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Abstract: This paper is concerned with the issue of consensus for leader-following multi-agent sys-

tems, wherein the agents acting as followers update states based on the information received from the 

time-varying neighbors and the virtual leader. Moreover, the neighbors of an agent are divided into 

three types according to their relative position, which may also be changed with time. Consensus pro-

tocol is derived mainly by using intermittent control, and based on the Lyapunov stability theory, suffi-

cient conditions for consensus are presented and proved theoretically. Finally, some numerical exam-

ples are given to demonstrate the effectiveness of the results. 

 

Keywords: Consensus, intermittent control, Lyapunov function, multi-agent systems, time-varying 

networks. 

 

1. INTRODUCTION 

 

Over the past decade, great interest has been shown to 

the study of the consensus problem for multi-agent 

systems, due to its broad applications in control of 

unmanned aerial vehicles, formation control of mobile 

robots, and so on [1-3]. Generally speaking, leaderless 

consensus means that each agent updates its state based 

on local information of its neighbors such that all agents 

eventually reach an agreement on a common value, while 

leader-following consensus means that there exists a 

virtual leader which specifies an objective for all agents 

to follow [4,5]. In the existing works, consensus issue 

has been investigated from many perspectives and a 

great deal of results have been proposed. For instances, 

consensus of heterogeneous multi-agent systems was 

investigated in [6,7], multi-agent systems with noises or 

time-delays have also been considered in consensus 

problem, and so on [8-13].  

It is well known that multiple agents in a system can 

be taken as nodes in a network, and communication 

channels among the agents can be viewed as edges. 

Consequently, network topology plays an important role 

in determining consensus of the agents. So far networks 

with fixed topologies [14,15], switching or time-varying 

topologies [16-18] have been researched, wherein 

switching or time-varying topologies may be more 

realistic since there might exist link failures or creations 

in a network of mobile agents.  

Recently, [19-21] investigated intermittent consensus 

algorithms for multi-agent systems in networks with 

fixed or switching topologies. Intermittent control [22, 

23] is an effective strategy in comparison to continuous 

control for consideration of the cost. On the other hand, 

communication among agents may be interrupted due to 

the external disturbances or limitations of technology, 

therefore, information transmission among nodes may 

occur intermittently rather than continuously in many 

real-world networks.  

Motivated by the above discussion, in this paper we 

further consider consensus of multiple agents in time-

varying networks via intermittent control. The network 

consists of continuous dynamic agents acting as the 

followers and the virtual leader, and the follower updates 

the state based on the information received from its 

neighbors and the leader. However, differs from most of 

the current literature [19-21], we introduce the sign 

function in the consensus protocol. Since the correspond-

ing relationship between nodes can be competitive 

besides cooperative [24-26], we divide the neighbors of a 

follower into different types by the sign function. 

Accordingly, for an agent, the neighbors in front of it can 

be regarded as cooperative neighbors, and the ones 

behind it are competitive. Moreover, if a neighbor’s state 

is the same as this agent’s, then this neighbor can be 

viewed as an ineffective neighbor. Obviously, coopera-
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tive and competitive dynamic systems are more realistic 

in practice, while in most of the existing works [19-21], 

only cooperative relationship has been considered. Based 

on the Lyapunov stability theory, this paper will 

demonstrate some sufficient conditions for consensus of 

the proposed multi-agent system. The main contributions 

of this work can be summarized as: The first one is that 

the condition of bounded time intervals for intermittent 

consensus protocol can be easily satisfied even though 

the topologies of the network are time-varying; The 

second one is that the neighbors of an agent can be 

cooperative or competitive, which may be more consist-

ent with the real-world networks.  

The rest of the paper is organized as follows. In 

Section 2, some concepts in graph theory are described, 

and the problem to be investigated is formulated. Theor-

etical results for consensus are derived in Section 3. In 

Section 4, some numerical examples are shown to 

illustrate the analysis. Finally, concluding remarks are 

presented and discussed.  

The following notations are given which will be used 

throughout this paper: Let �  denote the set of real 

numbers, m

�  the m-dimensional Euclidean space and 
m n×

�  the set of m n×  real matrices. 1
m
 denotes the m-

dimensional vector of ones. 0
m
 denotes the m-

dimensional vector of zeros. 
m n×

0  denotes the m n×  

zero matrix. I
m
 denotes the m m×  identity matrix. 

1 2
{ , , , }

m
a a adiag �  denotes the m m×  diagonal matrix 

with elements 
1 2
, , ,

m
a a a ∈� �  on the diagonal. T

X  

indicates the transpose of matrix or vector X. 1−
X  

indicates the inverse of matrix X. ⋅� �  indicates the 

Euclidean norm. | ⋅ |  stands for the absolute value. ⎣ ⎦x  

stands for the largest integer which is less than or equal 

to .x∈�   

 

2. PROBLEM FORMULATION 

 

2.1. Graph theory 

We shall present the graph theory [27] in this sub-

section, which is fundamental to the later development. 

For a network of N nodes, its topology can be modeled 

as a graph ( , , ),=G W E A  where 
1 2

{ , , ,w w=W �  

}
N

w  is the set of nodes, and ⊂ ×E W W  is the set of 

edges. The set of neighbors of a node wi is denoted by 

{ : ( , ) }.
i j j i

w w w= ∈ ∈W EN  A path on G from node 

wil to node wik is a sequence of ordered edges in the form 

1 2 2 3 ( 1)
( , ), ( , ), , ( , ).

i i i i i k ik
w w w w w w

−

�  If there exists a 

special vertex that has a directed path to all the other 

nodes, then G is said to have a spanning tree. Moreover, 

the graph is said to be strongly connected if there exists a 

path between every pair of distinct nodes. ( )
ij
a= ∈A  

N N×
�  denotes the weighted adjacent matrix of G, when 

,i j≠  if ( , ) ,j iw w ∈E  then 0;
ij
a >  otherwise 

ij
a = 0. 

The diagonal elements aii equal zero. Additionally, in an 

undirected graph G, ,ji ija a=  then A is a symmetric 

matrix. 

2.2. Consensus protocol 

Consider a leader-following multi-agent system with 

N agents acting as followers, which are moving with the 

first-order dynamics 

( ) ( ), 1, 2, , ,
i i
x t u t i N= =� �  (1) 

where ( )
i
x t ∈�  is the state or position of the agent i, 

( )
i
u t ∈�  is the so called consensus protocol, which 

represents for the velocity of the agent i, and 0.t ≥  

It is supposed that the state of the virtual leader in the 

multi-agent system is denoted as 
0
( ) ,x t ∈�  which 

satisfies the following second-order system: 

0 0

0 0

( ) ( ),

( ) ,

x t v t

v t a

=⎧
⎨

=⎩

�

�
 (2) 

where 
0
( )v t ∈�  denotes the velocity of the leader at 

time t, and 
0
a ∈�  denotes the acceleration of the 

leader and is assumed to be known. The leader can also 

be viewed as a target for consensus tracking. 

The intermittent method will be utilized in the consen-

sus protocol ( )
i
u t  here, which is described as: 

( ) ( ) ( ),
i i i
u t pK t v t= +  (3) 

0
( ) ( ) ,
i i
v t qpK t a= +�  (4) 

where 1,2, , .i N= �  0p >  and 0 1q< <  denote the 

control parameters. ( )
i
v t  is the estimate of 

0
( )v t  by 

the agent i due to that 
0
( )v t  cannot be measured easily. 

( )
i

K t  is an intermittent control. 

Suppose that the time [0, )t∈ +∞  is divided into 

1
[ , ),
k k
t t

+
 where 0,1, ,k = �

0
0.t =  The sequence of 

1
[ , )
k k
t t

+
 is uniformly bounded and non-overlapping. 

We assume that when 
2 2 1

[ , ),
k k

t t t
+

∈  the control ( )
i

K t  

will “work”; when 
2 1 2 2

[ , ),
k k

t t t
+ +

∈  the control ( )
i

K t  

will “rest”. On the other hand, in general the state of each 

follower in the multi-agent system is considered to be 

updated according to the information from the neighbors 

and the leader, then the intermittent control ( )
i

K t  in 

this paper will be supposed as follows in order to achieve 

consensus: 

When 
2 2 1

[ , ),
k k

t t t
+

∈  

1

0

( ) ( ) [ ( ) ( )][ ( ) ( )]

( )[ ( ) ( )],

N

i ij j i j i

j

i i

K t a t sign x t x t x t x t

b t x t x t

=

= − −

+ −

∑
 (5) 

when 
2 1 2 2

[ , ),
k k

t t t
+ +

∈  

( ) 0,
i

K t =  (6) 

where 0,1, ,k = �  and 1,2, , .i N= �  ( )
ij
a t  is de-

scribed as ( ) ( ) 1,
ij ji
a t a t= =  if ( );

i
j t∈N ( ) ( )

ij ji
a t a t=  

0,=  if ( );
i

j t∈/ N  and ( ) 0.
ii
a t =  ( )

i
tN  stands for 

the neighbors of agent i at time t. It can be seen that the 

network consisting of all agents can be time-varying 

according to ( ).
i
tN  ( ) 0

i
b t ≥  denotes the weight of the 

edge from the leader to the agent i, which will be 

discussed later. ( )sign ⋅  is the sign function defined by 
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1, 0,

( ) 1, 0,

0, 0.

z

sign z z

z

>⎧
⎪

= − <⎨
⎪ =⎩

 

Remark 1: Notice that the sign function is introduced 

in the intermittent consensus algorithm (5), then for the 

i th follower, the weight of the edge from its neighboring 

agent j can be viewed as ( ) ( ) [ ( ) ( )],
ij ij j i
a t a t sign x t x t= −�  

which can be negative. As discussed in [24,25], two 

nodes in a network are cooperative (or competitive) if the 

coupling strength between them is positive (or negative). 

Therefore, the role of the agent j playing on the agent i at 

time t can be described by ( ),
ij
a t�  i.e., the neighboring 

agent j is cooperative (or competitive) with the agent i if 

( ) 1
ij
a t =�  (or ( ) 1).

ij
a t = −�  In addition, if the state of 

the agent j equals that of the agent i, then ( ) 0,
ij
a t =�  

which means that the agent j is an ineffective neighbor. 
 

Remark 2: Since the neighbors of the i th follower 

can change according to ( ),
i
tN  the topologies of the 

network consisting of all the followers will be time-

varying. Meanwhile, the network is a cooperative and 

competitive system. Therefore, the multi-agent system 

considered here may be consistent with the real-world 

network. However, it should be noticed that the multi-

agent system discussed in this paper is a little rigorous, 

since the neighbors are classified based on the relative 

position and all the agents are supposed to move in one-

dimensional space. Our future work will try to extend the 

system to the more general case. 
 

In the following, we will derive sufficient conditions 

for consensus of the above multi-agent system, which 

can guarantee that each follower’s state will finally 

converge to the leader’s as time going on, and the 

estimations of v0(t) by the followers will converge to the 

leader’s velocity, i.e., 

0

0

lim ( ) ( ),

lim ( ) ( )

i
t

i
t

x t x t

v t v t

→∞

→∞

=⎧
⎪
⎨

=⎪⎩

 

for 1,2, , .i N= �  

 

3. CONSENSUS ANALYSIS 

 

Let 
1 2

( ) ( ( ), ( ), , ( )) ,T N

N
t x t x t x t= ∈x � �

1
( ) ( ( ),t v t=v  

2
( ), , ( )) ,T N

N
v t v t ∈� �

0
( ) ( ) 1 ( ),

N
t t x t= −x x ( ) ( )t t=v v  

0
1 ( ),
N
v t−

( )

( )

2( ) .t

t

N
t

⎡ ⎤
⎢ ⎥
⎣ ⎦

= ∈
x

v

e �  Based on the problem 

formulation of the above section, we can get the 

following: 

When 
2 2 1

[ , ),
k k

t t t
+

∈  

0

0 0

( ) [ ( ) ( ) ( )] ( )

( )1 ( ) ( ),

( ) [ ( ) ( ) ( )] ( )

( )1 ( ) 1 ,

N

N N

t p t t t t

p t x t t

t qp t t t t

qp t x t a

⎧ = − −
⎪

+ +⎪
⎨

= − −⎪
⎪ + +⎩

x A D B x

B v

v A D B x

B

�

�

�

�

 (7) 

when 
2 1 2 2

[ , ),
k k

t t t
+ +

∈  

0

( ) ( ),

( ) 1 ,
N

t t

t a

=⎧
⎨

=⎩

x v

v

�

�

 (8) 

where 0,1, ;k = � ( ) ( ( )) ,N N
ij N Nt a t

×

×
= ∈A� � � ( )

ij
a t =�  

( ) [ ( ) ( )].
ij j i
a t sign x t x t−  It can be seen that ( )

ij
a t =�  

( )jia t−
�  and ( ) 0

ii
a t =�  due to the definition of ( )

ij
a t  

in Section 2.2, then ( )tA�  is an anti-symmetric matrix at 

all times. 
1 2

( ) { ( ), ( ), , ( )} N N

N
t d t d t d t

×

= ∈D diag � �  with 

1
( ) ( ).

N

i ijj
d t a t

=

=∑ �  
1 2

( ) { ( ), ( ), , ( )}
N

t b t b t b t= ∈B diag �  

.N N×
�  

Since the sum of each row of the matrix ( ) ( )t t−A D�  

is equal to zero, then 
0

[ ( ) ( )] ( ) .
N N

t t x t− =A D 1 0�  There-

fore, the consensus error system can be described as: 

When 
2 2 1

[ , ),
k k

t t t
+

∈  

( ) [ ( ) ( ) ( )]
( ) ( ),

( ) [ ( ) ( ) ( )] 0

N

N N

t p t t t
t t

t qp t t t
×

⎡ ⎤⎡ ⎤ − −
= = ⎢ ⎥⎢ ⎥

− −⎣ ⎦ ⎣ ⎦

x A D B I
e e

v A D B

��
�

��
 (9) 

when 
2 1 2 2

[ , ),
k k

t t t
+ +

∈  

0( )
( ) ( ),

0 0( )

N N N

N N N N

t
t t

t

×

× ×

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

Ix
e e

v

�

�

�

 (10) 

where 0,1, .k = �  

Now, we give the sufficient conditions as the Theorem 

1 which guarantee the consensus of the multi-agent 

system, i.e., lim ( ) 0.
t

t
→∞

=e� �  Firstly, a useful lemma 

[28] is given as follows: 
 

Lemma 1: Suppose that a symmetric matrix is de-

scribed as 

1 2

2 3

,

T

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

L L
L

L L
 

where L1 and L3 are square matrices. L is positive 

definite if and only if both L1 and 
1

3 2 1 2

T −

−L L L L  are 

positive definite. 
 

Theorem 1: Multiple agents in the system described 

as (7) and (8) will achieve consensus under the following 

conditions: 

(i) bi (t) in (5) satisfies: 

0, if ( ) 0,
( )

1 ( ), otherwise

i

i

i

d t
b t

d t

>⎧
= ⎨

−⎩
 (11) 

for 1,2, , .i N= �  

(ii) Control parameters p and q satisfy: 

2

1
,

4 (1 )
p

q q

>

−

 (12) 

where 0 1.q< <  

(iii) Let 
1

,
k k k

t t
+

Δ = − 0,1, ,k = �  suppose that there 

exist , 0,
w r

T T >  which satisfy (13) and (14): 

2

2 1

,

,

k w

k r

T

T
+

Δ ≥⎧
⎨
Δ ≤⎩

 (13) 
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*(1 )
,

(1 )

w

r

T s q

T r q
∗

+
>

−

�

 (14) 

where  

* 2

1 0,s q q= + − >�  

2 2 2(1 ) [(1 ) ] 1 0.r q p q q p q
∗

= − + − − − + >  

Proof: Construct the following Lyapunov function: 

( ) ( ) ( ),T
V t t t= e Me  (15) 

where 2 2
,

qN N

q N N

N N−⎡ ⎤
⎢ ⎥
−⎣ ⎦

×

= ∈

I I

I I
M �  we can get the mini-

mum eigenvalue of M is ( ) 1 0,
min

qλ = − >M  while the 

maximum eigenvalue of M is ( ) 1 0,
max

qλ = + >M  and 

M is a positive definite matrix. 

When 
2 2 1

[ , ),
k k

t t t
+

∈ 0,1, ,k = �  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ),

T T

T

V t t t t t

t t t

= +

= −

e Me e Me

e R e

�

� �

 (16) 

where 
2

2 22(1 ) [ ( ) ( )]
( ) ;

2

N NN

N N

q p t t
t

q

×
⎡ ⎤− + −

= ∈⎢ ⎥
−⎢ ⎥⎣ ⎦

D B I
R

I I

�  

When 
2 1 2 2

[ , ),
k k

t t t
+ +

∈ 0,1, ,k = �  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

T T

T

V t t t t t

t t t

= +

= − ,

e Me e Me

e S e

�

� �

 (17) 

where 2 2
0

( ) .
2

N N N N N

N N

t
q

× ×
−⎡ ⎤

= ∈⎢ ⎥−⎣ ⎦

I
S

I I
�  

The above equation (16) holds since ( )tA�  always is 

an anti-symmetric matrix. Now, we prove that the matrix 

R(t) is positive definite. Since 
1

( ) ( ) { ( )t t d t+ =D B diag  

1 2 2
( ), ( ) ( ), , ( ) ( )},

N N
b t d t b t d t b t+ + +�  then the eigen-

values of ( ) ( )t t+D B  are ( ( ) ( )) ( ) ( ),
i i i

t t d t b tλ + = +D B  

1,2, , ,i N= �  where 
1

1 ( ) ( ) 1.
N

i ijj
N d t a t N

=

− ≤ = ≤ −∑ �  

If the condition (i) in the Theorem 1 is satisfied, then 

( ) ( )t t+D B  is positive definite with the minimum eigen-

value being ( ( ) ( )) 1.
min

t tλ + =D B  Accordingly, based 

on the Lemma 1, if the condition (ii) in the Theorem 1 is 

satisfied, then R(t) is positive definite. Furthermore, we 

can get all eigenvalues of R(t) as follows: 

2
,1

2 2

2
,2

2 2

( ( )) (1 ) ( ( ) ( ))

[(1 ) ( ( ) ( )) ] 1,

( ( )) (1 ) ( ( ) ( ))

[(1 ) ( ( ) ( )) ] 1,

i i i

i i

i i i

i i

t q p d t b t q

q p d t b t q

t q p d t b t q

q p d t b t q

λ

λ

⎧ = − + +
⎪
⎪ + − + − +⎪
⎨

= − + +⎪
⎪
⎪ − − + − +⎩

R

R

 (18) 

when 1,2, , .i N= �  Now, we search for the minimum 

eigenvalue of R(t), which will exist in the 
,2

( ( )).
i

tλ R  It 

is easy to find out that the derivative of 
2
( ( ))

i
tλ

,

R  with 

respect to ( ) ( )
i i

d t b t+  is greater than zero, then 

2
( ( ))

i
tλ

,

R  is an increasing function with ( ) ( ).
i i

d t b t+  

Accordingly, when ( ) ( ) 1,
i i

d t b t+ =
2
( ( ))

i
tλ

,

R  is min-

imum, which equals r*= 2 22
[(1 ) ] 1(1 ) q p qq p q − − +− + − > 0. 

Similarly, the eigenvalues of S(t) are 

2

1

2

2

( ( )) 1,

( ( )) 1,

i

i

t q q

t q q

λ

λ

,

,

⎧ = + +⎪
⎨
⎪ = − +⎩

S

S

 (19) 

when 1,2, , .i N= �  It is easy to see that the minimum 

eigenvalue of S(t) will be *

,s− �  where 2*
1qs q+= −�  > 

0. Therefore, according to (16) and (17), we obtain the 

following: 

When 
2 2 1

[ , ),
k k

t t t
+

∈ 0,1, ,k = �  

( ) ( ) ( ).T
V t r t t

∗

≤ − e e
�  (20) 

When 
2 1 2 2

[ , ),
k k

t t t
+ +

∈ 0,1, ,k = �  

*( ) ( ) ( ).T
V t s t t≤ e e
�

�  (21) 

Then, for that ( ) 1 ,
max

qλ = +M ( ) 1 ,
min

qλ = −M  we can 

get: 

When 
2 2 1

[ , ),
k k

t t t
+

∈ 0,1, ,k = �  

( ) ( ).
1

r
V t V t

q

∗

≤ −

+

�  

When 
2 1 2 2

[ , ),
k k

t t t
+ +

∈ 0,1, ,k = �  

*

( ) ( ).
1

s
V t V t

q
≤

−

�

�  

Accordingly, when 
0 1

[ , ),t t t∈  

0 0
( ) ( ) exp ( ) .

1

r
V t V t t t

q

∗⎧ ⎫⎪ ⎪
≤ − −⎨ ⎬

+⎪ ⎪⎩ ⎭
 (22) 

When 
1 2

[ , ),t t t∈  

*

0 0 1
( ) ( ) exp ( ) .

1 1

r s
V t V t t t

q q

∗⎧ ⎫⎪ ⎪
≤ − Δ + −⎨ ⎬

+ −⎪ ⎪⎩ ⎭

�

 (23) 

Therefore, when 
2 2 1

[ , ),
k k

t t t
+

∈ 1,2, ,k = �  

0 2 2 2 2
( ) (0)exp ( )

1
k k

r
V t V t t

q

∗

−

⎧ −⎪
≤ Δ + Δ + + Δ + −⎨

+⎪⎩
�  

*

1 3 2 1
( ) .

1
k

s

q
−

⎫⎪
+ Δ + Δ + + Δ ⎬

− ⎪⎭

�

�  (24) 

When 
2 1 2 2

[ , ),
k k

t t t
+ +

∈ 1,2, ,k = �  

0 2 2
( ) (0)exp ( )

1
k

r
V t V

q

∗⎧ −⎪
≤ Δ + Δ + + Δ⎨

+⎪⎩
�  

*

1 3 2 1 2 1
( ) .

1
k k

s
t t

q
− +

⎫⎪
+ Δ + Δ + + Δ + − ⎬

− ⎪⎭

�

�  (25) 

If the condition (iii) in Theorem 1 is satisfied, then when 

1
[ , ),
k k

t t t
+

∈ 0,1, ,k = �  
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*

( ) (0)exp 1 .
1 12 2

w r

r sk k
V t V T T

q q

∗⎧ ⎫− ⎛ ⎞⎪ ⎪⎢ ⎥ ⎢ ⎥≤ + +⎨ ⎬⎜ ⎟⎢ ⎥ ⎢ ⎥+ −⎣ ⎦ ⎣ ⎦⎝ ⎠⎪ ⎪⎩ ⎭

�

 

Consequently, when ,k →+∞ ( ) 0,V t →  i.e., lim ( )
t i

x t
→∞

 

0
( ),x t=

0
lim ( ) ( )

t i
v t v t

→∞
=  for 1,2, , .i N= �  It means 

that the followers will realize consensus as time going on. 

The proof of the Theorem 1 is thus completed.        � 

 

Remark 3: The condition (i) demonstrates that at time 

t, for the agent i, if the number of cooperative neighbors 

is more than that of competitive neighbors, i.e., 

( ) 0,
i

d t >  then communication from the leader to the 

i th follower is not needed ( ( ) 0);
i
b t =  otherwise, an 

edge with weight being ( ) 1 ( )
i i
b t d t= −  exists from the 

leader to the i th follower. 

 

Remark 4: In the condition (iii), Tw indicates the 

shortest continuous “working” time needed for the 

control Ki (t), while Tr indicates the longest continuous 

“resting” time. Tw can also be viewed as the shortest 

dwell time for Ki (t). Tw and Tr just only depend on the 

control parameters p and q. 

 

4. NUMERICAL EXAMPLES 

 

In order to illustrate the aforementioned theoretical 

analysis clearly, in this section, we take a model of 

multi-agent system consisting of 5 followers and one 

leader, i.e., N = 5. The initial states of followers are 

selected as (0) ( 3.5,1,2.8,0, 2) ,T
= − −x  The acceleration 

of the leader a0 equals 0.2, the initial state and velocity of 

the leader are chosen as 
0
(0) 10,x =

0
(0) 1.v =  The 

neighbors of the agent i at time t here are described as 

( ) { :| ( ) ( ) | 2},
i j i
t j x t x t= − <N  accordingly, the network 

consisting of the followers is time-varying, and (0),A�  

(0)D  can be represented as 

0 0 0 0 1

0 0 1 1 0

(0) ,0 1 0 0 0

0 1 0 0 0

1 0 0 0 0

⎛ ⎞
⎜ ⎟

−⎜ ⎟
⎜ ⎟= −
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

A�  

1 0 0 0 0

0 0 0 0 0

(0) .0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎝ ⎠

D  

We can see that (0)A�  is an anti-symmetric matrix. The 

initial value of v(t) are selected as (0) (0.5,0.2,0.8,=v  

1.3,0.7) .
T  Furthermore, let 

2k w
TΔ =  and 

2 1k r
T

+
Δ =  

for all 0,1, .k = �  

 

Example 1: The control parameters p and q are taken 

as 10 and 0.5, respectively, which satisfy the condition 

(ii) in Theorem 1. Since 0.5376r
∗

=  and * 0 6180s = .�  

here, then T
w
 and T

r
 are chosen as 0.2 second and 0.1 

second, which satisfy the condition (iii) in Theorem 1. 

( )
i
b t  in the consensus protocol (5) is described as (11), 

i.e.,  

0, if ( ) 0,
( )

1 ( ), otherwise

i

i

i

d t
b t

d t

>⎧
= ⎨

−⎩
 for 1,2, ,5.i = �  

Then, the numerical results are demonstrated in Fig. 1 to 

Fig. 3. Fig. 1 indicates that all followers will asymp-

totically reach the leader, since ( ) 0,
i
e t →  where ( )

i
e t  

0
( ) ( ),
i
x t x t= −  when 1,2, ,5;i = �

5 0
( ) ( ) ( ),
i i
e t v t v t

−
= −  

when 6,7, ,10.i = �  Fig. 2 demonstrates that ( )
i

K t  is 

an intermittent control. In Fig. 3, we give “+” sign 

denoting the g(t) ( [0,1.2)),t∈  where g(t) stands for the 

number of followers are not connected to the leader at 

time t, we can see that in the “resting” time, the leader do 

not communicate with any follower, i.e., ( ) 5;g t =  

while in the “working” time, the leader also do not need 

to communicate all followers, since ( ) 0g t >  in most of 

the time. 

Fig. 1. Graphical representations of the consensus 

errors ( )
i
e t ( 1, 2, ,10)i = �  in Example 1. 

 

Fig. 2. Graphical representations of the intermittent 

control ( )
i

K t ( 1, 2, ,5)i = �  in Example 1. 
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Fig. 3. Graphical representation of the g(t) in Example 1. 

 

 

Fig. 4. Graphical representations of the consensus errors 

( )
i
e t ( 1, 2, ,10)i = �  infected by noises in Ex-

ample 1. 

 

In addition, the consensus protocol is robust for some 

noises actually existing in the transmission channels. If 

( ) ( )j ix t x t−  in the ( )
i
u t  are changed into ( )jx t +  

( ) ( )ij it x tη −  for 0,1, ,5;j = � 1,2, ,5,i = �  where ( )ij tη  

denote the noises, then the consensus may also be 

reached. For example, ( )ij tη  are assumed to be the 

different white noises with intensities being 2

1
,

t+
 the 

consensus result will be shown in Fig. 4. 

 

Example 2: If we take ( ) 0
i
b t =  for all followers in 

the “working” time, and the other parameters are selected 

the same as in Example 1, then all followers cannot 

achieve consensus with the leader, the representations of 

the state errors and velocity estimation errors will be 

demonstrated in Fig. 5. 

 

Example 3: If we take 0.2,
w

T = 5,
r

T =  and the 

other parameters are selected the same as in Example 1, 

then the consensus cannot be reached, the representations 

of the state errors and velocity estimation errors are 

demonstrated in Fig. 6. 

 

Fig. 5. Graphical representations of the consensus errors 

( )
i
e t ( 1, 2, ,10)i = �  in Example 2. 

 

 

Fig. 6. Graphical representations of the consensus errors 

( )
i
e t ( 1, 2, ,10)i = �  in Example 3. 

 

5. CONCLUSIONS AND DISCUSSION 

 

In this paper, we consider the consensus problem of a 

leader-following multi-agent system with an active lead-

er. The intermittent control approach has been applied in 

the consensus protocol. The theoretical results have been 

derived mainly based on the Lyapunov stability. In the 

model of the multi-agent system, neighbors of a follower 

can be time-varying on account of agents’ motions, 

especially, for the agent i, its neighbors can be divided 

into cooperative and competitive types. It is found out 

that the sufficient conditions for consensus of the pro-

posed model include three aspects: The first one is the 

condition about the weight of the edge from the leader to 

the follower; The second one is the condition of the 

control parameters p and q; And the last one is about the 

continuous “working” time and “resting” time. All the 

conditions are easily satisfied, and we do not need to 

solve the linear matrix inequalities (LMIs) [29], which is 

usually needed in the stability analysis. It should be 

pointed out these are sufficient but not necessary condi-

tions for consensus. The results proposed here may be 
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practical since study on multiple agents moving in one-

dimensional space has some significance [30]. The future 

work regarding this topic will focus on exploring the 

better consensus algorithms for general multi-agent sys-

tems. 
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