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Abstract: In some of the complicated control problems we have to use the controllers that apply non-

local operators to the error signal to generate the control. Currently, the most famous controller with 

nonlocal operators is the fractional-order PID (FOPID). Commonly, after tuning the parameters of FO-

PID controller, its transfer function is discretized (for realization purposes) using the so-called generat-

ing function. This discretization is the origin of some errors and unexpected results in feedback sys-

tems. It may even happen that the controller obtained by discretizing a FOPID controller works worse 

than a directly-tuned discrete-time classical PID controller. Moreover, FOPID controllers cannot di-

rectly be applied to the processes modeled by, e.g., the ARMA or ARMAX model. The aim of this pa-

per is to propose a discrete-time version of the FOPID controller and discuss on its properties and ap-

plications. Similar to the FOPID controller, the proposed structure applies nonlocal operators (with ad-

justable memory length) to the error signal. Two methods for tuning the parameters of the proposed 

controller are developed and it is shown that the proposed controller has the capacity of solving com-

plicated control problems. 
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1. INTRODUCTION 

 

During the past seven decades PID controllers have 

been successfully used in a wide variety of industrial 

applications [1,2]. Currently, various continuous and 

discrete-time versions of this type of controller are 

available, which can be applied to the processes modeled 

by linear differential or linear difference equations, 

respectively [1-3]. Successful applications of PID 

controllers to control nonlinear processes can also be 

found in the literature [4]. 

According to the high achievement and the simplicity 

of design and implementation of PID controllers many 

researchers tried to enhance the performance of these 

controllers by innovating new structures and tuning 

methods [5-10]. One of these attempts led to a new 

generation of PID controllers, known as the fractional-

order PID (FOPID) or PI 

λ
D 

μ controller, which was first 

proposed by Podlubny in 1999 [10]. In FOPID 

controllers the error and control, respectively denoted as 

e(t) and u(t), are related from the following equation 

( ) ( ) ( ) ( ),
p i t d t

u t k e t k D e t k D e t
λ μ−

= + +  (1) 

where , ,p i dk k k ∈�  and ,λ μ
+

∈�  are the parameters 

of controller to be tuned, and tD
λ−  and 

t
D

µ  are the 

fractional integral and differential operator respectively, 

often defined by the Riemann-Liouville definition as the 

following [11]: 
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where m is a positive integer such that 1m mµ− < ≤  

and (.)Γ  is the well-known gamma function. Other 

definitions for fractional differential operators can also 

be found in the literature [11]. Note that according to (2) 

and (3), fractional integral and derivative are nonlocal 

operators which apply the past values of f to determine 

( )
t

D f t
λ−  and ( ).

t
D f t

µ  Hence, unlike classical PID 

controllers, the derivative term of the FOPID controller 

is actually a nonlocal operator acts on the error signal. 

Taking the Laplace transform from both sides of (1) 

leads to the following transfer function for FOPID 

controller [10]: 

( )
( ) .

( )
p i d

U s
C s k k s k s

E s

λ μ−

= = + +  (4) 

Here it is worth to mention that, unlike the classical 

PID controllers, currently there is no direct definition 

available for discrete-time FOPID controllers. However, 

for realization purposes, it is common practice to first 

design the FOPID controller (4) and then approximate it 

with a discrete-time system. This approximation is often 

performed by using the so-called generating function 
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[12,13]. In this technique the Laplace variable s in (4) is 

substituted with a certain function of z (using, e.g., the 

Tustin transform) and then the power series expansion 

(PSE) of the resulted expression is obtained in terms of z. 

Finally, since any practical discrete-time system must 

necessarily use a limited memory, the resulted PSE is 

truncated. This approach suffers from many drawbacks, 

the source of all is the unavoidable mismatch between 

the frequency responses of continuous and discrete 

transfer functions. The aim of this paper is to propose a 

long-memory discrete-time PID (LDPID) controller 

which removes the limitations of the above-mentioned 

discretization scheme and still has the high performance 

of FOPID controllers. 

There are many good reasons for defining and using 

LDPID controllers. First of all, it is very common 

practice to model a real-world continuous-time process 

by a (discrete) transfer function in the z variable. For 

example, such a model is obtained when an unknown 

process is identified using ARMA or ARMAX model. 

Obviously, in this case it is more reasonable to directly 

design a discrete-time controller as well (instead of 

designing a continuous-time controller and then 

approximating it with a discrete-time one). Another 

reason for developing LDPID controllers is that even 

when both the controller and process are continuous-time, 

the controller is more likely to be realized using digital 

microprocessors. As a classical fact, some unwanted 

effects (such as decreasing the phase margin) may occur 

in the feedback system when the continuous-time 

controller is replaced with an approximate discrete-time 

controller. Moreover, FOPID controllers have some 

features which are not preserved after approximating 

them with discrete transfer functions. For example, one 

important feature of every FOPID controller is the so-

called long memory principle, which is lost after 

approximating it with an integer-order transfer function. 

Another property that is lost after approximation is the 

optimality of controller. In fact, the optimal controller 

designed for a certain continuous-time process will no 

longer be optimal after approximating it with a discrete-

time system. In addition to the above-mentioned points, 

it should also be noted that the derivative term of (4) 

cannot exactly be realized in practice since it is a non-

causal operator and a low-pass filter in series with it is 

required in practice. The proposed LDPID controller will 

remove all of these difficulties. 

The rest of this paper is organized as the following. In 

Section 2 we introduce the proposed LDPID controller 

and develop two methods for its tuning. Three simulated 

examples and an experimental study are presented in 

Section 3. Finally, Section 4 concludes the paper. 

 

2. DISCRETE-TIME FRACTIONAL-ORDER PID 

CONTROLLER 

 

2.1. Formulation of the proposed controller 

Consider the FOPID controller given in (4). In the 

following first we develop a method for discretizing the 

derivative term of this controller based on the prewarped 

Tustin method and then we extend the results to the 

integrative term. Next, based on these results we will 

propose a LDPID controller which can be thought of as 

the discrete-time dual of FOPID controllers. 

Assuming that the sampling period of system is equal 

to T, applying prewarped Tustin method leads to the 

following approximation for the derivative term of (4): 
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 (5) 

where / tan( / 2)
c c

Tα ω ω�  and ω
c
 is the gain crossover 

frequency of the open-loop transfer function. (Here we 

have applied Tustin method since it is more accurate 

compared to other transforms such as backward 

difference. Section 2.3. makes a connection between 

different possible transforms.) To proceed, we need to 

calculate the PSE of the expression in the right hand-side 

of (5), which cannot be performed without determining 

its region of convergence (ROC) in the complex z-plane. 

Note that this expression is actually a multi-valued 

function of z which has two branch points at 1z =  and 

1z = −  located on the unit circle. Mathematically, the 

corresponding branch cut (BC) can be considered either 

inside or outside the unit circle as shown in Fig. 1. 

Clearly, the choice of BC affects the ROC and 

consequently, causality of the resulted system. Similar to 

the classical results [14], here considering the BC inside 

the unit circle and the ROC as | | 1z >  yields a causal 

system as it is desired. Hence, assuming 1w z−=  and 

| | 1z >  the PSE of the expression in the right hand-side 

of (5) is obtained as the following: 

0

1
( ) , | | 1,

1

k

k

k

w
f w w

w

µ

µ µ
α α μ

∞

=

−⎛ ⎞
= <⎜ ⎟

+⎝ ⎠
∑  (6) 

where 

0

1 1
( ) .

! 1

k

k k

w

d w
f

k wdw
µ

=

−⎛ ⎞
= × ⎜ ⎟

+⎝ ⎠
 (7) 

Substitution of 1w z−=  in (6), and then the resulted 

equation in (5) yields the following PSE for the 

fractional-order differentiator: 

0

( ) , | | 1,k

k

k

s f z z
µ µ

α μ

∞

−

=

= <∑  (8) 

where again the coefficients ( )
k
f µ  are calculated from 

Fig. 1. Two possible branch cuts for (5). 
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(7). It can be shown (using Maple) that the first few 

coefficients in (8) are 
0
( ) 1,f µ =

1
( ) 2 ,f µ µ= −

2
( )f µ =  

2
2 ,µ

34 2

3 3 3
( ) ,f µ µ µ= − −

4 22 4

4 3 3
( ) ,f µ µ µ= +

5
( )f µ =  

5 34 4 2

15 3 5
,µ µ µ− − −  …. Note that (8) holds for both the 

positive and negative values of μ. Hence, one may try to 

expand the integral term of (4) in a similar manner and 

arrive at an equation like (8) in λ, but the problem with 

such an expansion is that the resulted series does not 

have infinite DC gain (considering the fact that any 

infinite series must be truncated in practice), which is 

essential for tracking the step command without steady-

state error. In order to find a series approximation for 

s
λ−  in terms of 1

z
−  which has infinite DC gain, first 

we write it as 1(1/ )s s s
λ λ− −

= ×  and then apply the 

prewarped Tustin method to it. Applying this technique 

yields 
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where (1 )kf λ−  are again calculated from (7). 

Substitution of (8) and (9) in (4) results in the 

following formulation for the LDPID controller 
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where 

, , .
p p d d i i

K k K k K k
μ λ

α α
−

= = =  (11) 

Clearly, in practice the upper bound of sigmas in (10) 

cannot be considered equal to infinity. Restricting the 

number of memory units to M, the following formula is 

proposed for the M th-order LDPID controller: 
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In the rest of this paper whenever we refer to the 

LDPID controller, a system with transfer function (12) is 

under consideration. Fig. 2 shows the block diagram of 

the proposed LDPID controller where C/D and D/C 

stand for the ideal continuous-to-discrete-time and 

discrete-to-continuous-time converters, respectively [15]. 

Obviously, in practice the C/D is realized using a 

sample-and-hold (or an A/D converter) and the output of 

adder in Fig. 2 can directly be applied to the process. For 

simulation in Matlab, the C/D is modeled with a sample-

and-hold, and the D/C is simply omitted. 

Considering the fact that the FOPID and LDPID 

controllers (as defined in (4) and (12), respectively) have 

different number of parameters to tune, and taking into 

account the effect of sample-and-hold, it is evident that 

in practice the parameters of these two controllers cannot 

simply be related according to (11). In other words, the 

transfer function of a certain LDPID controller is not, in 

general, obtained by applying the Tustin transform to any 

FOPID controller. It concludes that the parameters of the 

proposed LDPID controller should be tuned directly. For 

this purpose, a certain value can be assigned to M and 

then the value of other parameters be calculated such that 

a predetermined set of objectives is met. The other 

possible approach is to consider M as a tuning parameter 

and then find the values of Kp, Kd, Ki, μ, λ, and M such 

that the objectives under consideration are met. The first 

approach is used in the rest of this paper. 

 

2.2. Two methods for tuning the proposed LDPID 

controller 

Two methods for tuning the parameters of the LDPID 

controller defined in (12) are developed in this section. 

The first method is the discrete-time equivalent of the 

method proposed in [16] for tuning the parameters of 

FOPID controller. The second method is based on 

minimization of a certain integral performance index by 

suitable choice of the unknown parameters of controller. 

This approach is similar to the method used in [9] for 

optimal tuning the FOPID controllers. In both of the 

methods first we assign a suitable value to M. This value 

should be chosen considering the limitations of the 

hardware used to realize the controller. Evidently, 

increasing the value of M increases the computational 

cost and the memory usage, and indeed puts a limitation 

on the minimum possible value for sampling period of 

system. (it was observed that the final results are not so 

sensitive to the special value assigned to M provided that 

other parameters are selected properly.) Note that 

according to (12) the difference equation relating e[n] to 

u[n] in Fig. 2 is as the following: 
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In (13) calculation of each sigma needs M+1 (floating 

point) multiplications and M+1 summations (assuming 

that ( )
d k

K f µ  and (1 )
i k

K f λ−  are calculated before-

hand and are known parameters). Hence, it can be easily 

verified that calculation of u[n] from (13) totally needs 

Fig. 2. Block diagram of the Mth-order LDPID. 
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2(M+1)+1=2M+3 multiplications and 2(M+1)+4=2M+6 

summations at each sampling period (note that (13) is not 

a minimal description for (12) and more effective 

formulations can also be obtained [15]). Considering the 

fact that any floating point multiplication is much more 

time consuming than any summation, the computational 

cost of the proposed controller can be approximated by 

the number of multiplications, which is equal to 2M + 6 

at each sampling period. So, in order to determine the 

suitable value of M first we should determine the suitable 

sampling period of system and then choose the value of 

M such that the digital processor can perform at least 

2M + 6 floating point multiplications at each sampling 

period. 

After determining the value of M, the values of the 

remaining five parameters of controller are determined 

such that the following five conditions are satisfied 

simultaneously (P(s) is the process transfer function, 

which is located in a standard unity feedback system in 

series with the LDPID controller): 

• The gain crossover frequency of the open-loop system, 

ωc, be equal to the desired value, that is the following 

equality holds for the desired ωc: 

( ) ( ) 0dB.c
j

d cC e P j
ω

ω =  (14) 

• The phase margin of the feedback system, φm, be equal 

to the desired value, that is the equality 

{ }arg ( ) ( ) ,c
j

d c mC e P j
ω

ω π ϕ= +  (15) 

holds for the desired φm. 

• The feedback system exhibits a good robustness to 

variations in the gain of process, which can be 

achieved by satisfying the following equality 

( )( ) ( )

0.

c

j
dd C e P j

d

ω

ω ω

ω

ω

=

=  (16) 

• The feedback system attenuates the high frequency 

noise, which is achieved by satisfying the inequality: 

( ) ( )
dB rad/s,

1 ( ) ( )

j
d

tj
d

C e P j
A

C e P j

ω

ω

ω

ω ω

ω

≤ ≥

+

 (17) 

where A and ωt are desired constants. 

• The feedback system rejects the disturbance, which is 

achieved by satisfying the inequality: 

1
dB rad/s,

1 ( ) ( )
sj

d

B
C e P j

ω

ω ω

ω

≤ ≤

+

 (18) 

where A and ωt are desired constants. 
 

Similar to [16], in this paper (14) is considered as the 

main object of optimization and (15)-(18) are considered 

as the corresponding constrains. More precisely, we have 

applied the genetic algorithm to find the values of Kp, Kd, 

Ki, μ, and λ in (12) such that || ( ) ( ) | 1 |c
j

d cC e P j
ω

ω −  is 

minimized and simultaneously the equality constraints 

(15) and (16), and inequality constraints (17) and (18) 

are fulfilled. Clearly, it may happen that the above 

optimization problem does not have any solution, but 

even approximate solutions (which violate the constrains 

to some extent) are useful in practice. Numerical 

simulations performed by authors show that the genetic 

algorithm toolbox of Matlab can effectively solve such a 

complicated constrained optimization problem in a 

relatively short time. 

The second method that can be used for tuning the 

parameters of LDPID controller is to assign a certain 

value to M and then calculate the values of Kp, Kd, Ki, μ, 

and λ in (12) such that an integral performance index 

(e.g., the IAE or ISE performance index corresponding to 

the tracking error of step command) is minimized. In this 

method, the genetic algorithm (or any other meta-

heuristic optimization algorithm such as PSO) can be 

used to search the five-dimensional space to find the 

optimal solution. For this purpose, the corresponding 

integral performance index should be considered as the 

object of minimization and the equation obtained by 

equating the number of unstable poles of the closed-loop 

system to zero can be considered as the constraint of 

optimization. 

 

3.1. Generalization 

The coefficients fk (μ) and fk (1 – λ) of the proposed 

LDPID controller (12) are calculated from (7). The 

question that may arise at this point is: Can one propose 

another reasonable method instead of (7) for calculation 

of these coefficients? To provide an answer for this 

question first recall that any PID controller combines a 

proportion, derivative and integral of the error signal to 

generate the control. It motivates us first to study the 

general behavior of discrete-time derivative operators. 

Based on these results we can conclude that any 

alternating-sign function of k provides us with a natural 

definition for fk (μ) to be used in (12). Finally, we briefly 

extend the results to discrete-time integrators. 

Suppose that we want to approximate the time 

derivative of the function e(t) only by using its samples 

( )
i i
e e t= ( 1, , )i n= …  where 

1
.

i i
T t t

−

= −  Mathematicall

y, this task can be performed by using one of the 

following formulas [17]: 

1( ) ( ),i i

i

e e
e t O T

T

+
−

= +�  (19) 

1( ) ( ),i i

i

e e
e t O T

T

−
−

= +�  (20) 

21 1( ) ( ),
2

i i

i

e e
e t O T

T

+ −
−

= +�  (21) 

which are called forward, backward, and centered 

difference approximations, respectively. In each case one 

can increase the accuracy of the resulted time derivative 

by using larger number of sample points. For example, 

backward difference approximations with second and 

third order errors are obtained as the following [17]: 
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21 2
3 4
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e e e
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The general formula for approximating the time 

derivative of a function with n th-order error using the 

backward difference method is as the following [18]: 

0
,1

,

1
( ) ( ),B n

i k n

k n

e t g O T

T
=−

= +∑�  (24) 

where the coefficients ,1

,

B

k n
g  are calculated from the 

following iterative procedure: 

,1 ,1

0, 1,

1

(1/ ), ,
n

B B
n n

j

g j g n
−

=

= = −∑  (25) 

,1 ,1 2

, 1,

( 1)( 1) / , 2, , .B B

k n k n
g g k n k k k n
− − +

= − − − + = …  (26) 

Very similar formulas can also be found in [18] for 

forward and centered difference approximations. The 

intersection point of all of these finite-difference 

formulas is that they approximate the time derivative of a 

function by the weighted sum of its samples, where these 

weights change sign decussately as the k is increased. 

For example, according to (26) it is obvious that the 

weights ,1

,

B

k n
g  in (24) are positive for 0, 2, 4,k = − − …  

and negative for 1, 3, 5,k = − − − … . Equation (24) leads 

us to the fact that in digital control system design one can 

use the following n th-order difference equation to 

calculate the derivative of error signal from its samples 

with an arbitrary precision: 

,1

,

0

1
[ ] [ ],

n
B

dot k n

k

e i g e i k
T

−

=

≈ −∑  (27) 

where [ ]e i  and [ ]
dot
e i  stand for the samples of error 

signal and its derivative, respectively, and the 

alternating-sign weights ,1

,

B

k n
g
−

 are defined similar to 

(25) and (26). Recall that according to (12) the proposed 

LDPID controller relates the samples of error signal to its 

derivative through the following difference equation 

0

[ ] ( ) [ ],
M

dot d k

k

e i K f e i kµ

=

= −∑  (28) 

where the weights fk (μ) are calculated from (7). It can be 

easily verified that the plot of fk (μ) versus k (assuming a 

certain value for μ) changes sign decussately similar to 

the weights ,1

,

B

k n
g
−

 in (27). It means that the derivative 

term of the proposed LDPID controller also has the 

property of subtracting many two successive (positive-

weighted) samples of the error signal and then forming 

the cumulative sum of results. However, the difference 

equation (28) is, compared to (27), advantageous in the 

way that one can adjust the amplitude of weights simply 

by changing the value of μ (note that in case of using 

(27) we have no control on the amplitude of the weights 
,1

,

B

k n
g
−

 for the given n). For this reason, it is not 

surprising if the derivative action of the LDPID 

controller as given in (28) reduces to a classical discrete-

time differentiator for some μ and M. For example, 

assuming 0.5µ =  and 1M =  equation (28) yields 

[ ] ( [ ] [ 1]),
dot d
e i K e i e i= − −  which is the classical back-

ward difference approximation for derivative operator. 

The above discussion motivates us to define, in 

general, the derivative action of discrete-time LDPID 

controllers through the difference equation (28) where 

fk (μ) ( 0)μ >  can be considered equal to any alternating-

sign function of k (which is not necessarily calculated 

from (7)). This definition for discrete-time derivative 

operator is consistent with the one used in Section 2.1 

and the classical higher-order one presented in (27). 

However, application of, e.g., the backward difference 

approximation in (5) leads to a discrete-time approxi-

mation for derivative operator that is not consistent with 

the above generalized definition and a more general 

definition is needed to cover this case. The integral term 

of the proposed LDPID controller can be generalized 

similar to the above approach. In fact the generalized 

integrator can be defined as an operator that generates 

the positive-weighted sum of the current and past 

samples of error signal. 

 

3. ILLUSTRATIVE EXAMPLES 

 

Example 1: The aim of this example is to show that 

designing a classical PID controller for a FOPTD process 

and then discretizing it may lead to an unstable feedback 

system, while direct tuning the proposed LDPID 

controller can remove this difficulty. For this purpose 

consider a FOPTD process with transfer function 
3( ) 2 /(1 10 ),s

P s e s
−

= +  which can be effectively con-

trolled by the PID controller ( ) 1.1 0.1/ 0.4C s s s= + +  

obtained by trial and error. The dashed curve in Fig. 3 

shows the unit step response of the feedback system in 

this case. As it can be observed, the command following 

is quite satisfactory. 

Now let us examine the performance of this feedback 

system when the controller is discretized and then 

applied. In this example the gain crossover frequency of 

the open-loop system is 0.21
c

ω ≈  rad/s and the phase 

margin is about 60°. Applying prewarped Tustin method 

to controller assuming 0.1T = s leads to the following 

discrete-time controller: 

1 1

1 1 1

1 1
( ) 1.1 0.005 8 .

1 1
d

z z
C z

z z

− −

− −

+ −
= + +

− +

 (29) 

Fig. 4 shows the Bode plots of ( ) ( )C s P s  and 

1
( ) ( )sT

d
C e P s  (the latter corresponds to the open-loop 

transfer function when the discrete-time controller is 

applied in series with ideal C/D and D/C converters). 

This figure clearly shows that the closed-loop system 

with discrete-time controller is unstable, while the 

original continuous-time feedback system was stable 

with a satisfactory phase margin (recall that any spike in 
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the Bode magnitude plot of 
1
( ) ( )sT

d
C e P s  in Fig. 4 

corresponds to an encirclement around -1 in the 

corresponding Nyquist plot). One can also perform a 

time-domain simulation to justify the fact that the 

discretized controller (29) leads to an unstable feedback 

system. It is worth to mention that in this example one 

can hardly arrive at a stable feedback system only by 

changing to sampling period of system. 

Assuming M = 5 in (12), the (suboptimal) LDPID 

controller which minimizes the IAE performance index 

(corresponding to the tracking error of the unit step 

command) is obtained as the following: 

5

2

0

1 5

1

0

( ) 2.8 1.5 (1.03)

1
0.004 ( 0.1) .

1

k

d k

k

k

k

k

C z f z

z
f z

z

−

=

−

−

−

=

= +

+

+ −

−

∑

∑

 (30) 

The main advantage of this controller over C(s) is that 

the unwanted effects caused by using ZOH are also taken 

into account during the controller design, and conse-

quently, it is ready to be realized using microprocessors. 

Fig. 3 shows the unit step response of the closed-loop 

system when the LDPID controller (30) is applied. As it 

can be observed, the LDPID controller results in a 

satisfactory transient response. 

 

Example 2: The following non-minimum phase 

transfer function appears in the one-link flexible arm 

robot [19]: 

2

4 3 2

4.906 0.5884 335.17
( ) .

0.55437 139.6 27.91

s s
P s

s s s s

− − +

=

+ + +

 (31) 

P(s) has a non-minimum phase zero at 8.2057 and four 

poles at 0, 0.2, 0.1772 11.8109.j±  Controlling a system 

with transfer function (31) is a relatively difficult task 

since trivial PID controllers often do not lead to 

satisfactory results when the process has both the non-

minimum phase zero and complex conjugate poles with a 

very small damping ratio (here we have 0.0150)ζ =  

[1]. In the following we try the proposed LDPID 

controller. 

Since in this example the process itself has a pole at 

the origin, a LDPD controller is sufficient for the 

tracking of step command without steady-state error. In 

order to design the LDPD controller first we arbitrarily 

assume M = 5 and then we obtain the parameters of the 

LDPD such that the IAE performance index 

(corresponding to the tracking error of step command) is 

minimized. Next, we slightly modify the parameters of 

the resulted controller by trial and error such that the 

closed-loop system exhibits a desired step response. This 

approach leads to the following LDPD controller: 

5

0

( ) 0.3 0.5 (0.8) .k
d k

k

C z f z
−

=

= + ∑  (32) 

Unit step response of the corresponding closed-loop 

system is shown in Fig. 5. In this figure the rise time, the 

settling time and overshoot of the response are 

approximately equal to 5.4s, 15s, and 14%, respectively. 
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Fig. 5. Unit step response of the closed-loop system, 

corresponding to Example 2. 
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Fig. 3. Unit step response of the closed-loop system, 

corresponding to Example 1. 
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Numerous numerical simulations performed by authors 

show that a response with this characteristics cannot be 

achieved by applying any PD or PID type controller (i.e., 

either the rise time or the settling time or the overshoot 

of the response obtained by using a PID controller will 

be larger than the corresponding one obtained by using 

the proposed LDPD controller). 

 

Example 3: Astrom and Hagglund [5] proposed the 

so-called AMIGO method for tuning the two degrees-of-

freedom (2DOF) PID controllers, which have six 

parameters to tune. Application of this method to a 

process with transfer function 
2( ) /(1 0.05 )s

P s e s
−

= +  

leads to a 2DOF PID controller with the following input-

output relation: 

0
( ) 0.24( ) 0.515 ( ( )

( )
( )) 0.032 ,

t

sp f sp

f

f

u t y y y

dy t
y d

dt

τ

τ τ

= − +

− −

∫
 (33) 

where 
sp
y  is the set point, ( ) ( ) ( )f fY s G s Y s=  the 

filtered process variable, ( )u t  the control, ( )fG s =  
2

1/(1 0.1 ) ,s+  and ( )y t  is the process output. On the 

other hand, minimization of the IAE performance index 

(i.e., the integral of the absolute error when the unit step 

command and the unit step disturbance are applied at 

t = 0 and t =10, respectively in the standard unity 

feedback connection) leads to the following (suboptimal) 

LDPID controller: 

15

0

1 15

4

1

0

( ) 0.5 0.15 (1.15)

1
7 10 ( 0.2) .

1

k

d k

k

k

k

k

C z f z

z
f z

z

−

=

−

− −

−

=

= +

+

+ × −

−

∑

∑

 (34) 

Fig. 6 shows the process output and the corresponding 

control variable when the PID controllers (33) and (34) 

are applied. As it can be observed in this figure both 

controllers lead to almost the same step response, and 

both of them apply almost the same control effort. It 

concludes that the proposed controller can compete the 

2DOF PID controller tuned by using the AMIGO method. 

However, the proposed controller is advantageous in the 

way that it is in the discrete-time form and ready for 

realization. 

 

Example 4: In this example we study the application 

of the proposed LDPID controller for temperature 

control of an industrial heating box. In this system a DC 

voltage is applied to the heating element wire of the box 

and a PWM with adjustable duty cycle is used to control 

the on-off time of this wire. The DC voltage applied to 

wire does not have a certain value. In fact, an industrial 

rectifier provides a very high DC voltage which is 

applied to the series connection of the wires of many 

boxes of this type. Hence, the DC voltage across the wire 

of each box (when it is on) strictly depends on the 

number of wires connected in series (typically, in 

practice few hundred boxes are used in series). 

For many reasons this process constitutes a difficult 

control problem. Firstly, the DC voltage applied to each 

wire (which, of course, affects the DC gain of process) 

has an uncertain value. In fact, in practice it is observed 

that this voltage may even be subjected to 200% changes 

from the nominal value. It is also observed that changing 

this voltage also changes the time constant of process. 

Secondly, the time constant of the process also depends 

on the type and weight of the material embedded in the 

box (to be warmed). Thirdly, taking into account the 

function of PWM it is obvious that the system is actually 

nonlinear. More precisely, the negative control signals 

generated by controller are simply neglected by PWM. 

Note also that applying a kind of anti-windup technique 

is also mandatory for digital realization of integrators. 

At different working conditions each box can (very 

approximately) be modelled by the following first-order 

uncertain transfer function 

( ) , 14 34, 380 570.
1+

K
P s K T

sT
= < < < <  (35) 

(In the above transfer function the input is duty cycle 

and the output is temperature in °C). The nominal 

process model is also considered as ( ) 32 /(1P s = +  

425 )s  (note that the probability of occurring different 

uncertainties is not the same). Our aim here is to design a 

controller which leads to 1
c

ω = rad/s, 75 ,
m

ϕ ≥
�

t
ω =  

10 rad/s, ωs = 0.1 rad/s, and A=B= –20 dB (see Section 

2.2). Moreover, according to the high uncertainty in the 

process model it is highly desired that the open-loop 

phase plot be as flat as possible at frequencies around ωc. 

Following the procedure presented in Section 2.2 the 

genetic algorithm leads to the following PID and LDPID 

controllers (T = 0.1 s): 

1.187
( ) 7.937 0.935 ,C s s

s
= + −  (36) 

5

0

( ) 7.109 0.711 (0.077) k

d k

k

C z f z
−

=

= + ∑  (37) 
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ing to Example 3. 



Farshad Merrikh-Bayat, Nafiseh Mirebrahimi, and Mohammad Reza Khalili 

 

88

1 5

1

0

1
0.750 (0.415) .

1

k

k

k

z
f z

z

−

−

−

=

+
+

−

∑  

Fig. 7 shows the Bode phase and magnitude plots of 

( ) ( )C s P s  and ( ) ( )sT

d
C e P s  when the nominal process 

model is considered. In this example, PID and LDPID 

controllers lead to phase margins equal to 73.3° and 91°, 

respectively. As it can be observed in this figure the 

LDPID controller has perfectly satisfied the design 

requests. Especially, unlike the PID controller, the 

proposed LDPID has led to a very flat curve in the phase 

plot (for more than 2 decades), which is highly desired in 

dealing with the uncertain process under consideration. 

Using trivial simulations it can be easily verified that 

both controllers lead to very similar and satisfactory 

time-domain responses when the nominal linear process 

model is considered. 

Both of the above mentioned controllers are realized 

using the digital system shown in Fig. 8 (the classical 

PID is discretized using the Tustin method with pre-

warping). Here it is worth to mention that since the 1-

wire output of DS18B20 digital sensor cannot directly be 

connected to PC, a kind of transducer is needed. The 

RaspberryPi in Fig. 8 is used for this purpose. The input 

of optocoupler is connected to the software-generated 

PWM with frequency 50Hz. It was observed that in 

dealing with LDPID controller calculation of each 

control signal takes about 2ms in practice. 

The time-domain responses of the practical closed-

loop system when PID and LDPID controllers are 

applied (assuming that the reference temperature is equal 

to 28°C) are shown in Figs. 9 and 10, respectively in five 

different conditions. Note that the curves with similar 

colors in Figs. 9 and 10 are obtained under exactly the 

same conditions in practice (i.e., exactly the same DC 
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Fig. 7. Bode plots of C(s)P(s) and Cd(e
sT)P(s), corres-

ponding to Example 4. 

 

Fig. 8. The digital system used to realize the controllers 

of Example 4. 
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Fig. 9. Step responses of the practical closed-loop 

system when LDPID is applied, corresponding 

to Example 4. 
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voltages across the heating wire, the same materials in 

the box, etc.). Note also that the system itself has an 

initial condition and the vertical axis in Figs. 9 and 10 

begins from 20°C. Fig. 9 clearly shows the superiority of 

the proposed LDPID controller. In fact, the maximum 

overshoot (in the worst case) caused by PID and LDPID 

controllers is equal to 23.43% and 6.1%, respectively. 

Moreover, fluctuations in the response are settled down 

much faster when LDPID is applied. 

It should be emphasized that since the PWM cannot 

generate negative voltages (i.e., the process only has a 

heater but not a cooler) it is observed in Fig. 9 that the 

temperature is increased and decreased with two 

different time-constants. Note also that according to the 

thermal capacity of heater, the temperature in the box 

keeps increasing even after turning off the heater.  

Consequently, since the derivative term of classical 

PID applies much larger controls compared to LDPID, it 

leads to larger overshoots and settling times in the 

response as it is observed in Fig. 10. 

 

4. CONCLUSION 

 

In this paper we proposed a new formulation for 

discrete-time fractional-order PID controllers. Experi-

mental and numerical examples were also presented 

which showed that the proposed controller is capable of 

solving complicated control problems and has some 

advantages to the classical PID controllers. We also 

developed two methods for tuning the parameters of this 

controller. The main advantages of the proposed 

controller are: application of non-local derivative 

operator (as well as integrator) for calculation of error 

signal, direct realization of the derivative operator 

without the need to a series low-pass filter, taking into 

account the unwanted effects caused by using the 

sample-and-hold (such as decreasing PM) during the 

controller design, and applying adjustable number of 

memory units for realization of the controller. 
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