical systems of arbitrary but 

finite degree can be dealt with. Furthermore, through 

adopting lower triangulation of reducible matrix as a tool 

for analysis, all the existing results based on the graph 

theory, such as a strongly connected graph, a spanning 

tree, have their counterparts in the matrix theory [7,24]. 

 

3.2. Rule of the communication topology design 

As we know, in order to ensure individual agents 

collectively accomplish the system level objective, local 

information needs to be shared among agents. 

Heuristically, the more information channels there are, 

the faster the system converges. However, this quickly 

becomes an uneconomical solution to the problem. Is 

there a minimal information requirement which will 

guarantee the validity of the proposed control strategy as 

well as the efficiency of the resulting behavior? The rule 

in [7] gives the answer to this question. 

Rule [7]: The sensing/communication matrices se-

quence 
:0 0 1

{ ( ), ( ), }S S t S t
∞

= �  is sequentially complete. 

The completeness condition is a very precise method 

to design desired communication networks and to 

schedule local communications among agents. It pro-

vides the minimal information that needs to be shared 

among agents for distributed control. Especially, it gives 

the cumulated effects of information in a time interval 

and shows that there exists connection between a pair of 

agents in the cumulated communication network even if 

at some time instants the pair of agents can not 

communication with each other [7]. In addition, it 

provides system designer much more freedom to develop 

distributed control laws for a broad class of multi-agent 

system. 

In order to illustrate the application of sequentially 

complete condition in time varying communication 

network, we assume that for any t0, there exist a constant 

0T >  such that for any 
1 0 0

[ , ],t t t T∈ +  consider the 

binary product of matrixes as 
1 0: 0 0

( ) ( 1)
t t

S S t S t= ∧ +  

1 1
( 1) ( ),S t S t∧ ∧ − ∧�  if the matrix 

1 0:t t
S  is lower 

triangularly complete [7], and is uniformly bounded, then 

sequence is sequentially complete. Intuitively, it means 

that in the corresponding graph which is constructed by 

linking the agents according to nonzero entries in 
1 0:

,
t t

S  

there exists at least one agent, denoted as agent i, such 
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that by following the directed branches, every other 

agent can be reached from the agent i. It should be also 

noted that the convergence rate of the system relates to 

the connectivity of the communication network, so it is 

important to design a reasonably local communication 

network within certain physical and economic consider-

ations. 

 

4. STOCHASTIC WEAKLY ACYCLIC GAMES 

DESIGN 

 

In this section, the notion of a new game named 

stochastic weakly acyclic game is introduced in Section 

4.1. In Section 4.2, the new game model is developed 

and the local objective functions for agents are designed 

to solve the Problem 1. In Section 4.3, under the rule of 

sequentially complete for the directed communication 

among agents, the analytical properties of the designed 

game are verified to show the efficiency of equilibriums, 

which gives the answer to the Problem 3. 

 

4.1. Stochastic weakly acyclic games 

Recently, applying potential games to the control of 

multi-agent systems has been addressed in [10,13,14, 

21,22]. However, the inherent structure of potential game 

models requires the information topology to be 

undirected [10]. In many situations, information may be 

exchanged via directed sensing or communication. The 

class of weakly acyclic games [16,19,20] forms a 

generalization of the class of potential games and has an 

natural appeal of coping with directed information 

flowing among agents. 

However, the weakly acyclic game still falls under the 

framework of non-cooperative games. Because of the 

aggressive competition among agents, it is still not 

capable of developing agent’s local objective functions 

which meet objectives such as locality of information 

and efficiency of resulting equilibriums. In addition, the 

inherent structure of weakly acyclic games can not 

handle the interaction of agents under time-varying 

topologies. These limitations lead us move beyond 

weakly acyclic games to games with a new and broader 

structure. Inspired by the work of [13,14,19-23], a new 

game model, named stochastic weakly acyclic games, is 

developed by introducing an underlying state space into 

the framework of weakly acyclic games. This new game 

model has some advantages, such as ensuring agents 

collectively accomplish global objective under directed, 

time varying and local information, as well as providing 

system designer much more additional degree of freedom 

to coordinate group behaviors. 

A stochastic weakly acyclic game, denoted by G =  

{ ,{ } ,{ } , , , },
i i N i i N

N A U X f ϕ
∈ ∈

 consists of a finite player 

set N and an underlying finite state space X. Each agent i 

has a state dependent action set Ai (x), and a state 

dependent payoff function : .
i

U X A R× →  The state 

transition is defined according to the function :f X ×  

A X×Γ →  which depends on state X, joint action A 

and system noise Γ. 

Repeated play of stochastic weakly acyclic games 

produces a sequence of actions and a sequence of states, 

which are generated according to the following process: 

at time t, given state x(t), all the agents take turns, in 

some arbitrary order, with other players to select actions 

1
( ) { ( ), , ( )}

n
a t a t a t= �  according to some specified 

decision rule, such as the myopic Cournot process. The 

state x(t) and joint action profile a(t) together determine 

the agent’s local objective function at time t, i.e., 

( ( ), ( )).
i

U x t a t  After all agents select their respective 

actions, the ensuring state ( 1)x t +  is determined accord-

ing to the state transition function ( 1) ( ( ), ( ),x t f x t a t+ =  

( 1)).tΓ +  The process is repeated until no agents want to 

change their actions anymore. Accordingly, the final 

results are defined by the notion of state equilibrium for 

stochastic weakly acyclic game in the same fashion of 

Nash equilibrium for general strategic form game [11,12]. 

Definition 1 (State Equilibrium): A state action pair 

( , )p x a
∗ ∗ ∗

�  is called state equilibrium if for any ,i N∈  

given state ,x
∗ ( ) min ( , , ).

i ii a A i i i
U p U x a a

∗ ∗ ∗

∈ −
=  

In order to introduce the definition of stochastic 

weakly acyclic games, we will also define the notions of 

state based disagreement function and best response 

improvement path as follows. 

Definition 2 (State based Disagreement Function): 

For any differential and convex function : ,g X A R× →  

given some specific action profile ( , )
i i

a a a A
−

= ∈  and 

state ,x X∈  where 
i

a
−

 is the joint action profiles 

other than i, there exists an agent i N∈  with action 

i i
a A
∗

∈  while others keep their actions unchanged. 

Then the disagreement function ( , , , )
i i

D g a a x
∗

−
 for the 

function g and some specific action a and state x can be 

defined as follows: 

( , , , ) ( , , ) ( , , ),
i i i i i i

D g a a x g a a x g a a x
∗ ∗

− − −
−�  (3) 

where argmin ( ( , , )).
ii a A i i

a g a a x
∗

′∈ −
′∈  

Definition 3 (Best Response Improvement Path): A 

best response improvement path is a sequence of state 

action pair 
0 1
, , ,

L
p p p�  where for any time ,

l
t  

0 ,l L≤ ≤ ,L N∈  we have ( , ) ( ( ), ( )),l l

l l l
p x a x t a t� �  

such that for any 0 1,m L≤ ≤ −  there exists one agent i 

with action ( )m

i i m
a a t�  at time t

m
 and a new action 

1

1
( )m

i i m
a a t

+

+
�  at time 

1m
t

+
 such that i) 1m m

i i
a a

+
≠ ; 

ii) 1m m

i i
a a

+

− −
= ; iii) 1

1
( , , , ( )) 0.m m

i i i m
D U a a x t

+

− +
>  

Much like weakly acyclic games [19,20], roughly 

speaking, the stochastic weakly acyclic games is a kind 

of game which satisfies the following conditions: from 

any pair of state action profile 0 0

0
( , ),p x a�  there exist 

some best response improvement path, which is a 

sequence of agent’s state and action pairs 
0 1
, , ,

L
p p p�  

where ( , ),l l

l
p x a� 0 ,l L≤ ≤  leading from state action 

pair p0 to a state equilibrium pL. However, the above 

definition is too rough to model and solve the control 

problems for multi-agent systems. To that end, through 

utilizing potential functions in the same fashion of 

weakly acyclic games [10,19,20], a precise and equiva-
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lent definition of stochastic weakly acyclic games is 

driven in the Proposition 1. 

Proposition 1: A game is called a stochastic weakly 

acyclic game if and only if the following conditions are 

satisfied: for a finite player set N and an underlying finite 

state space X, at any time t0, given any state action pair 

as 0 0

0 0 0
( , ) ( ( ), ( ))p x a x t a t=�  that is not a state equilib-

rium, there exists a differential and convex potential 

function : X A Rϕ × →  and a time 
0 0

[ , ],t t t T∈ +  where 

0T >  is a time constant, there exist one agent i N∈  

with an action ( ) ,
i i
a t A∈  such that 

0
( , ( ), ( ),

i i i
D U a t a t

−

 

( )) 0,x t >
0

( , ( ), ( ), ( )) 0
i i

D a t a t x tϕ
−

>  provided that 
0

( )a t  

0
( 1) ( 1),a t a t= + = = −�  and 

0 0
( ) ( 1) (x t x t x t= + = =�  

1).−  

Proof: ( )⇐  At any time t0, select any state action 

pair 0 0

0 0 0
( , ) ( ( ), ( )).p x a x t a t= �  If p0 is not a state 

equilibrium, then there exists an agent i with an action 

i i
a A′ ∈  and a time 

0 0
[ , ]t t t T∈ +  such that ( , ,

i i
D U a′  

0 , ( )) 0
i

a x t
−

>  and 0( , , , ( )) 0.
i i

D a a x tϕ
−

′ >  Then we get a 

new state action pair as 1 1 1( , ),p x a�  where 1 ( )a a t =�  
0( , ),

i i
a a

−

′

1 0 0( ) ( , , ( )).x x t f x a t= Γ�  

Repeat this process and construct a best response 

improvement path 
0 1
, , , .

L
p p p�  It is noticed that such 

a path can not enter inescapable oscillations because the 

potential function ϕ  is strictly decreasing along the 

path. Moreover, the path can not be extended indefinitely 

because the Cartesian product of state and action set 

P X A= ×  is finite. Hence, the last state action pair in 

the path is obviously guaranteed to exist and must be the 

state equilibrium. 

( )⇒  At time t0, select any state action pair 
0
p �  

0 0( , )x a  from finite set 
,

{( , )} .
x X a A

P x a
∈ ∈

=  Because 

the game is a stochastic weakly acyclic game, there must 

exist a best response improvement path 
00 1

, , , ,
L

p p p�  

where ( , ) ( ( ), ( )),l l

l l l
p x a x t a t� �

1 1
[ , ],

l l l l
t t t T

− −

∈ +
l
T > 

0, 
0

0 ,l L≤ ≤  leading from the state action pair p0 to a 

state equilibrium 
0
.

L
p  Suppose the best response im-

provement path can be denoted as the set 0

0 1
{ , ,P p p�  

0
, },

L
p�  then we can define potential function 

: X A Rϕ × →  over the set P0 to satisfy the condition as 

follows: 

00 1
( ) ( ) ( ).

L
p p pϕ ϕ ϕ> > >�  (4) 

Obviously, for any 
0

0 1,l L≤ ≤ −  there exists an agent 

i with a new action 1l

i
a

+  and state 1l
x

+  such that 
1 1( , , , ) 0l l l

i i i
D U a a x

+ +

−
>  and 1 1( , , , ) 0.l l l

i i
D a a xϕ

+ +

−
>  

Now, select any state action pair 0

0
\ ,p P P∈�  where 

.P X A= ×  Since the game is stochastic weakly acyclic 

game, then there must exist a best response improvement 

path 
1

1

0 1
{ , , , }

L
P p p p� � �� �  leading from that state action 

pair 
0
p�  to a state equilibrium 

1
.

L
p�  If 1 0

,P P = ∅∩  

then we can define potential function ϕ  over the set 
1

P  to satisfy the condition as follows: 

10 1
( ) ( ) ( ).

L
p p pϕ ϕ ϕ> > >� � ��  (5) 

Obviously, for any 
1

0 1,l L≤ ≤ −  there exists an agent 

i with new action 1l

i
a

+
�  and new state 1

,

l
x

+
�  such that 

1 1( , , , ) 0l l l

i i i
D U a a x

+ +

−
>� � �  and 1 1( , , , ) 0.l l l

i i
D a a xϕ

+ +

−
>� � �  

Otherwise if 1 0
,P P ≠ ∅∩  we will choose the index 

0

1
min{ {1,2, , } : }.

k
k k L p P′ = ∈ ∈��  Define the potential 

function ϕ  over the set 1

0 1 1
{ , , , }

k
P p p p

′−
� � �� �  to satisfy 

the condition as follows: 

0 1 1
( ) ( ) ( ).

k
p p pϕ ϕ ϕ

′−
> > >� � ��  (6) 

Obviously, for any 0 2,l k ′≤ ≤ −  there exists an agent 

i with new action 
1l

i
a

+
�  and new state 1

,

l
x

+
�  such that 

1 1( , , , ) 0l l l

i i i
D U a a x

+ +

−
>� � �  and 1 1( , , , ) 0.l l l

i i
D a a xϕ

+ +

−
>� � �  

Now selecting any state action pair 0 1

0
\ ( )p P P P∈

�
∪  

and repeat above process until no such state action pair 

exists. 

The construction of potential function ϕ  guarantees 

that for any state action pair 
0 0

0
( , )p x a�  at time 

0
t  

that is not a state equilibrium, there exists a differential 

and convex potential function : X A Rϕ × →  and a 

time constant T such that there exists a player i N∈  

with an action ,
i i
a A∈

0( , , , ( )) 0
i i i

D U a a x t
−

>  and ( ,D ϕ  
0

, , ( )) 0.
i i
a a x t

−

>  This completes the proof. � 

Remark 2: Obviously, the game models proposed in 

[14,22] require all the agents satisfy the necessary 

condition in Proposition 1. Therefore, these game models 

could be regarded as a special case of stochastic weakly 

acyclic game, which only requires that there exists one 

agent satisfying the necessary condition. 

Remark 3: Generally, there are some advantages to 

extend the game models in [14,22] into the framework of 

stochastic weakly acyclic game. First, the potential game 

formulation in [14,22] requires the interaction topology 

among agents should be undirected. But this requirement 

is no longer necessary in the structure of stochastic 

weakly acyclic games. On the other hand, it is noticed 

that potential games requires that all the agent’s local 

objective function should be appropriately aligned with 

the potential function. However, the stochastic weakly 

acyclic game relaxes this alignment requirement by 

requiring at least one agent’s local objective functions to 

be somewhat aligned with the potential of the game. As a 

result, this gives system designer much more flexibility 

in designing agent’s objective functions and acquiring 

the desirable results for multi-agent problems. 

Remark 4: The stochastic weakly acyclic games are 

also known as a special case of the stochastic games [25]. 

Intuitively, the agents in the stochastic games seek to 

make decisions to optimize a discounted sum of their 

historical payoffs. However, in stochastic weakly acyclic 

games, agents are with finite rationality and make 

decisions only to optimize their present payoffs. 

 

4.2. Design of stochastic weakly acyclic games 

In order to use the framework of stochastic weakly 

acyclic games in the control of multi-agent systems, local 

objective functions should be specified for individual 

agents in the game environment. Accordingly, this will 

arise the problem of designing game model for agents, 
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which includes specifying the state space, the action 

space, the state transition function and the local objective 

for each agent. The details of design process are based on 

the work of [14,22] and the difference from [14,22] will 

be introduced as follows. 

First, the state transition function is designed as 

follows. Generally, the state evolves as a function of the 

sequence of action profile 
0 1

( ), ( ),a t a t �  and sequence 

of system noise 
0 1

( ), ( ), .t tΓ Γ �  Then the state at time 

1t +  can be defined as ( 1) ( ( ), ( ), ( 1)).x t f x t a t t+ = Γ +  

It is noted that the state ( 1)x t +  at time 1t +  is 

constructed by using only observations from the state x(t) 

and action a(t) at time t and also the system noise Γ(t +1) 

at time t +1. Actually, there are many alternative 

possibilities for the state selection. For example, we will 

use the information from last two time periods, such as 

time periods t and t –1, to formulate the state at time t +1 

as follows. 

( 1) ( ( ), ( 1), ( ), ( 1), ( 1)).x t f x t x t a t a t t+ = − − Γ +  (7) 

However, in this paper we will omit the influence 

from system noise for ease of exposition. 

Second, the local objective function is developed as 

follows. Different from [14,22], the equally shared utility 

[13], which is with truly physical meaning, is introduced 

into the design of local objective function. Given v =  

1 2
( , , , )

n
v v v R∈�  as the tuple of value profile for n 

agents’ decisions, the average of local objective func-

tions of agent i’s neighboring agents can be chosen to act 

as the new local objective function for agent i, termed 

equally shared utility in [13] as follows: 

1 1
( ) ( ) / .

n n

i ij j ijj j
U v s U v s

= =

= ⋅∑ ∑  (8) 

However, in practical applications with directed and 

intermittent communication or time delays, agents may 

not have complete knowledge about true value of local 

agents’ actions as soon as possible. To this end, the 

estimation term in the state space is used to estimate the 

true value of actions. Accordingly, the equally shared 

utility above can be rewritten as 

1

1 11
( ) ( , , ) / .

ij

n nn
i j ij j j ijj js

U e s e e sφ
= =

=

= ⋅∑ ∑�  (9) 

Meanwhile, considering the error between estimation 

items and true value, a penalty term is introduced in the 

local objective function to minimize the errors and 

ensure the desirable system dynamics. Accordingly, the 

local objective function can be defined as follows: 

( , ) ( , ) ( , ),e

i i i
U x a U x a U x a

φ
α= + i  (10) 

where α is a positive tradeoff parameter. The first term 

1
( , ) ( | )

iji i j s
U x a U e

φ
=

= is inspired from the notion of 

equally shared utility which distributes the global 

objective across individual agents. The second penalty 

term is defined as 

2 2

1 1
( , ) ( ( ) ) / ,

n ne k
i ij j i ijj k j

U x a s e nv s
= =

= −∑ ∑ ∑  (11) 

which is used to minimize the error caused by 

introducing estimate items into game model. 

 

4.3. Analytical properties of stochastic weakly acyclic 

games 

After establishing the game model for the distributed 

optimization problem, next the properties of the model 

need to be analyzed and verified to see whether the 

model meets the desired goals or not. Naturally, whether 

the model results in the framework of stochastic weakly 

acyclic game or not need to be verified first. This is 

stated in Theorem 1 as follows.  

Theorem 1: Model the optimization problem in (1) as 

the game model in Section 4.2 with any positive constant 

α. Given the differential and convex potential function 

: X A Rϕ × →  as 

( , ) ( , ) ( , ),e

x a x a x a
φ

ϕ ϕ α ϕ= + i  

where 

1

1
( , ) ( , , ) / ,

n n
j jj

x a e e n
φ

ϕ φ
=

=∑ �  

2 2

1 1
( , ) ( ) / .

n ne k
j ij k i

x a e n vϕ
= =

= −∑ ∑ ∑  

Then game model is a stochastic weakly acyclic game 

with potential function φ. 

Proof: It is obvious to verify the game model in 

Section 4.2 is a stochastic weakly acyclic game.  � 

Remark 5: It is noticed that the local objective 

function ( , )
i

U x a  and potential function ( , )x aϕ  are 

independent of communication topology. So the 

designed stochastic weakly acyclic games possess an 

underlying structure that can be exploited in time varying 

communication topologies besides directed topologies. 

After establishing the stochastic weakly acyclic game, 

then whether there exists an equilibrium becomes our 

main concern, which is stated in the theorem as follows. 

Theorem 2: A stochastic weakly acyclic game 

possesses at least one state equilibrium. 

Proof: The best response improvement path consists 

of a sequence of state action pairs ( , )p x a�  where 

p P∈  and P X A= ×  is the set of state action pairs. 

Obviously the set P is finite because it is the Cartesian 

product of the finite state set X and finite action set A. 

Therefore, the last state action pair in the best response 

improvement path is guaranteed to exist, and the 

potential function achieves the minimal value at the point 

of the last state action pair. In addition, both the 

( , ( ), ( )) 0
i

D U a t x t >  and ( , ( ), ( )) 0D a t x tϕ >  in Prop-

osition 1 imply that the equilibrium set of stochastic 

weakly acyclic games coincides with the equilibrium set 

of the games by replacing the local objective function Ui 

with potential function φ. Consequently, if potential 

function φ admits a minimal value in the set P, then the 

stochastic weakly acyclic game possesses a state 

equilibrium. This completes the proof.  � 

The potential function captures the global objective of 

distributed optimization problem for multi-agent system. 

And the game model guarantees at least an equilibrium. 
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However, whether the equilibriums of the game model 

are the solution to the optimization problem in (1) is the 

next problem, which will be stated in Theorem 3. 

Theorem 3: Suppose the interaction topology is 

directed, time-varying, and for any time 
0

0,t >  there 

exists a constant 0T >  and 
1 0 0

[ , ],t t t T∈ +  such that 

the sequence of topology matrixes 
0 0

{ ( ), ( 1), ,S t S t + �  

1
( )}S t  is sequentially complete, then at the point of state 

equilibrium, , ,i k N∀ ∈  we have .

k

i k
e v=  

Proof: Suppose the state equilibrium of the designed 

game is denoted by the state action pair ( , )p x a =�  

ˆ ˆ(( , ), ( , )).v e v e  Then ,i N∀ ∈  for any joint action profile 

ˆ ˆ ˆ ˆ( , ) (( , ), ( , )),
i i i i i i

a a a v v e e
− − −

′ ′ ′ ′= =  we have ( , )
i

U x a ≤  

( , ).
i

U x a′  

Since the corresponding sequence of topology mat-

rixes 
0 0 1

{ ( ), ( 1), , ( )}S t S t S t+ �  is sequentially complete, 

then it is easy to find an agent, denoted by i with an 

action 
i i
a A∈  and any two agent 

1 2
,

i
j j L∈  where 

{ : ( ) 1}
i li
L l s t= =  is the set of adjacent agents of agent i. 

,Rδ∀ ∈  the new action for the agent i, which is 

denoted by ˆ ˆ( , ),
i i i
a v e′ ′ ′=  can be defined as ˆ

i
v′ = ˆ

i
v  and 

ˆ

k
i je
→

′ =

1

2

1 2

ˆ

ˆ

ˆ \{ , }.

k
i j

k
i j

k
i j i

e j j

e j j

e j L j j

δ

δ

→

→

→

⎧ + =
⎪
⎪

− =⎨
⎪

∈⎪⎩

 

Accordingly, the change in the local objective function 

of agent i can be expressed as follows: 

1 1 1

( , ) ( , ).
n n n

ij i ij i ij i

j j j

s U s U x a s U x a

= = =

′Δ = −∑ ∑ ∑  (12) 

When 0,δ →  equation (12) can be expressed as 

1 2

1 2

2

1

2 ( ).

n
k k

ij i j jk k
j k Nj j

s U e e

e e

φ φ
α δ ο δ

= ∈

⎛ ⎞∂ ∂
⎜ ⎟Δ = − + − +
⎜ ⎟∂ ∂⎝ ⎠

∑ ∑  

 (13) 

As we know, ,Rδ∀ ∈ 0,
i

UΔ ≥  therefore, , ,i k N∀ ∈  

(13) can be translated to 

1 2

1 2

2 ( ) 0.
k k
j jk k

k Nj j

e e

e e

φ φ
α

∈

∂ ∂
− + − =

∂ ∂
∑  (14) 

As the global objective function ( )φ ⋅  is convex and 

differentiable, then we have 

1 2

1 2
1 2

(1 )
( ) | ( ),k k

j j

k k
j jk k e e

j j

H e e

e e
ξ ξ

φ φ
φ

+ −

∂ ∂
− = −

∂ ∂

  (15) 

where (0,1),ξ ∈ ( )H φ  is the Hessian matrix of function 

.φ  Accordingly, we have 

1 2

1 2

1 2

2

2

(1 )

0 2 ( )

( ) | ( ) .k k
j j

k k
j j

k N

k k
j je e

e e

H e e
ξ ξ

α

φ

∈

+ −

≥ − −

= −

∑
 (16) 

As the Hessian matrix of convex function ( )φ ⋅  will 

be positive semi-definite, then we have 

1 2

2
0 (2 2 ) 0.

k k
j j

k N

e eα

∈

≥ − − ≥∑  (17) 

The inequality (17) implies that , ,i k N∀ ∈
1 2
,

i
j j L∀ ∈ , 

1 2
.

k k
j je e=  (18) 

In the state space design process [14,22], it is noticed 

that the sum of the estimation from all the agents 

regarding any specific agent k’s value is equal to n times 

the agent k’s value, that is 

( ) ( ).k

i k

i N

e t nv t

∈

=∑  (19) 

Substituting (19) with (18), we have , ,i k N∀ ∈
k

i
e =  

.

k
v  This completes the proof.  � 

Next, whether the equilibrium is the optimal solution 

to the optimization problem becomes our main concern, 

which is stated in the next theorem. 

Theorem 4: Model the optimization problem in (1) as 

stochastic weakly acyclic game with any positive 

constant α. Then all the state equilibriums are optimal 

solutions to the distributed optimization problem. 

Proof: Suppose ˆ ˆ( , ) (( , ), ( , ))x a v e v e=  is the state 

equilibrium of the game. Considering a new action 

profile ˆ ˆ ˆ ˆ( , ) (( , ) ( , )),
i i i i i i

a a a v v e e
− − −

′ ′ ′ ′= = ，  which causes 

the value of the agent i, denoted by vi, to change to a new 

value ˆ ,
i
v′  where ˆ

i
v′ = ˆ ,

i
v δ+ .Rδ∀ ∈  

Accordingly, the change in local objective function for 

agent i can be expressed as follows: 

1

( , ) ( , ).
n

ij i i i

j

s U U x a U x a

=

′ ′⋅ Δ = −∑  (20) 

When 0,δ →  we can express (20) as 

1

.
n

i

ij

U n
v

φ
δ

=

∂
Δ =

∂
∑  (21) 

As we know, ,Rδ∀ ∈ 0.
i

UΔ ≥  Therefore, ,i N∀ ∈  

(21) can be translated to 

0.

i
v

φ∂
=

∂
 (22) 

Since the global objective function ( )φ ⋅  is convex 

and differentiable, then the minimum of the distributed 

optimization problem (1) can be achieved at the point 

where its derivative equals zero. Meanwhile, the point is 

also the point of equilibrium of the game. This completes 

the proof.   � 

 

5. SIMULATION STUDY 

 

In this section we will illustrate applicability of the 

theoretical results on the problem of controlling multiple 

distributed generators (DGs) in distribution networks. 

Suppose there are n DGs which form a virtual power 

plant(VPP) [9]. The objective is to ensure the aggregated 

power output of all the DGs can be controlled through 
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coordinating the power output of each DGs. A simple 

solution is to specify the fair power utilization profile, 

where the same ratio of power output versus maximum 

available capability is imposed on all DGs [8]. The 

desired utilization profile, denoted by γ*, is determined 

by the high level control in grid, such as the transmission 

and distribution control center [8,9]. Then the objective 

is to establish a set of local control laws for DGs such 

that the power output ratios of all DGs seek to γ* and 

further it ensures the desirable aggregated power output 

of VPP, even though the output capabilities of some 

individual DGs may have large swings. Consequently, 

the above DGs control problem can be formalized as the 

optimization problem as follows: 

2
*

1 1
min ( , , ) ( ) ,

. . (0,1), .

n

n ii

i i
s t R

γ
φ γ γ γ γ

γ γ

=

= −

∈ ∈

∑�

 (23) 

The dynamics of the problem is described as follows. 

Suppose at time t0, the high level control command DG i 

to increase its output power ratio to the desired 

utilization profile γ*. Then DG i distributes the profile γ* 

to its connected DGs according to the sensing/ 

communication networks and commands them to 

increase their ratios. Finally, all the DGs asymptotically 

reach the same utilization profile γ*. 

First, the communication topology between DGs 

should be designed. The optimization problem will be 

simulated under two different communication topologies. 

The first topology is defined as follows. At any time t, 

suppose there is only one different DG, denoted by j, 

which can get the information of DG 1, that is, 

1
( ) 1.js t =  And the second topology is defined by 

adding more connections than in first topology at each 

time step. It is noticed that information flow among DGs 

is directed and some entries in matrix may switch from 1 

to 0 intermittently as the abnormal operation of a single 

communication channel. Therefore, the communication 

matrix is asymmetric and time-varying. However, in 

order to ensure the output of VPP converges to the 

expected operational point and the system is robust to 

time varying and intermittent conditions, the matrix 

sequence 
0

{ ( ), , ( )}
m

S t S t�  corresponding to the topol-

ogies should be sequentially complete. That is to say, in 

certain time interval 
0

[ , , ],
m

t t�  the resulting graph has 

at least one globally reachable DG [7]. It is obvious that 

if the time interval is large enough, the sequentially 

complete condition is satisfied and the resulting graph 

has at least one globally reachable DG, i.e., the DG 1 in 

the VPP. 

Then the game model for the optimization (23) is 

described as follows. For DG i, its state is defined as 

( , ),
i i i
x eγ=  where 1( , , )ni i ie e e= �  and k

ie  is the 

estimation for DG k’s ratio 
k

γ  from DG i. Accordingly, 

the action for DG i is defined as ˆ ˆ( , )
i i i
a eγ=  where ˆ

i
γ  

is the change of the ratio of DG i and the ˆ

i
e = 1ˆ( , ,

i
e �  

ˆ )n
i
e  is the changes of the estimation term of DG i . The 

local objective function for DG i, denoted by ( , ),
i

U x a  

is defined as follows: 

( , ) ( , ) ( , ),e

i i i
U x a U x a U x a

φ
α= + i  (24) 

where 

1

1 1
( , ) ( , , ) / ,

n nn
i ij j j ijj j

U x a s e e s
φ φ

= =

= ⋅∑ ∑�  

( )2 2

1 1
( , ) ( ) / .

n ne k
i ij j i ijj k j

U x a s e n sγ
= =

= −∑ ∑ ∑  

Accordingly, the game model is a stochastic weakly 

acyclic game with potential function ( , )x aϕ  which is 

defined as follows: 

( , ) ( , ) ( , ),e

x a x a x a
φ

ϕ ϕ α ϕ= + i  (25) 

where 

1

1
( , ) ( , , ) / ,

n n
j jj

x a e e n
φ

ϕ φ
=

=∑ �  

2 2

1 1
( , ) ( ) / ,

n ne k
j ij k i

x a e nϕ γ
= =

= −∑ ∑ ∑  

Under the two different topology designs, Fig. 1 and 

Fig. 3 illustrate the evolution of the ratios of DGs, while 

Fig. 2 and Fig. 4 shows the evolution of the optimi-

zation function (23) by using the stochastic weakly 

acyclic game design in (24) and (25) and the gradient 

play learning algorithm. We set the number of DGs 

n =10, the desired utilization profile γ*= 0.5 and the 

tradeoff parameter α = 0.01. 

It is noticed that convergence rates of both the ratios 

and the optimization function in the second topology are 

faster than the ones in the first topology. It is because the 

convergence rate is mainly determined by the Fiedler 

value, which reflects how well connected the topology is.  

For a fixed number of DGs, the Fiedler value in the 

second topology is bigger than the one in the first 

topology. Intuitively, there are more information 

channels in second topology, therefore, the system 

converges to the desired behaviors faster. Also, it is 

noticed in both Fig. 2 and Fig. 4 the value of 

optimization function will be substantially high at the 

initial time since the difference between the ratios of 

DGs and the desired utilization profile is large at the 

 

 

Fig. 1. Evolution of the ratios for 10 DGs in VPP under 

first topology. 
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Fig. 2. Value of the optimization function for the VPP 

under first topology. 

 

 

Fig. 3. Evolution of the ratios for 10 DGs in VPP under 

second topology. 

 

 

Fig. 4. Value of the optimization function for the VPP 

under second topology. 

 

beginning. However, it will asymptotically converge to 

zero, which shows that the designed local objective 

function for DGs in our game model will ensure the VPP 

converges to an expected operational point effectively 

and efficiently. 

6. CONCLUSIONS 

 

In this paper, a new theoretical framework for 

controlling multi-agent system is developed based on the 

non-cooperative game theory. In order to suppress the 

aggressive competition among agents and ensure the 

desired results, a state space is introduced into the 

existing non-cooperative game model and a novel game 

named stochastic weakly acyclic game is proposed. It is 

noticed that the system level objective can be achieved at 

the points of the corresponding equilibriums of the new 

game model. Further research direction includes two 

problems: (i) exploring the influence of parameter α on 

the system behaviors. (ii) developing a broad class of 

learning algorithms for stochastic weakly acyclic games 

to meet the challenges inherent in the multi-agent 

systems. 
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