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Abstract: This study researches the tracking control problem for discrete-time systems with multiple 

input delays affected by sinusoidal disturbances. This study is organized around the expression of sinu-

soidal and disturbances and the delay-free transformation. First, based on the periodic characteristic of 

the sinusoidal disturbance, the sinusoidal disturbances are considered as the output of an exosystem. 

By proposing a discrete variable transformation, the discrete-time system with multiple input delays 

and the quadratic performance index are transformed into equivalent delay-free ones. Then, by con-

structing an augmented system that comprises the states of the exosystems of sinusoidal disturbances, 

the reference input, and the delay-free transformation systems, the original tracking problem is trans-

formed into the optimal tracking problem for a delay-free system with respect to the simplified per-

formance index. The optimal tracking control (OTC) law is obtained from Riccati and Stein equations. 

The existent and uniqueness of the optimal control law is proved. A reduced-order observer is con-

structed to solve the problem of physically realizable for the items of the reference input and sinusoidal 

disturbances. Finally, the feasibility and effectiveness of the proposed approaches are validated by nu-

merical examples. 

 

Keywords: Discrete-time systems, multiple input delays, observer, optimal tracking control, sinusoidal 

disturabnces. 

 

1. INTRODUCTION 

 

Typically rejection of sinusoidal or periodic disturban- 

ces are common problems in various engineering fields, 

such as disk drives [1], offshore jacket platforms [2,3], 

helicopters [4], and ship [5] etc. In generally, the practic- 

al systems are especially sensitive to sinusoidal or perio- 

dic disturbances. What’s worse, the sinusoidal or periodic 

disturbances as a primary source of performance degra-

dation is frequently encountered in engineering systems. 

As a result, during the past several decades, a great deal 

of research result have been reported in the literature that 

deal with various problem with sinusoidal or periodic 

disturbances. For example, the disturbance rejection in 

the case of sinusoidal disturbances with known frequen-

cies has been solved by using internal model control [6], 

adaptive methods [7], and approximation control tech-

niques [8] etc. What’s more, the disturbances rejection 

with unknown frequencies has been studied for stabile 

linear system [9], minimum phase linear systems [10], 

and even nonlinear systems [11,12]. An overview of 

antidisturbance control for engineering systems with 

multiple disturbances can be found in [13]. Generally 

speaking, the problem of rejection of sinusoidal or 

periodic disturbances could be viewed as matching 

disturbances in the tracking error dynamics [14]. 

With the rapid development of computation science, 

conventional control system architecture has been 

evolving to discrete-time control, such as chemical proc-

esses, communication systems [15,16], and networked 

control systems [17,18]; in these cases, multiple delays is 

frequently encountered caused by the communication 

networks, sensors and/or actuators delays, and computa-

tion time of the control algorithm etc. It is well known 

that if multiple delays are ignored in the control design, it 

can severely degrade the performance of the closed-loop 

system, even induce instability [16]. Due to above 

reasons, the controller design problem for system with 

multiple delays has been considered in the literatures that 

deal with various analysis and design problems. For 

example, multiple input delays has been treated using an 

internal representation [19]; the observer based output 
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feedback control of time delay systems are available [20-

22]; also, the H
∞
 control for multiple delay systems is 

considered to solve the optimal linear quadratic regula-

tion (LQR) problem [23,24]. 

Compared to the delays in state, the input delays is 

more frequently encountered in engineering. What’s 

more, it has been a challenging problem to design 

controller for discrete-time systems with multiple input 

delays. On the one hand, based on the state augmentation, 

a non-delay system is introduced. However, if the input 

delays of the investigated system are large, the state 

dimension of the transformed system and the computing 

work would increase exponentially, the “dimension 

disaster” may arise [25,26]. What’s worse, the transfor-

mation system may not maintain its stability, controllable 

and/or observable, and the Riccati equation is very 

difficult to solve precisely. On the other hand, due to the 

two-point boundary value (TPBV) problem induced from 

the time delay systems with quadratic performance index, 

finding an explicit form of optimal control law remains 

difficult [27]. Virtually most of the studies on optimal 

control for discrete-time system with multiple input 

delays consider only approximate optimal control. For 

example, [28] proposed a successive approximation 

approach (SAA) to design a suboptimal control for 

discrete linear systems with time delay, in which an 

iterative procedure is introduced to solve the TPBV 

problem with time-delay items; after that, [29] designed 

an approximate tracking controller for discrete-time 

systems with multiple state and input delays based on 

SAA and an augmented system; [30] deals with the 

control of SISO linear time-delayed systems, when there 

are different delays in the output/input transfer function. 

Different from the previous works on optimal control 

for multiply delay systems by using SAA and the 

augmented method, such as those in [28] and [29], the 

motivation for this work is to design an optimal tracking 

control law for discrete-time systems with multiply input 

delays under sinusoidal disturbances based on a discrete 

variable transformation. To solve the difficulty of control 

problem caused by sinusoidal disturbance and multiple 

input delays, an exosystem is introduced to estimate the 

sinusoidal disturbance, a non-delayed system is trans-

formed based on the discrete variable transformation, an 

augmented model is constructed, and the quadratic 

performance index of the original system is simplified. In 

terms of design of controller, by solving the optimal 

control problem for the augmented transformation sys-

tem and the simplified performance index, an OTC law 

is obtained from the maximum principle by solving 

Riccati and Stein equations. In terms of control effect, 

the objective is to trade off between tracking ability and 

rejection effect opposed to the multiple input delays and 

sinusoidal disturbance. In term of the problem of physi-

cally realizable, a reduced-order observer is constructed 

to solve the problem of physically realizable for the 

items of the reference input and sinusoidal disturbances. 

The rest of paper is organized as follows. Section 2 

formulates the problem to be discussed. In Section 3, an 

exosystem of the sinusoidal disturbances is introduced, 

and the transformations of the discrete-time system with 

multiply input delays and the performance index are 

given. The main results of this paper are presented in 

Section 4, in which the OTC law is obtained based on the 

maximum principle. A reduced-order observer is 

constructed in Section 5 to solve the physically 

unrealizable problem for feedforward items. Numerical 

examples are given in Section 6 to demonstrate the 

effectiveness and implement of the OTC law. Finally, we 

conclude our findings in Section 7. 

 

2. PROBLEM FORMULATION 

 

Consider the discrete-time system with multiple input 

delays under sinusoidal disturbances: 

1

0

( 1) ( ) ( ) ( ),

( ) ( ), 0, 1, 2,

(0) ,

( ) 0, 0,

N

i ii
x k Ax k h B u k h Dv k

y k Cx k k

x x

u k k

=

+ = − + − +

= =

=

= <

∑
�  (1) 

where n
x R∈  denotes the state vector, m

u R∈  is the 

control input, r

v R∈  denotes the sinusoidal disturbance 

signal, 0( 1, 2, , )
i
h i N> = �  are positive time-delays, 

respectively; 
q

y R∈  is the output vector; N is the ac-

count of input delays, , ( 1, 2, , ),
i

A B i N= � C  and D 

are constant matrices of appropriate dimensions. 

The sinusoidal disturbance vector v(k) is given by 

1 1 1 1

2 2 2 2

( ) sin( )

( ) sin( )
( ) ,

( ) sin( )
r r r r

v k k

v k k

v k

v k k

α ω ϕ

α ω ϕ

α ω ϕ

+⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

+⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

� �
 (2) 

where the amplitude αi and the phase i
ϕ  are unknown, 

vi are measurable; the frequency i
ω  is known constant 

and satisfies 

1 2
.

r
π ω ω ω π− < ≤ ≤ ≤ ≤�  (3) 

The reference input (desired output) is given by 

( 1) ( ),

( ),

z k Fz k

y Hz k

+ =

=

 (4) 

where ,

l
z R∈  whose initial condition z(0) is unknown; 

;
q

y R∈  F and H are constant matrices of appropriate 

dimensions. It is assumed that 

Assumption 1: System (4) is stable, but unnecessary 

asymptotically stabile. 

Assumption 2: The pair 
1

( , )A B  is completely con-

trollable, and the pair ( , )A C  is completely observable. 

Then, the aim is to find a control law such that the 

output y tracks the given reference signal .y  The 

tracking error e(k) is given by 

( ) ( ) ( ).e k y k y k= −  (5) 

Since System (1) is affected by the external sinusoidal 

disturbances, it is noteworthy that the control vector u(k) 
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will not tend to zero in the tracking control process. The 

traditional infinite-time horizon quadratic cost functional 

associated with (1) is not convergent. In this case, we 

choose the infinite-time average performance index as 

follows: 

0

1
lim ( ) ( ) ( ) ( ) .

T
T T

T
k

J e k Qe k u k Ru k
T→∞

=

⎡ ⎤= +⎣ ⎦∑  (6) 

Then, the optimal tracking control problem for a 

discrete-time system with multiple input delays under 

sinusoidal disturbances is formulated to find a control 

u*(k) for the discrete-time systems described by (1), (2) 

and (4) with respected to the performance index (6) that 

makes the output y tracking the reference input vector 

y  while the performance index J obtains the minimum 

value. 

 

3. MODEL TRANSFORMATION 

 

3.1. Modelling of sinusoidal disturbances 

In order to deal with the sinusoidal disturbances, a 

discrete vector ( )v k
ω

 is defined as: 

1

1 1

( ) .
2 2

T

r
v k v k v k
ω

π π

ω ω
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= − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

�  (7) 

Based on the periodic characteristic of the sinusoidal 

disturbance (2), the relationship between v(k) and ( )v k
ω

 

can be described as: 

1 2

2 1

( 1) ( ) ( ),

( 1) ( ) ( ),
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where 
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r

r

diag

diag

ψ ω ω

ψ ω ω

=⎧⎪
⎨

=⎪⎩

�

�

 

By introducing the vector ( ) [ ( ) ( )] ,T
w k v k v k

ω
=  an 

exosystem is introduced to describe the sinusoidal 

disturbance as follows: 

( ) 1 ( ),

( ) ( ),

w k Gw k

v k Ew k

+ =⎧
⎨

=⎩
 (9) 

where 

1 2

2 1

,G
ϕ ϕ

ϕ ϕ

−⎡ ⎤
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⎣ ⎦

  .
0

r
I

E
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (10) 

Then, the sinusoidal disturbance is viewed as the output 

of the exosystem (9). Note that the eigenvalues ( )
i
Gλ  

of G satisfy 

( ) 1, 1, 2, , 2 .
i
G i rλ = = �  (11) 

 

3.2. Delay-free transformation for model and perfor-

mance index 

As the discrete-time system (1) contains multiple input 

delays, there is no realizable optimal control law for the 

traditional quadratics performance index. To deal with 

the multiple input delays, a discrete vector transfor-

mation is proposed as follows: 

1 1

0
( ) ( ) ( ).i

i

N k k h j
ii j k h

x k x k A B u j

−
− − −

= = −

= +∑ ∑�  (12) 

Then, System (1) can be transformed into 

( )1 1

0

( 1) ( ) ( ) ( ),
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−
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⎪
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�

� �
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 (13) 

where ( )x k�  is the state vector of the non-delayed 

system (11) and 
1

.

i
N h

ii
B A B

−

=

=∑�  It should be noted 

that the pair ( , )A B�  is completely controllable if and 

only if 
1

( , )A B  is completely controllable [31]. 

Since the System (1) is transformed into (13) by using 

(12), quadratic performance index (6) should be 

reconstructed to an equivalent form corresponding to the 

transformation system (13). By using (4) and (5), the 

quadratic performance index (6) is transformed into an 

equivalent form as follows: 

1

0

1

1 1

( ) ( ) 2 ( )

2 ( ) ( ) 2 ( )
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T T T T
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where 
1 1

1 0
( ).i

i

N k k h j
ii j k h

U A B u j
−
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= = −

=∑ ∑  According to 

System (1), (4), (13), and (14), one gets 

1 2
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where 
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Based on (14) and (15), performance index (6) can be 

simplified into the following form: 
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3.3. Equivalent optimal regulation problem 

Defining the vector ( ) [ ( ) ( ) ( )] .Tk x k z k w kϕ = �  

Combining (12) with System (4) and (9), one has the 

following state space expression in an augmented form: 
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Based on (17), the performance index (16) can be 

rewritten as: 

0
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Note that the performance index equation (18) 

includes a cross term involving ( )kϕ  and ( ).u k  To 

obtain the optimal control vector ( ),u k  let us define 
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Then, equation (18) becomes 
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By substituting (19) into (17), one gets 

( )1

1 1 1
( 1) ( ) ( ).T
k A B R M k B u kϕ ϕ

−

+ = − +
�  (21) 

Then, the original optimal tracking control of the 

system given by (1), (2), and (4) with respected to the 

performance index (6) is equivalent to the quadratic 

optimal control of System (21) with the performance 

index given by (20). 

4. DESIGN OF OTC LAW BASED ON THE 

REDUCED-ORDER OBSERVER 

 

4.1. The OTC law 

In this subsection, the designed OTC law will be given 

more detail below. 

Theorem 1: Consider the optimal tracking control 

problem for discrete-time system given by (1), (4) under 

the sinusoidal disturbance (2) with respect to quadratic 

performance index (6), the OTC law uniquely exists and 

can be formulated as 
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where 
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The minimum value of performance index is given by 
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Proof: Applying the maximum principle to System 

(17) with the quadratic index (18), the optimal control 

law is obtained 

( )1 1

1 1 1
( ) ( ),T T

u k S B P A B R M kϕ
− −

= − −
�  (29) 

where P is the solution of the following Riccati equation 
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where 
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[ ] .
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Based on the optimal theory, the minimization 

perfromance index can be obtained  

min

1
(0) (0).

2

T
J Pϕ ϕ=  (31) 

By substituting the related matrix into (29), (30), and 

(31), the optimal tracking control law (22), Riccati 

matrix (23), Stein matrix (24), Lyapunov matrix (26), 

(27), (28), and the minimum value of the performance 

index (25) are obtained. 

In the followings, we will prove that the OTC (22) is 

existent and unique. Obviously, the existence and 

uniqueness of (22) is equivalent to that of P11, P12, and 

P13. Directly following from Assumption 2, the matrix 

P11 is existent and unique. Based on (25) and (31), one 

gets 

( ) { 1

3 11 1 3
( 1) ( ) T
x k I S P S x k DE BR C

−

+ = − + +
� �

� �  

( ) }
( )

1

3 13 11 3

1 1

2 3 12 11 2

( )

( ),

T T

T T

S P G P DE B R C w k

BR C S P F P BR C z k

−

− −

⎡ ⎤− + +
⎣ ⎦

⎡ ⎤− + −
⎣ ⎦

� �

� � � �

 

 (32) 

where 1 1

3
( ) .T T

S B R B R B B
− −

= +
� � � � � �  According to optimal 

regulator theory, one gets 

( )( ){ }1

3 11 1
( ) 1,

1,2, , ; 1, 2, , 2 .

T T
i jI S P A B R C G

i n j r

λ λ
−

− + <

= =

� �

� �

 (33) 

According to Assumption. 2, we obtain 

( )( ){ }1

3 11 1
( ) 1,

1,2, , ; 1, 2, , .

T T
i jI S P A B R C F

i n j l

λ λ
−

− + <

= =

� �

� �

 (34) 

Then, P11 is the unique positive definite solution of the 

Riccati Matrix equation (23); P12 and P13 are the unique 

solution of the Stein matrix equations (24), respectively. 

When P11, P12, and P13 are derived, u
*(k) can be 

determined from (22), respectively. Therefore, the OTC 

law is existent and unique. From (12) and (22), one gets 

( ){ 1

11 1
1

0

( ) ( ) max
i

N
T T

i
s h

i

x k x k h BS B P A C
−

≤ ≤
=

≤ + −∑ � �

�  

 

}

{

( ) } {

( ) }

1

1

1
0

11

12 2
1

0

1

11 13 3

( )

max ( )

max

( ) .

i

i

i

i

i

s h

N
s h

i
s h

i

N
s hT T

i
s h

i

T T T

A x k s

h A z k s

BS B P F C h A

w k s BS B P DE B P G C

− −

− −

≤ ≤
=

− −−

≤ ≤
=

−

× −

+ −

× + +

× − + −

∑

∑

�

� �

� � �

 

 (35) 

Because ( ) ,x k� ( ) ,z k  and ( )w k  are bounded, 

( )x k  is bounded. Then, the OTC law (22) is a 

stabilizing control law for time-delay System (1). 

According to the Assumption (2), P22, P23, and P33 are 

the unique solutions of Lyapunov Matrix Equations (26)-

(28), respectively. Therefore, the minimum value of the 

performance index is existent. This is the end of proof. � 

Remark 1: The OTC law in (26) contains the state 

variable z(k) and w(k) for exosystem (4) and (10), which 

is physically unrealizable. In the practical engineering, 

we can introduce the following reference input observer 

to make it physically realizable. 

 

4.2. Design of the reduced-order observer 

In this subsection, a reduce-order observer is proposed 

to estimate the states of the reference input and the 

sinusoidal disturbances in order to solve physically 

unrealizable problem of the OTC law. 

Construct a ( 2 ) ( 2 )n l r n l r+ + × + +  dimension non-

singular matrix as 
( 2 ) ( 2 )

1( , ) .n l r n l r

T C T R
+ + × + +

= ∈  Note 

that 

11 12

1 1 1 1 2

21 22

, , ,

H H
T H H H H

H H

⎡ ⎤ ⎡ ⎤
⎡ ⎤= = =⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦ ⎣ ⎦
 (36) 

where H11, H12, H21, and P22 are the ,n q× (n n l× +  

2 ),r q+ − ( 2 ) ,l r q+ ×  and ( 2 )q n l r q× + + −  dimension 

constant matrices, respectively. Let  

( ) ( )
( )

( )
1 1

1

2 2

11 121

1

21 22

,

.

k S
k T k S TB

k S

M M
M TAT

M M

ϕ
ϕ ϕ

ϕ

−

⎧ ⎡ ⎤ ⎡ ⎤
= = = =⎪ ⎢ ⎥ ⎢ ⎥

⎪ ⎣ ⎦⎣ ⎦
⎨

⎡ ⎤⎪
= = ⎢ ⎥⎪

⎣ ⎦⎩

 (37) 

Then, the augmented System (17) is reformed as  

1 11 1 12 2 1

2 21 1 22 2 2

1

( 1) ( ) ( ),

( 1) ( ) ( ),

( ) ( ).

k M k M S u k

k M k M S u k

y k k

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ

+ = + +⎧
⎪

+ = + +⎨
⎪ =⎩

 (38) 

Construct the state observer as follows 

22 12 2 1

22 12 21 11

2

( 1) ( ) ( ) ( ) ( )

( ) ( ),

ˆ ( ) ( ) ( ),

k M LM k S LS u k

M L LM L M LM y k

k k Ly k

η η

ϕ η

+ = − + −⎧
⎪

+ − + −⎨
⎪ = +⎩

 (39) 

where 
2
ˆ ( )kϕ  is the estimate of 

2
( ),kϕ  L is the observer 

gain. Because the pair 
1

( )C A  is completely observer-
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able, it is easy to prove the pair 
22 12

( )M M  is com-

pletely observerable. By choosing the observer gain L  

and using the pole placement, the eigenvalues of the 

22 12
( )M LM−  can be placed to the anticipant place. 

According to (39) and (40), we obtain 

1

1 2 2

( ) ( )

( ) ( ).

k T k

H y k H k

ϕ ϕ

ϕ

−

=

= +

 (40) 

According to (38), (39), and (40), the state x�  and the 

state [ ( ) ( )]
T

z k w k  can be estimated at the same time. 

Construct the reduced-order state observer as follows: 

( )

( )

12 11 12

22 21 22

ˆ( ) ( ) ( )

ˆ( )
( ) ( ).

ˆ ( )

x k H k H H L y k

z k

H k H H L y k

w k

η

η

⎧ = + +
⎪
⎨⎡ ⎤

= + +⎪⎢ ⎥
⎣ ⎦⎩

�

 (41) 

In order to obtain the physically realizable OTC law, 

submitting the estimate state x̂�  and ˆ[ ( )z k ˆ ( )]Tw k  to 

the state x�  and [ ( ) ( )] ,
T

z k w k  one gets 

{

}

1

4 12 22

21 22 4 11 12

( ) [ ] ( )

[ ( ) ( )] ( ) ,

u k S S H H k

H H L S H H L y k

ψ η

ψ

−

= − +

+ + + +

 (42) 

where 

4 11 1

12 2 11 13 3
.

T T

T T T T T

S B P A C

B P F C B P DE B P G Cψ

⎧ = −⎪
⎨

⎡ ⎤= + + −⎪ ⎣ ⎦⎩

�

� � �

 

Remark 1: Because the control law (42) is the 

dynamic control law with a reduced-order observer, it is 

not the optimal control law. In order to obtain the control 

effect of the control law approximating to the optimal 

control law (22), using the pole placement to the true part 

is the smallest negative, the outputs x̂�  and ˆ[ ( )z k  

ˆ ( )]Tw k  tend to the state x̂�  and [ ( )z k ( )] .Tw k  

 

5. SIMULATION 

 

Numerous simulations are undertaken in order to 

demonstrate the feasibility and effectiveness of the 

proposed OTC in this section. In order to make a further 

research on testing the algorithm’s validity, the discrete-

time systems with different values and terms for multiple 

input delays are considered. 

 

5.1. The industrial electric heater with single input delay 

In this simulation, the optimal tracking problem for an 

industrial electric heater with single input delay under 

sinusoidal disturbances is considered. Based on [19], the 

heater is divided into five heating zones, each of which is 

a control input. Five thermocouples are located in the 

heater to measure its temperature profile. The control 

problem is to maintain the temperature profile of the 

process to meet the specific requirements for heat 

treatment. The system is described by (1) with the 

specific matrices: 

0.974 0.151 0.197 0.059 0.071

0.015 0.889 0.270 0.119 0.220

,0.064 0.121 1.001 0.035 0.028

0.051 0.093 0.288 0.826 0.026

0.017 0.019 0.293 0.035 0.871

0.537 0.112 0.100 0.047 0.259

0.517 0.735 0.575 0.407 0

A

B

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= − −
⎢ ⎥
−⎢ ⎥
⎢ ⎥⎣ ⎦

−

− −

=

.125

,0.295 0.315 1.164 0.299 0.239

0.202 0.197 0.417 0.665 0.114

0.118 0.163 0.204 0.233 0.365

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
−⎢ ⎥
⎢ ⎥−⎣ ⎦

 (43) 

[1 1 1 1 1],

[0.1 0.2 0.15 0.3 0.2],

(0) [ 4 4 0.5 6 3]T

C diag

D diag

x

=

=

= −

 

and the external sinusoidal disturbances is v(k) given by 

( )

( )

( )

( )

( )

( )

0.5sin /18

0.2sin /10

0.3sin / 2 .

0.1sin /12

0.5sin /10

k

k

v k k

k

k

π π

π

π

π

π π

⎡ ⎤+⎡ ⎤⎣ ⎦
⎢ ⎥

⎡ ⎤⎢ ⎥⎣ ⎦
⎢ ⎥

= ⎡ ⎤⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤⎣ ⎦⎢ ⎥
⎢ ⎥+⎡ ⎤⎣ ⎦⎣ ⎦

 (44) 

The reference input and quadratic performances index 

are chosen as 

0.87 0.01 0.01 0.01 0.01

0.01 0.85 0.01 0.01 0.05

,0.01 0.01 0.88 0.01 0.01

0.01 0.01 0.01 0.997 0.05

0.1 0.02 0.01 0.05 0.95

[1 1 1 1 1],

[1.5 1 0.2 0.3 0.8],

[0.5 0.2 1 1 1].

F

H diag

Q diag

R diag

⎧ − −⎡ ⎤
⎪ ⎢ ⎥− − −⎪ ⎢ ⎥
⎪ ⎢ ⎥= − −
⎪ ⎢ ⎥

− −⎪ ⎢ ⎥
⎨ ⎢ ⎥− −⎣ ⎦⎪
⎪ =
⎪

=⎪
⎪ =⎩

 (45) 

Then, the simulation results are shown in Figs. 1-5 

with single input delay h1 = 2 by using proposed control 

law. In order to demonstrate the effectiveness of the 

presented OTC law, the comparison results between the 

temperature changes y in the five heating zones and the 

reference input y  are shown in Figs. 1-3, respectively, 

where the solid lines give the reference input .y  Also, 

The curves of OTC laws and tracking errors in the 

different heating zones are presented in Fig. 4-5, 

respectively. 

It can be seen from Figs. 1-3 that the tracking errors 

between system output y and reference input y  are 

larger in the earlier stage. This is caused by the input 

delays and initial value of the control system. In addition, 

caused by the different weight in Q, the tracking results 

of y1, y2, and y5 are better than y3 and y4. Anyhow, as 

time goes by, the system output y catches up with the 

reference input ,y  and the tracking error e(k) converges 
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to a small value, even at zero. What’s more, the 

disturbance rejection with respect to the sinusoidal 

disturbances is achieved for all choices of such 

parameters expect frequencies. Then, the tracking ability 

and disturbance rejection of the designed tracking control 

law are certified.  

 

5.2. Mathematical example with two input delays 

In order to verify the elasticity of the proposed control 

law, the discrete-time system with input delays h1 and h2 

is considered, where 

 

Fig. 3. Curves of the comparison results between outputs  

and reference input. 

 

 

Fig. 4. Curves of OTC law. 

 

 

Fig. 5. Curves of tracking error with signal input delay. 

 

1 2

0.9 0.1 0.1 0
, , ,

0.2 1 0.15 0.1

0.1 0 2
, 0.1 0 , (0) ,

0 0.1 0

( ) [0.5sin[( /10) ] sin(( /18) )].

A B B

D C x

v k k kπ π π

⎧ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎪ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪

⎪
⎨ ⎡ ⎤ ⎡ ⎤

⎡ ⎤= = =⎪ ⎢ ⎥ ⎢ ⎥⎣ ⎦
⎣ ⎦ ⎣ ⎦⎪

⎪ = +⎩

 (46) 

The desired output described as (4) and the quadratic 

performance index described by (6) are chosen as 

0.8 0.3 1 3
, , (0) ,

0.4 0.95 0 0

1, 1.

T T

F H x

Q R

⎧ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎨ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎪

= =⎩

 (47) 

Fig. 1. Curves of the comparison results between outputs

and reference input. 

 

Fig. 2. Curves of the comparison results between outputs

and reference input. 
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Fig. 6. Curves of comparison results of reference input 

and system output. 

 

 

Fig. 7. Curves of tracking error with different input 

delays. 

 

 

Fig. 8. Curves of OTC laws with different input delays. 

 

To illustrate the performance of tracking reference 

input and disturbance rejection, the input delays are set 

as 
1

1,h =
2

4,h =
1

2,h =
2

6,h =  and 
1

4,h =
2

9.h =  

Then, the comparison results among the open-loop 

system and the closed-loop system are presented. The 

simulation curves of the comparison results of reference 

input y  and system output y, tracking error e(k), and 

the presented OTC law, are presented in Figs. 6-8, 

respectively. The performance index values at different 

situation are listed in Table 1. 

Table 1. Performance indexes with different input delays. 

1 2
,h h  1, 4 2, 6 4, 9 Open-Loop 

min
J  2.355 3.543 7.072 20.186 

 

As similar with the simulations in Case 1, the tracking 

error is the largest in the early state. Meanwhile, with the 

increase of values of input delays h1 and h2, the 

performance indexes are increasing in Table 1. However, 

this does not mean that the presented tracking control 

law is not able to keep the output performance in spite of 

the delay. This situation is mainly caused by the input 

delays and initial conditions. Actually, the performance 

indexes have been made good improvement compared by 

the open-loop situation. From Fig. 6-8, it should be noted 

that, in spite of the more items of input delays in Case 2, 

the tracking ability and disturbance rejection are still 

provided effectively by using the proposed control law. 

It can be seen from Case 1 and Case 2, the proposed 

OTC law is valid for the optimal tracking control prob-

lem for the discrete-time system with multiple input delays 

under sinusoidal disturbances. It should be noted that, 

with the increased items and values of input time delays, 

the proposed control law still provides effective abilities 

of tracking the reference input and disturbance rejection. 

Therefore, the proposed control law in this papers is 

effective and easy to implement, track the reference input, 

and reject the external sinusoidal disturbances. 

 

6. CONCLUSIONS 

 

This paper has been concerned with the development 

of optimal vibration control for tracking control law has 

been designed for discrete-time system with multiple 

input delays under sinusoidal disturbances. It deployed 

an effective control strategy to suppress vibration caused 

by the sinusoidal disturbances and enhance the tracking 

abilities for the reference signal. 

This work has presented an interesting approach that 

transforms a discrete-time system with multiple input 

delays into a non-delayed system in form, and the qua-

dratic performance index has been transformed into a 

relevant format without the explicit appearance of time 

delay. Another significant improvement is on the OTC 

law. OTC law can eliminate the negative effects of the 

sinusoidal disturbances and multiple input delays, and 

maintain the tracking ability in an optimal fashion. 
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