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Abstract: This paper presents some novel synchronization methods for two discrete-time chaotic sys-

tems with different time delays, which are transformed into two unified models. First, the H∞ perfor-

mance of the synchronization error dynamical system between the drive unified model and the re-

sponse one is analyzed using the linear matrix inequality (LMI) approach. Second, the novel state 

feedback controllers are established to guarantee H∞ performance for the overall system. The parame-

ters of these controllers are determined by solving the eigenvalue problem (EVP). Most discrete-time 

chaotic systems with or without time delays can be converted into this unified model, and H∞ synchro-

nization controllers are designed in a unified way. The effectiveness of the proposed design methods 

are demonstrated by three numerical examples. 

 

Keywords: H∞ synchronization, chaotic systems, different time delays, discrete-time system, drive-

response conception. 

 

1. INTRODUCTION 

 

In recent years, synchronization problems in chaotic 

systems have attracted much attention, and many 

possible applications such as secure communication, 

have been discussed by computer simulations and even 

realized under laboratory conditions [1-3]. Since Pecora 

and Carroll [4] firstly proposed the drive-response 

(master-slave) concept for achieving the synchronization 

of coupled chaotic systems, many researchers have also 

proposed a variety of alternative schemes for the control 

and synchronization of chaotic systems with or without 

delays, which include linear and nonlinear feedback 

control, impulsive control method, sliding mode control, 

adaptive design control, and invariant manifold method, 

among many others (see [1-10] and references cited 

therein). 

In real physical systems, some noises or disturbances 

always exist that may cause the instability and poor 

performance. Therefore, how to reduce the influence of 

the noises or disturbances on the synchronization process 

of chaotic systems becomes an important issue. Suykens 

et al. [11] firstly adopted the H∞ control concept to 

reduce the effect of the disturbance for synchronization 

problem of chaotic Lur’e systems. Based on the work of 

Suykens et al., authors in [12] and [13] designed H∞ 

synchronization controllers for a general class of chaotic 

systems with external disturbances. On the other hand, 

there has been increasing interest in time-delayed chaotic 

systems since chaos phenomenon in time-delayed 

systems was first found by Mackey and Glass [14]. The 

H∞ synchronization problem for time-delayed chaotic 

systems is also investigated by some researchers [15-18]. 

Here one thing should be pointed out. The underlying 

assumption in the aforementioned methods is that the 

drive and the response systems have identical dynamic 

structures and the same parameters. And external 

disturbances and different time delays both exist in 

engineering practice while both of them have seldom 

been considered in synchronization problems between 

chaotic systems. Therefore, to our best knowledge, 

synchronization problems between systems of different 

time delays with external disturbances haven’t been (not 

much if any) touched so far, which is just the main job in 

this paper, thus it makes sense for a deep investigation. 

In this paper, we first put forward a unified model to 

describe discrete-time chaotic systems [19] and 

continuous-time chaotic systems [20]. This unified 

model is the interconnection of a linear dynamic system 

and a bounded static nonlinear operator. Most chaotic 

systems with or without time delays, such as chaotic 

neural networks, Chua’s circuits, and Hénon map, etc, 

can be transformed into this unified model with the H∞ 
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synchronization controller designed in a unified way. A 

kind of state feedback controller for the synchronization 

between two unified models with different time delays is 

proposed. By the state feedback control scheme, the 

closed-loop synchronization error system is asymptotically 

stable and the H∞-norm from the disturbance to 

controlled output is reduced to the lowest level. 

Notation: The superscript “T” stands for matrix 

transposition. l2[0, ∞ ) is the space of square integrable 

vectors. ℜn denotes n dimensional Euclidean space, and 

ℜ
n×m is the set of all n×m real matrices. I denotes identity 

matrix of appropriate orders. ∗ denotes the symmetric 

parts. diag{…} stands for a block-diagonal matrix. The 

notations X > Y and X ≥ Y, where X and Y are matrices of 

the same dimensions, mean that the matrix X – Y is 

positive definite and positive semi-definite, respectively. 

If X∈ℜp and Y∈ℜq, C(X; Y) denotes the space of all 

continuous functions mapping ℜp → ℜq. 

 

2. PROBLEM FORMULATION 

 

The unified model we suggested consists of a linear 

dynamic system and a bounded static nonlinear operator 

[19]: 

( 1) ( ) ( ) ( ( )),

( ) ( ) ( ) ( ( )),

( ) ( ),

d x p

q qd x p

x

x k Ax k A x k B k

k C x k C x k D k

z k Cx k

τ φ

τ φ

+ = + − +⎧
⎪

= + − +⎨
⎪

=⎩

ξ

ξ ξ  (1) 

with the initial condition function x(k) = ϖ (k), ∀k∈[–τx, 

0], where x(k)∈ℜn is the system state, A∈ℜn×n, Ad∈ℜ
n×n, 

Bp∈ℜ
n×L, Cq∈ℜ

L×n, Cqd∈ℜ
L×n, Dp∈ℜ

L×L, and C∈ℜl×n, are 

the corresponding state-space matrices, ξ∈ℜL is the input 

of nonlinear function φ, φ∈C(ℜL; ℜL) is nonlinear 

function satisfying φ (0)=0, zx(k)∈ℜ
l is the output vector, 

L∈N is the number of nonlinear functions, τx ≥ 0 is the 

time delay, ϖ (k) is the given function on [–τx, 0]. 

In this paper, we assume that the nonlinear functions 

in (1) are monotonically non-decreasing and globally 

Lipschitz. That is, there exists a positive scalar hi such 

that 

( ) ( )
0 ,i i

i
h

φ α φ β

α β

−
≤ ≤

−

    i =1, …, L, (2) 

for all arbitrary α ≠ β and α, β 
∈ℜ. 

According to the drive-response concept [4], if the 

system (1) is regarded as the drive system, a suitable 

response system with control input should be constructed 

to synchronize the drive system. The response unified 

model can be described by the following equations: 

1

2

( 1) ( ) ( ) ( ( ))

( ) ( ),

( ) ( ) ( ) ( ( ))

( ),

( ) ( ),

d y p

q qd y p

y

y k Ay k A y k B k

u k Dw k

k C y k C y k D k

u k

z k Cy k

τ φ ζ

ζ τ φ ζ

⎧ + = + − +
⎪

+ +⎪
⎪

= + − +⎨
⎪

+⎪
⎪ =⎩

 (3) 

with the initial condition function y(k) = σ(k), ∀k∈[–τy, 

0], where y(k)∈ℜn is the state vector of response system, 

D∈ℜn×s is a constant matrix, τy ∈ ℜ is the time delay, 

which is generally assumed to satisfy τy ≥
 τx ≥

 0, σ(⋅) is 

the given continuous function on [–τy, 0], w(k)∈ℜ
s is the 

external disturbance which belongs to l2[0, ∞), zy(k)∈ℜ
l 

is the output of the response system, u1(k)∈ℜ
n and 

u2(k)∈ℜ
L are the control inputs and will be appropriately 

designed such that the specific control objective is 

achieved. 

Defining the synchronization error e(k)=y(k)–x(k), we 

have the following error dynamical system between (1) 

and (3): 

1

2

( 1) ( ) ( ( ) ( ))

( ( )) ( ) ( ),

( ) ( ) ( ( ) ( ))

( ( )) ( ),

( ) ( ),

d y x

p

q qd y x

p

e

e k Ae k A y k x k

B f k u k Dw k

k C e k C y k x k

D f k u k

z k Ce k

τ τ

η

η τ τ

η

+ = + − − −⎧
⎪

+ + +⎪
⎪

= + − − −⎨
⎪

+ +⎪
⎪ =⎩

 (4) 

where e(k)∈ℜn, ze(k) = zy(k) – zx(k), η(k) = ζ(k) – ξ(k), 

and f (η(k)) = φ (ζ(k)) – φ (ξ(k)) = φ(η(k) + ξ(k)) – φ (ξ(k)), 

therefore f(0) = 0. From (2), we derived that fi(⋅) satisfy 

the sector conditions, i.e. , for each i = 1, …, L, 

0 ≤ fi (ηi (k))/ηi (k) ≤ hi or 

i
f (ηi (k))⋅[ fi (ηi (k)) – hiηi (k)] ≤ 0. (5) 

In order to synchronize drive system (1) with response 

one (3) in the sense of H∞ control [21], we consider the 

following state feedback controller: 

1 1

2 2

( ) ( ) ( ( ) ( )),

( ) ( ) ( ( ) ( )),

d x y

qd x y

u k K e k A y k x k

u k K e k C y k x k

τ τ

τ τ

= + − − −⎧⎪
⎨

= + − − −⎪⎩
 (6) 

where x(k) = x(–τx), ∀k∈[–τy, –τx], K1∈ℜ
n×n and K2∈ 

ℜ
L×n are feedback gains. With the control law (6), the 

error dynamic system (4) can be rewritten as the follows: 

( 1) ( ) ( ( ) ( ))

( ( )) ( ),

( ) ( ) ( ( ) ( ))

( ( )),

( ) ( ),

d y x

p

q qd y x

p

e

e k Ae k A e k e k

B f k Dw k

k C e k C e k e k

D f k

z k Ce k

τ τ

η

η τ τ

η

⎧ + = + − + −
⎪

+ +⎪
⎪

= + − + −⎨
⎪

+⎪
⎪ =
⎩

 (7) 

where 
1

A A K= +  and 
2
.

q q
C C K= +  Since f (0) = 0, 

system (7) has a trivial solution e(k) ≡ 0 while w(k) = 0. 

Definition 1 (H
∞
 synchronization): The drive system 

(1) and the response system (3) are said to be H∞ 

synchronized if the following two conditions are 

satisfied: 

(i) With zero disturbances, the synchronization error 

system (7) is asymptotically stable. 

(ii) With zero initial conditions and a given constant γ 

> 0, the following condition holds: 
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2 T

0

[ ( ) ( ) ( ) ( )] 0
T

e e

k

J z k z k w k w kγ

∞

=

= − <∑  

(i.e., 
2( ) 0, ( ) [0, )

( )
sup ).

( )

e

w k w k l

z k

w k

γ

≠ ∈ ∞

<  (8) 

Then, the controller (6) is said to be an H∞ synchroni-

zation controller with the disturbance attenuation γ. The 

parameter γ is called the H∞-norm bound of the controller. 

If we find a minimal positive γ to satisfy the above 

conditions, then the controller (6) is an optimal H∞ 

synchronizer. 

 

3. H
∞
 PERFORMANCE ANALYSIS 

 

Theorem 1: If there exist symmetric positive definite 

matrices P, R and Q, diagonal positive semi-definite 

matrices Λ and Σ, matrices K1 and K2, and a positive 

scalar γ that satisfy 

T T T T

1

T T

T

Π

*

* *

* * *

* * *

d d

d d d d

d d

A PA C C A PA A PA

A PA Q A PA

M A PA R

⎡ + +
⎢

−⎢
⎢= −⎢
⎢
⎢
⎢⎣

 

2

2

( )

( )

0,( )

*

T T
p q

T T
d p qd d

T T
d p qd d

T T
p p p

T

A PB C H A PD

A PB C H A PD

A PB C H A PD

B PB B PD

D PD Iγ

Τ

Τ

Τ

⎤+ Σ + Λ
⎥
⎥+ Σ + Λ
⎥
⎥ <+ Σ +Λ
⎥
⎥+Π
⎥
⎥− ⎦

 (9) 

where ∏1 = –P + Q + R, ∏2 = Dp
T(ΣH + Λ)+(ΣH +Λ)Dp  

– 2Σ, H=diag{h1, h2, …, hL}, then system (7) with 

w(k) = 0 is globally asymptotically stable and the L2 gain 

of the system (7) is less than or equal to γ. The minimum 

of γ can be obtained by solving the following eigenvalue 

problem (EVP): 

minimize    ,

subject to    (9), 0, 0, 0, 0, 0.P Q R

γ

> > > Λ ≥ Σ ≥

 (10) 

Proof: First, consider system (7) with w(k)=0, that is  

( 1) ( ) ( ( )

( )) ( ( )),

( ) ( ) ( ( )

( )) ( ( )),

( ) ( ).

d y

x p

q qd y

x p

e

e k Ae k A e k

e k B f k

k C e k C e k

e k D f k

z k Ce k

τ

τ η

η τ

τ η

⎧ + = + −
⎪

+ − +⎪
⎪

= + −⎨
⎪

+ − +⎪
⎪ =⎩

 (11) 

Since e(k) = 0 and η(k) = 0 are solutions to (11), there 

exists at least one equilibrium located at the origin, i.e., 

eeq = 0, ηeq = 0. For system (11), we adopt the following 

Lyapunov-Krasovskii functional: 

1

( ( ), ( )) ( ) ( ) ( ) ( )

x

T

i

V e k k e k Pe k e i k Qe i k

τ

η

−

Τ

=−

= + + +∑  

1

( 1)

0
1

( ) ( )

2 ( ) ,

y

j

i

L
k

j j

j

e i k Re i k

f d

τ

η

λ σ σ

−

Τ

=−

−

=

+ + +

+

∑

∑ ∫

 (12) 

where P > 0, Q > 0, R > 0 and λj ≥ 0 ( j =1,2, …, L). Thus, 

∀e(k) ≠ 0, ∀η(k) ≠ 0, V(e(k), η(k)) > 0 and V(e(k), η(k)) 

= 0 iff e(k) = 0 and η(k) = 0. We first give an estimation 

of the term of the integral 
( )

0
( )

j k

jf d
η

σ σ∫  by the 

sectors condition (5) and integral mean-value theorem. 

While ηj (k) ≥ 0, we have 

( )

0
( ) ( ) ( ) ( ) ( ( )),

j k

j j j j j jf d k f k f k
η

σ σ η β η η= ≤∫  (13) 

where 0 ≤ β ≤ ηj (k), 0 ≤ fj (β) ≤ fj (ηj (k)). While ηj (k) ≤ 0, 

the inequality (13) also holds, where ηj (k) ≤ β ≤ 0, 

fj (ηj (k)) ≤ fj (β) ≤ 0. 

From the sector conditions (5), we have 

( ( )) [ ( ( )) ( )] 0,i i i i i i if k f k u kη ε η η⋅ ⋅ − ≤  (14) 

where εi ≥ 0 (i =1, …, L). From the inequality (14), we 

have 

2
2 ( ( )) 2 ( ( )) ( ) 0.

i i i i i i i i
f k u f k kε η ε η η− ≤  (15) 

The difference of V(e(k), η(k)) along the solution to 

(11) is 

( ( ), ( ))V e k kηΔ  

( ( 1), ( 1)) ( ( ), ( ))V e k k V e k kη η= + + −  

( 1) ( 1) ( ) ( ) ( )( ) ( )T T T
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Τ Τ( ) ( ) ( ) ( )
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0
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j

L Lk
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η
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1

2 ( ( )) ( )

L
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i

u f k kε η η

=
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[ ( ) ( ) ( ) ( ( ))]
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T T

x x
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Τ
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Τ 2

1
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L
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e k Re k f kτ τ ε η
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1

2 ( ) ( ( )) ( )

L

i i i i i i

i

h f k kε λ η η

=
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T T T T( ) ( ) ( ) ( ( ))
x y

e k e k e k f k Gτ τ η⎡ ⎤= − −⎣ ⎦  

T
T T T T( ) ( ) ( ) ( ( )) ,

x y
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where 

G =  

1

2

( )

*
,( )

* *
( )

* * *

TT
pT T

d d

q

TT
d pTd d

d d

qd

TT
d pd d

qd
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Τ

Τ

Τ
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⎢ ⎥
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Σ = diag{ε1, ε2, …, εL}≥ 0, Λ = diag{λ1, λ2, …, λL}≥ 0. 

With the Schur complement [22], M < 0 is equivalent to 

1

*
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* * *

* * *

* * *

T T T

d d
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d d d d

T

d d

A PA A PA A PA
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⎡ +Π
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⎢
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⎢
⎢
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2
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0
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γ
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 (17) 

Since G in (16) is the principal minor of the left-hand 

side of inequality (17), we have G<0. So system (7) with 

w(k)=0, i.e. system (11), is globally asymptotically stable. 

Next, for system (7) under zero initial conditions, J in 

(8) is equivalent to 

T 2 T
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Since M < 0 in inequality (17) , J(w(k)) < 0 holds for 

any [eT(k) eT(k–τx) e
T(k–τy) f

T(η(k)) wT(k)]T≠0, w(k)∈l2[0, 

∞). From Definition 1, it can be concluded that the drive 

system (1) and the response system (3) are H∞ 

synchronized. This completes the proof. 

While γ reaches its minimum, system (7) has the 

optimal perturbation resistance performance. It requires 

the solution of the eigenvalue problem (EVP) in 

inequality (10), which is a convex optimization problem 

that can be solved by using the MATLAB LMI Control 

Toolbox [23]. 

Remark 1: It should be noted here that the 

disturbance attenuate rate γ actually needs to be chosen 

as an appropriate value according to the real system to 

achieve the optimal performance, which will be 

illustrated in detail in Remark 3 and Corollary 2. 

 

4. H
∞
 SYNCHRONIZATION CONTROLLER 

DESIGN 

 

Based on Theorem 1, we can obtain the following 

theorem to design the synchronization controller (6) for 

the drive system (1) and the response system (3). 

Theorem 2: If there exist symmetric positive definite 

matrices P, Q, and R, diagonal positive semi-definite 

matrices Λ and Σ, matrices S1 and S2, and a positive 

scalar γ that satisfy the following EVP: 

minimize  ,γ  (19) 

subject to 

1

1

2

2

2

( )
* 0 0 0

* * 0 ( ) 0
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* * * * 0
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d d p

q

T T
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qd
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S

C H
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Τ

Τ

Τ

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟

+⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞Π Σ + Λ⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎢ ⎥
⎢ ⎥− Σ + Λ⎢ ⎥
⎢ ⎥− Σ + Λ⎢ ⎥
⎢ ⎥Π
⎢ ⎥
⎢ ⎥−⎣ ⎦
 < 0,  (20) 

then the drive system (1) and the response system (3) can 

be synchronized by the H∞ controller (6), and the H∞-

norm bound of the error system (7) does not exceed γ. 

Moreover, the feedback gains of optimal H∞ controller 
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(6) are obtained by K1 = P
–1S1 and K2 = (HΣ +Λ)

–1S2. 

Proof: With the Schur complement [22], the equality 

(9) in Theorem 1 is equivalent to 

1

2

2

* 0 0 ( ) 0

* * 0 ( ) 0

* * * ( ) 0

* * * * 0

* * * * *

d d p

T
q

qd

qd

P PA PA PA PB PD

C C C H

Q C H

R C H

Iγ

Τ

Τ

Τ

⎡ ⎤−
⎢ ⎥
⎢ ⎥Π + Σ + Λ
⎢ ⎥
⎢ ⎥− Σ + Λ
⎢ ⎥
⎢ ⎥− Σ + Λ
⎢ ⎥

Π⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

  

 < 0.  (21) 

Defining S1 = PK1 and S2 = (HΣ +Λ)K2 in (21), we can 

obtain Theorem 2. 

Remark 2: When the response system is constructed, 

all available information is taken use of such as A, Ad, Bp, 

Cq, Cqd, Dp, and C. And there are only two parameters K1 

and K2 required to be determined. 

If Ad = 0 and Cqd = 0 or τx =τy = 0, the system (1) is a 

chaotic system without time delays, which is represented 

as: 

( 1) ( ) ( ( )),

( ) ( ) ( ( )),

( ) ( ).

p

q p

x

x k Ax k B k

k C x k D k

z k Cx k

φ ξ

ξ φ ξ

+ = +⎧
⎪

= +⎨
⎪

=⎩

 (22) 

The response system corresponding to the drive 

system (22) is given by the following equations: 

1

2

( 1) ( ) ( ( )) ( ) ( ),

( ) ( ) ( ( )) ( ),

( ) ( ).

p

q p

y

y k Ay k B k u k Dw k

k C y k D k u k

z k Cy k

φ ζ

ζ φ ζ

⎧ + = + + +
⎪⎪

= + +⎨
⎪

=⎪⎩

 (23) 

The H∞ synchronization controller is of the following 

form:  

1 1

2 2

( ) ( ),

( ) ( ).

u k K e k

u k K e k

=⎧
⎨

=⎩
 (24) 

With the control law (24), the error dynamical system 

between (22) and (23) can be expressed by the following 

form: 

1

2

( 1) ( ) ( ) ( ( )) ( ),

( ) ( ) ( ) ( ( )),

( ) ( ).

p

q p

e

e k A K e k B f k Dw k

k C K e k D f k

z k Ce k

η

η η

+ = + + +⎧
⎪

= + +⎨
⎪

=⎩

 (25) 

Since f (0) = 0, the system (25) has a trivial solution 

e(k) ≡ 0. For the drive system (22) and the response 

system (23), we can use the following corollary to design 

the optimal H∞ synchronization controller (24). 

Corollary 1: If there exist a symmetric positive 

definite matrix P, diagonal positive semi-definite 

matrices Λ and Σ, matrices S1 and S2, and a positive 

scalar γ that satisfy the following EVP: 

minimize  ,γ  (26) 

subject to  

1

2

2

2

* ( ) 0
0,

* * 0

* * *

p

T T
q

P PA S PB PD

P C C C H S

Iγ

Τ

− +⎡ ⎤
⎢ ⎥

− + Σ + Λ +⎢ ⎥
<⎢ ⎥

Π⎢ ⎥
⎢ ⎥−⎣ ⎦

 (27) 

then the drive system (22) and the response system (23) 

can be synchronized by the H∞ controller (24), and the 

H∞-norm bound of the error system (25) does not exceed 

γ. Moreover, the feedback gains of optimal H∞ controller 

(24) are obtained as K1 = P
 –1S1 and K2 = (HΣ +Λ)

 –1S2. 

The proof of Corollary 1 follows the same ideas as 

those in the proofs of Theorems 1 and 2, which is thus 

omitted here. For Corollary 1, the following Lyapunov 

functional is chosen: 

( 1)

0
1

( ( ), ( )) ( ) ( ) 2 ( ) .
j

L kT
j j

j

V e k k e k Pe k f d
η

η λ σ σ
−

=

= + ∑ ∫  

 (28) 

Remark 3: When the disturbance attenuation rate is 

given beforehand, the synchronization performance can 

still be achieved and the feedback gains can be 

determined by the following corollary.  

Corollary 2: For a given γ, if there exist symmetric 

positive definite matrices P, Q, and R (P only for non-

delayed systems), diagonal positive semi-definite 

matrices Λ and Σ, matrices S1 and S2 that satisfy (20) (or 

(27) for non-delayed systems), the feedback gains of 

controller (6) can be determined by K1 = P
 –1S1 and 

K2 = (HΣ +Λ)
 –1S2. 

 

5. ILLUSTRATIVE EXAMPLES 

 

In order to apply Theorem 2 (or Corollary 1) to solve 

the synchronization problems for the chaotic systems, we 

need to transform them into the unified model (1) (or 

(22)). The following three examples, i.e., synchroni-

zation of two chaotic Hopfield neural networks with 

different time delays, synchronization of two chaotic 

recurrent multilayer perceptrons (RMLPs) without and 

with time delays, and synchronization of two 

hyperchaotic Hénon maps, illustrate that the unified 

model can be widely applied to synchronization 

problems of a large class of chaotic systems. 

 

5.1. Synchronization of two chaotic Hopfield neural 

networks with different time delays 

We consider the following discrete-time chaotic delayed 

Hopfield neural network [24]: 

2

0.9 0 0.2 0.01
( 1)  ( ) tanh( ( ))

0 0.9 0.5 0.45

0.15 0.01
tanh( ( 10)),  

0.04 0.8

( ) ( ),
x

x k x k x k

x k

z k x k

⎧ −⎡ ⎤ ⎡ ⎤
+ = +⎪ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎪

⎪
− −⎡ ⎤⎨

+ −⎢ ⎥⎪ − −⎣ ⎦⎪
⎪ =⎩
 (29) 
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Fig. 1. The phase curve of the delayed Hopfield neural 

network (29) with the initial condition [x1(k) 
x2(k)]T = [-0.4 -0.6]T for −10 ≤ k ≤ 0 (5000 iter-
ations have been plotted). 

 
where x(k) = [x1(k) x2(k)]T, with the initial condition 
[x1(k) x2(k)]T = [– 0.4 – 0.6]T for –10 ≤ k ≤ 0. Fig. 1 shows 
the chaotic behavior of the system (29). We convert the 
delayed Hopfield neural network (29) into the system (1), 
where  

10,xτ =  
0.9 0

,
0 0.9

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 2 20 ,dA ×=   

0.2 0.01 0.15 0.01
,

0.5 0.45 0.02 0.8pB
− − −⎡ ⎤

= ⎢ ⎥− − −⎣ ⎦
 

1 0
0 1

,
0 0
0 0

qC

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

0 0
0 0

,
1 0
0 1

qdC

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 4 40 ,pD ×=  [0 1],C = 4 4 ,H I ×=  

φi (ξi (k)) = tanh(xi (k)), i =1, 2, φ3(ξ3(k)) = tanh(x1(k –10)), 
φ4(ξ4(k)) = tanh(x2(k – 10)). The response chaotic de-
layed Hopfield neural network with external disturbances 
is described in the form of (3), where τy = 11, D = [1 1]T. 

In the absence of disturbance w(k) and controller in-
puts u1(k) and u2(k), the behavior of the delayed Hopfield 
neural network described by (29) is shown in Fig. 2. The 
controller (6) is employed to synchronize two delayed 
Hopfield neural networks with different time delays. The 
external disturbance w(k)∈l2[0, ∞) is defined as 

( ) sin( ) exp( 0.05 ),w k r k k= −  (30) 

where r is a random number taken from a uniform distri-
bution over [0, 1]. By solving the EVP (19)-(20) given in 
Theorem 2, we obtain the solutions of EVP and the con-
troller parameters as follows: 

 
Fig. 2. The phase curve of the response chaotic delayed 

Hopfield neural network with the initial condition 
[x1(k) x2(k)]T = [-0.4 -0.6]T for −11 ≤ k ≤ 0 (5000 
iterations have been plotted).  

 

min 9.7361,γ =  
34.3652 5.8129

,
5.8129 10.2218

P
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 

13.9846 2.3090
,

2.3090 4.4991
Q

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

13.9846 2.3090
,

2.3090 4.4991
R

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

1
30.5469 5.1670

,
5.1670 9.0860

S
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 

8
2

4.5663 0.0000
0.0000 4.5437

10 ,
0.0000 0.0000

0.0000 0.0000

S

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥= ×
⎢ ⎥−
⎢ ⎥−⎢ ⎥⎣ ⎦

 

810 diag{2.4704,2.4448,0.0000,0.0000},Σ = ×  

1
0.8889 0

,
0 0.8889

K
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 

2

1.0000 0.0000
0.0000 1.0000

.
0.0000 0.0000

0.0000 0.0000

K

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎢ ⎥⎣ ⎦

 

 
In order to verify control performance of synchroniza-

tion between two chaotic delayed Hopfield neural net-
works with different time delays in the numerical simula-
tion, the controller (6) with the above K1 and K2 is ap-
plied. First, without disturbance signals, the synchroniza-
tion error between drive and response systems is given in 
Fig. 3, which shows that the synchronization errors con-
verge to zero asymptotically. To observe the H∞ per-
formance with disturbance attenuation performances, the 
response of the controlled output error ze(k) is depicted in 
Fig. 4, which shows that the state feedback H∞ controller 
(6) reduces the effect of the disturbance input w(k) on the 
controlled output error ze(k) to the lowest level. 
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Fig. 3. The synchronization error of discrete-time 

Hopfield neural networks without disturbance 

signal w(k). 

 

 

Fig. 4. The controlled output error z
e
(k) of discrete-time 

Hopfield neural networks with disturbance signal 

w(k) defined as (30). 

 

5.2. Synchronization of two chaotic recurrent multilayer 

perceptrons (RMLPs) without and with time delays 

We consider the following discrete-time chaotic RMLPs 

[25]: 

( 1) tanh( ( )),

( ) ( ),
x

x k W Vx k

z k Cx k

+ =⎧
⎨

=⎩
 (31) 

where 

0.9690 0.6967 0.2985

0.7473 3.2069 0.2840 ,

2.7960 0.5360 0.9597

W

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

2.0876 0.0173 1.1578

1.5247 0.2463 0.1619 ,

0.1953 0.8545 1.5571

V

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

 [1 1 1].C =  

The behavior of the chaotic neural network with the ini-

tial value x1(0) = 0, x2(0) = – 1 and x3(0) = 0 is shown in 

Fig. 5. Since some states are delayed, the response chao-

tic RMLPs are designed as follows: 

 

Fig. 5. Chaotic trajectory of the RMLPs (31) with the 

initial condition [x1(0) x2(0) x3(0)]
T = [0 −1 0]T 

(3000 iterations have been plotted). 

 

 

Fig. 6. Chaotic trajectory of the response RMLP (32) 

with the initial condition [x1(k) x2(k) x3(k)]
T = [0 

−1 0]T for −2 ≤ k ≤ 0 (3000 iterations have been 

plotted). 

 

1 2 2

1

( 1) tanh( ( ) ( 2) ( ))

( ) ( ),

( ) ( ),
y

y k W V y k V y k u k

u k Dw k

z k Cy k

⎧ + = + − +
⎪

+ +⎨
⎪ =⎩

 (32) 

where D =[1 1 1]T, 
1

0.9 ,V V=
2

0.1 ,V V=  w(k) = rsin 

(2k)exp(– 0.03k). In the absence of disturbance w(k) and 

controller inputs u1(k) and u2(k), the behavior of the de-

layed RMLPs described by (32) is shown in Fig. 6. We 

transform the chaotic RMLPs (32) into the system (3), 

where 
3 3

0 ,A
×

=
3 3

0 ,
d

A
×

=  Bp = W, Cq = V1, Cqd = V2, 

Dp = 03×3, H = I3×3, [φ1(ζ1(k)) φ2(ζ2(k)) φ3(ζ3(k))]
T = tanh 

(V1y(k) +V2y(k –2)). The controller (6) is employed to 

synchronize the RMLPs (31) with delayed RMLPs (32). 

According to Theorem 2, by solving the EVP (19)-(20), 

we obtain the gains of desired H∞ synchronizer as fol-

lows: 

9

1

0.1222 0.0911 0.0296

10 0.2483 0.1866 0.0597 ,

0.0731 0.0555 0.0174

K
−

−⎡ ⎤
⎢ ⎥= × − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

2

1.8788 0.0156 1.0420

1.3722 0.2217 0.1457 .

0.1758 0.7691 1.4014

K

− − −⎡ ⎤
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥−⎣ ⎦
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Fig. 7. The controlled output error ze(k) of discrete-time 

RMLPs with disturbance signal w(k) = rsin(2k) 

×exp(−0.03k). 

 

When the state feedback laws (6) with the above K1 

and K2 are applied to the response chaotic RMLPs (32) 

with external disturbance w(k), the response of the con-

trolled output error ze(k) is shown in Fig. 7. It can be seen 

that the effect of the disturbance input w(k) on the con-

trolled output error ze(k) can be restricted on the lowest 

level. 

We have noticed that, although Su et al. [24] have 

provided a common chaotic neural network model to 

describe several well-known discrete-time chaotic neural 

networks (such as Hopfield neural network, cellular 

neural network, Chua’s circuit, etc), this model could not 

include RMLPs, and their approaches could not be used 

to solve the synchronization problem of chaotic RMLPs. 

 

5.3. Synchronization of two hyperchaotic Hénon maps 

Consider the following discrete-time hyperchaotic 

Hénon map [26]: 

2

1 3 2

2 1

3 2

1 2 3

( 1) 0.1 ( ) 1.76 ( ),

( 1) ( ),

( 1) ( ).

( ) ( ) ( ) ( ).
x

x k x k x k

x k x k

x k x k

z k x k x k x k

⎧ + = − + −
⎪

+ =⎪
⎨

+ =⎪
⎪ = + +⎩

 (33) 

Hénon map is a typical chaotic system, which exhibits 

very rich complex dynamical dynamics shown in Fig. 8, 

where x2(k)∈[–d1, d1], with d1 known already. If Hénon 

map (33) can be synchronized by the response system 

(23), where D = [1 1 1]T, w(k)∈l2[0, ∞) is defined in (30), 

the states of the response system are finite, i.e., ( )y k ∈ 

[–d2, d2], where d2 is a known constant. We transform 

Hénon map (33) into system (22), where 

1 2
0 0.1

1 0 0 ,

0 1 0

d d

A

+ −⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

1

0 ,

0

p
B

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

[0 1 0],
q

C =  0,
p

D =  
1 2

2( ),H d d= +  

2

2 1 2 2
( ( )) ( ) ( ) ( ) 1.76,k x k d d x kφ ξ = + + −  

1
5,d =  and 

2
5.d =   

 

Fig. 8. Chaotic trajectory of Hénon map (33) with the 

initial condition [x1(0) x2(0) x3(0)]
T = [0.1 0.1 

0.1]T (5000 iterations have been plotted). 

 

 

Fig. 9. The synchronization error of discrete-time Hénon 

maps with disturbance signal w(k) defined as (30). 

 

According to Corollary 1, the following gains of H
∞
 

synchronizer (24) are obtained: 

1

0.4377 10.2365 1.5952

0.9324 0.2825 0.0720 ,

0.0598 0.4777 0.5481

K

− −⎡ ⎤
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

2
[ 0.0000 1.0000 0.0000].K = − − −  

Fig. 9 shows the synchronization error between drive 

and response systems with disturbance noises. It can be 

seen from Fig. 9 that the effect of disturbances on the 

synchronization error is reduced quickly. 

Although [26,27] provided synchronization methods 

of discrete-time generalized Hénon maps, the influence 

of the noise or disturbance on synchronization controller 

hasn’t been considered. Besides, the methods proposed 

in [26,27] cannot be applied to other chaotic systems. 

Therefore, our method provides an improvement and is 

more applicable. 

 

6. CONCLUSION 

 

In this paper, we have proposed H
∞
 synchronization 

algorithms for a class of chaotic systems where the 

response systems have time delays which are either 

different from or the same as the drive systems. Central 
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to our design is the introduction of the unified model, 

which interconnects a linear dynamic system with static 

nonlinear operators, and the transformation of the 

discrete-time chaotic system into this unified model. By 

employing the Lyapunov functional method combined 

with the H
∞
 control concept, the novel state feedback 

controllers were designed to asymptotically synchronize 

two unified models with different or identical time 

delays and reduce the H
∞
-norm from the disturbance 

input to the output error within the lowest level. 

Illustrative examples show that most discrete-time 

chaotic systems can be converted into this unified model 

(1) (or (22)), and optimal H
∞
 synchronization controllers 

can be designed by Theorem 2 and Corollary 1 (or 

Corollary 2). Here it should be noted that systems such 

as recurrent neural networks [28] and cellular networks 

[29] are also accessible to our method if synchronization 

problems are required.  
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