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Abstract: This paper discusses the exponential state estimation problem for stochastic complex dy-

namical networks involving multi-delayed and adaptive control. A new approach, very different to the 

linear matrix inequality (LMI) method, has been developed to solve the above problem. Meanwhile, 

some sufficient conditions are derived to ensure the exponential stability in pth moment for the dynamics 

of state estimator error. The feedback gain update law is found by the adaptive control technique. An il-

lustrative example is provided to show the usefulness and effectiveness of the proposed design method. 
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1. INTRODUCTION 

 

Complex networks can be found everywhere in our 

daily life, such as social networks, electrical power, 

World Wide Web, disease transmission, and so on. These 

networks are multi-links, which mean that there are more 

than one link between two nodes and each of these links 

has its own property. At the same time, the dynamic 

behavior of stochastic complex networks contain inherent 

time delays, which may cause instability or oscillation. 

Those may lead to the complex networks with multi-

delayed. Moreover, “stochastic complex networks” 

means that inputs and outputs of complex networks 

evolve and change over time. This kind of complex 

networks is widely studied by many researchers [1,2]. 

On the other hand, in practical complex networks, 

some state variables are unknown and must be estimated. 

The aim of state estimation is to find an estimation of 

system quantities (the state) via a set of measured system 

quantities. Moreover, the adaptive control can help to 

deliver both stability and good response for systems with 

variability in parameters that can either be predicted or 

are uncertain. The goal of adaptive control is to adjust 

the unknown or changing plant parameters. The adaptive 

estimation problem has been extensively investigated 

over the last decade due to their successful applications 

in many areas (see e.g., [3-10]), such as missile defense 

system, the Kalman filter, nonlinear systems, etc. In [3], 

based on the H
∞
 performance analysis of this unified 

model using the LMIs approach, novel state feedback 

controllers are established not only to guarantee 

exponentially stable synchronization between two 

unified models with different initial conditions but also 

to reduce the effect of external disturbance on the 

synchronization error to a minimal H
∞
 norm constraint. 

In [9], by employing a Lyapunov-Krasovskii functional, 

sufficient delay-distribution-dependent conditions are 

established in terms of LMIs that guarantee the existence 

of the state estimator which can be checked readily by 

the Matlab toolbox.  

It should be pointed out that, up to now, the problem 

of adaptive exponential state estimation for stochastic 

complex dynamical networks with multi-delayed has 

received very little research attention, which is the 

motivation of this paper. 

The main novelty of our contribution lies in three folds: 

1) A new adaptive exponential estimation for stochastic 

complex dynamical networks with multi-delayed is 

addressed; 2) Using the adaptive feedback control 

techniques, several suitable parameters update laws are 

found; 3) A M-matrix algorithm of the adaptive estimator 

is given by employing a new nonnegative function. 

 

2. PROBLEM FORMULATION AND 

PRELIMINARIES  

 

The multi-delayed coupled complex networks [1] can 

be called drive system and described as follows: 
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where 
1 2

( ) [ ( ), ( ), , ( )]T n

i i i in
x t x t x t x t= ∈� �  is the state 

vector of the ith node, ( ( )) n

i
f x t ∈�  is a nonlinear 

vector-valued function. diag{1,1, ,1} n n

n
I

×

Γ = = ∈� �  is 

a inner-coupling matrix, ( )N N N N
ijA a

× ×

= ∈�  and Bl = 

(( ) )N N N N
ij lb

× ×

∈�  are the connection weight and the 

delayed connection weight matrices, and 
ij
a  and ( )

ij l
b  

are the weight or coupling strength. If there exists a link 

from node i to j ( ),i j≠  then 0
ij
a ≠  and ( ) 0.

ij l
b ≠  

Otherwise, 0
ij
a =  and ( ) 0.

ij l
b =  ( )

l
tτ  is the time-

varying delay satisfying that 0 ( )
l l
tτ τ< ≤  and ( )

l
tτ ≤�  

ˆ 1,
l

τ <  where ,
l

τ ˆ

l
τ  are constants, 1,2, , .l m= �  

Let 
1 2

( ) [ ( ), ( ), , ( ,)]T T T T n N

N
x t x t x t x t

×

= ∈� � ( ( ))f x t =  

1 2
[ ( ( )), ( ( )), ,, ( ( ))]

T T T T

N
f x t f x t f x t�  the drive system 

(1) can be rewritten as 

1 1
( ) [ ( ( )) ( ) ( ( ))

( ( ))] .

n n

m n m

dx t f x t A I x t B I x t t

B I x t t dt

τ

τ

= + ⊗ + ⊗ −

+ + ⊗ −�

 (2) 

The network measurements are assumed to satisfy 

( ) ( ) ( ( )),y t x t g x t= +  (3) 

where y(t) is the measurement output, ( ( ))g x t  is the 

nonlinear disturbances on the complex dynamical net-

works output. 

Based on the drive system (2), we construct the 

following response system 

1 1

1 1

ˆ ˆ ˆ ˆ( ) [ ( ( )) ( ) ( ( ))

ˆ( ( ))

ˆ ˆ( ( ) ( ( )) ( ))]

ˆ ˆ( , ( ) ( ), ( ( )) ( ( )),

ˆ, ( ( )) ( ( ))) ( ),

n n

m n m

m m

dx t f x t A I x t B I x t t

B I x t t

K x t g x t y t dt

t x t x t x t t x t t

x t t x t t dw t

τ

τ

σ τ τ

τ τ

= + ⊗ + ⊗ −

+ + ⊗ −

+ + −

+ − − − −

− − −

�

�

 (4) 

where ˆ( )x t  is the state vector of the state estimator (4), 

1 2
diag{ , , , }

N
K k k k= �  is the estimator gain matrix to 

be designed. 
1 2

( ) [ ( ), ( ), , ( )]T
n

w t w t w t w t= �  is an n-di-

men-sional Brown moment defined on a complete 

probability space ( , , )F PΩ  with a natural filtration 

0
{ ,}

t t
F

≥
 and :

n n n n

σ
×

+
× × →� � � �  is the noise in-

tensity matrix and can be regarded as a result from the 

occurrence of eternal random fluctuation and other 

probabilistic causes. 

Let ˆ( ) ( ) ( ,)
i i i
e t x t x t= −

1 2
( ) [ ( ), ( ), , ( )]T T T T

N
e t e t e t e t= �  

.

n N×

∈�  As a matter of convenience, we mark (e t −  

( ) ,) ( )
l l
t e t

τ
τ = ˆ( ( )) ( ( )) ,( ( ))e t f x t f x tφ = − ˆ( ( )) ( ( ))e t g x tϕ =  

( ( )).g x t−  From the drive system (2) and the state 

estimator (4), the error system is arranged as 

1

1

1
( ) [ ( ( )) ( ) ( )

( ) ( ( ) ( ( )))]

( , ( ), ( ), , ( )) ( ).

m

m

n n

m n

de t e t A I e t B I e t

B I e t K e t e t dt

t e t e t e t dw t

τ

τ

τ τ

φ

ϕ

σ

= + ⊗ + ⊗

+ + ⊗ + +

+

�

�

 (5) 

Next, we firstly introduce some concepts and lemmas 

which will be used in the proofs of main results. 

Assumption 1: The activation functions ( ( ))f x t  in 

(2) and ( ( ))g x t  in (3) satisfy the Lipschitz condition. 

That is to say, there exist constants 
1

0L >  and 
2

0L >  

such that 
1

| ( ) ( ) | | |f u f v L u v− ≤ −  and | ( ) ( ) |g u g v− ≤  

2
,| |L u v− , ,

n

u v R∀ ∈  respectively. 

Assumption 2: The noise intensity matrix ( , , , )σ ⋅ ⋅ ⋅�  

satisfies the linear growth condition. That is to say, there 

exist positives ,η
1

,,
m

λ λ�  such that 

1 1

1

2 2 2

1

trace( ( , , , , )) ( ( , , , , ))

( | | | | | | ).

m m

m

T

m

t e e e t e e e

e e e

τ τ τ τ

τ τ

σ σ

η λ λ≤ + + +

� �

�

 

Definition 1: The trivial solution e(t, ξ(s)) of the error 

system (5) is said to be exponential stability in pth 

moment if 
1

sup log( | ( , ( )) | ,lim ) 0p

t

e t s

t

ξ
→∞

<E  for any ξ(s) 

0

([ ,0]; ),
p n

L Rτ∈ −
L

 where 2,p ≥ .p Z∈  When p = 2, 

it is said to be exponential stability in mean square. 

Lemma 1 [11]: Consider an n-dimensional stochastic 

delay differential equation (SDDE, for short) 

( ) ( , ( ), ( )) ( , ( ), ( )) ( )dx t f t x t x t dt g t x t x t d t
τ τ

ω= +  (6) 

on [0, )t∈ ∞  with the initial data given by 

0

{ ( ) : 0} ([ ,0]; ).
p n

x Lθ τ θ ξ τ− ≤ ≤ = ∈ − �
L

 

If 2,1 ; ,( )n

V C
+ +

∈ ×� � �  define an operator L  

from n

+
×� �  to �  by 

( , ) ( , ) ( , ) ( , , )

(1/ 2) trace(g ( , , ) ( , ),( , ) , )

t x

T

xx

V t x V t x V t x f t x x

t x t V g tt x x t

τ

τ τ

= +

+
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( ,
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V t x
V t x
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x x
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x
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x x x

⎛ ⎞∂ ∂ ∂
= ⎜ ⎟

∂ ∂ ∂⎝ ⎠
�  

Let 2,1( ; )n

V C
+ +

∈ ×� � �  and τ1, τ2 be bounded 

stopping times such that 
1 2

0 τ τ≤ ≤  a.s. If ( , ( ))V t x t  

and ( , ( ))V t x tL  are bounded on 
1 2

[ , ]t τ τ∈  with prob-

ability 1, then 

2

1
2 2 1 1

( , ( )) ( , ( )) ( , ( )) .V x V x V s x s ds
τ

τ

τ τ τ τ= + ∫E E E L  

Lemma 2 [11]: Let n

x∈�  and .

n

y∈�  Then T
x y +  

1T T T
y x x x y yε ε

−

≤ +  for any 0.ε >  

Lemma 3 [11]: Let ,a b∈�  and ].[0,1β ∈  Then 

(1 )| | | | | | (1 ) | | .a b a b
β β β β−

≤ + −  

Lemma 4 [11]: Let 0T >  and ( )u ⋅  be a Borel 

measurable bounded non-negative function on [0, .]T  If 



Exponential State Estimation for Stochastic Complex Dynamical Networks with Multi-Delayed Base on Adaptive Control 

 

965

0
( ,) ( )

t

u t c v u s ds≤ + ∫  ,0 t T∀ ≤ ≤  

for some constants c and v, then ( ) exp( ,)u t c vt≤ 0∀ ≤  

.t T≤  

 

3. MAIN RESULTS 

 

In this section, the criterion of adaptive exponential 

estimation in pth moment will be obtained for the system 

(2)-(5). 

Theorem 1: Under Assumptions 1-2, the full-order 

estimator (4) can be adaptive exponential estimated with 

the original system (2), if the following condition holds 

1
1

 
1

max ,
ˆ1

n

i
l m

l i

θ μ
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=
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−

⎧ ⎫
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where 
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And the feedback gain K(t) with the update law is chosen 

as 

2 21
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p
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Proof: Choose a non-negative function candidate as 
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where H is a sufficiently large positive constant. 

The compute of ( , )V t eL  along the solution of error 

system (5), and using (8) is 
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Now, according to Assumptions 1 and 2 together with 

Lemma 2, one obtains that 
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Also, Lemma 3 yields 
 

2 2 2 2
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e e e e
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Substituting (11)-(16) into (10), one gets 
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⎢
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1
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For the function V(t, e), making use of the Lemma 1 

and the inequality (7), one can obtain 
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Therefore 

1 0
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1
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⎜ ⎟
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that is to say 

0
| ,| | |

t
p p

x c v x ds≤ + ∫E E  

where 

1 0
1

(0, (0)) max max | ( ) |
ˆ

,
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n
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i
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⎜ ⎟
⎝

=
⎠

+
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1
1
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n
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⎛ ⎞
⎜ ⎟
⎝ ⎠
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It can be seen that c, v are constants, where c > 0 and v < 

0. By Lemma 4, one gets | | exp( ).p
x c vt≤E  

So sulim p
t→∞

1
log( | ( , ) .| ) 0p

e t c

t

ξ ≤ <E  Thereby, the 

error system (5) is exponential stability in pth moment. 

The proof is completed.  � 

Remark 1: In Theorem 1, the condition (7) of the 

adaptive exponential state estimation for stochastic 

complex dynamical networks with multi-delayed 

obtained by using new method is delay-dependent and 

very different to those, such as linear matrix inequality 

method. And the condition can be checked if the drive 

system and the response system are given. 

 

4. ILLUSTRATIVE EXAMPLE 

 

In this section, an illustrative example will be given to 

demonstrate the effectiveness of the proposed methods. 

Example 1: The Rössler system is described by 

1 2 3

2 1 2

3 1 3

( ) ( ) ( )

( ) ( ) ( ) ,

( ) ( ( ) ) ( )
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where a = 0.2, b = 0.2, c = 5.7. 
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In the simulation, let 
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These parameters fully satisfy Assumptions 1 and 2, 
the condition (7). Therefore, the full-order estimator (4) 
can be adaptive exponential estimated with the original 
system (2) by Theorem 1. 

 

 
Fig. 1. The error states of complex network eil(t). 

 

 
Fig. 2. The error states of complex network ei2(t). 

 
Fig. 3. The error states of complex network ei3(t). 

 

 
Fig. 4. The feedback gain. 

 
To illustrate the effectiveness of the developed theory, 

we employ the non-negative function to solve the 
solutions for delayed neural networks and to simulate the 
dynamics of error system and the adaptive feedback gain. 
The simulation figures are shown in Fig. 1-4. Among 
them, Figs. 1-3 plot the error states of complex network 

1 ),(ie t 2 ( )ie t  and 3 ).(ie t  Fig. 4 depicts the adaptive feed-
back gain. All these figures show us that the stochastic 
complex dynamical networks with multi-delayed is an 
estimation. 

 
5. CONCLUSIONS 

 
In this paper, we have dealt with the problem of the 

exponential state estimation for stochastic complex 
dynamical networks with multi-delayed base on adaptive 
control. The traditional monotonicity and smoothness 
assumptions on the activation function have been 
removed. A new approach has been developed to solve 
this problem. The conditions for the adaptive exponential 
state estimation have been derived in terms of some 
algebraical inequalities. These state estimation condi-
tions are much different to those of linear matrix 
inequality.  
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