
International Journal of Control, Automation, and Systems (2015) 13(1):120-125 
DOI 10.1007/s12555-013-0148-z 

 

ISSN:1598-6446  eISSN:2005-4092
http://www.springer.com/12555

Adaptive Fault Diagnosis and Active Tolerant Control for 

Wind Energy Conversion System 
 

Zhong-Qiang Wu*, Yang Yang, and Chun-Hua Xu 

 

Abstract: The fault mathematic model of the transmission part of wind energy conversion system 

(WECS) is established, and adaptive fault observer is constructed in the presence of unknown distur-

bance, it can detect the faults of the system, and estimate these faults. Then, based on fault observer, an 

active tolerant controller is designed to ensure the stability of the transmission part of WECS with 

fault .The simulation results of different type faults of generator show the effectiveness and feasibility 

of adaptive fault diagnosis methods. 
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1. INTRODUCTION 

 

In the last few years, with global warming and energy 

crisis, the development and utilization of new energy 

have been explored in many countries. Wind energy is a 

renewable energy sources, and does not produce harmful 

substances to the environment in the utilizing. In addition, 

there are abundant wind energy resources on Earth. 

Therefore, it has become a new power generation sources 

in many countries around the world. 

During wind energy conversion system operating, the 

transmission system has high possibility of fault. 

Transmission system is mainly components of the wind 

turbine, the transmission equipment and the mechanical 

part of the generator, whose function is transmitting 

torque to the generator. Now most research works of 

wind farm only focus on oil temperature detection for 

transmission system, it is difficult to meet the 

requirement of the fault diagnosis of WECS based on 

model. 

Currently, the fault diagnosis of wind power system 

based on the model has attracted many scholars’ attention 

[1]. Manuel et al. completed sensor fault detection and 

isolation of wind energy conversion system (WECS) by 

the generalized observer [2]. In [3], Liu proposed a local 

mean decompose method for wind turbine, through 

iteration demodulating the amplitude and frequency of 

fault signal so as to control fault system. Anurat adopted 

states monitoring to realize fault detection and isolation 

for wind energy conversion system [4]. In [5], the 

method of support vector machine has been used, and the 

characteristic parameters of various states of wind 

generator as learning samples. In the SVM training, in 

order to achieve fault diagnosis of wind energy 

conversion system, the mapping relations between 

different fault types and characteristic parameter vector 

are established. Many intelligent control algorithms have 

been studied and applied to fault diagnosis of WECS. In 

[6], BP neural network based on particle swarm 

optimization algorithm is used to diagnosis the fault of 

gearbox of WECS, through the particle swarm algorithm 

to make up for the deficiency of BP neural network and 

to improve the robustness of system. In [7], fuzzy control 

is adopted for fault diagnosis, through establishing the 

fault tree of system to solve the uncertainty problem of 

pitch control system, the rapidity and accuracy of the 

control system is improved. In [8], Expert system for the 

fault diagnosis of the gearbox of wind energy conversion 

system is proposed. Furthermore, artificial neural 

networks method for the fault diagnosis of WECS is 

proposed, it combined various neural networks to 

diagnosis the short circuit fault of generator [9]. The 

above methods have their own advantages, however, the 

problems of unknown disturbance have not considered. 

Because the running environment is harsh and many 

unknown disturbances exist [10], the method of fault 

diagnosis of WECS should have robustness; when there 

is an external disturbance, the system can run normally. 

In this paper, a robust adaptive observer is designed 

for wind energy conversion system. It can estimate the 

fault accurately when there are unknown disturbances in 

the system. So it can make the output error not sensitive 

to unknown disturbance. Then based on fault observer, 

an active tolerant controller is designed to ensure the 

stability of WECS with fault. The simulation results 

show the effectiveness and feasibility of adaptive fault 

diagnosis method and active tolerant controller. 
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2. FAULT MATHEMATIC MODEL OF WIND 

ENERGY CONVERSION SYSTEM 

 

The mathematic model of wind energy conversion 

system with variable-speed and fixed-paddle can be 

written as follows (see [11]): 
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where ωγ is rotor speed of wind turbine, ωg is rotor speed 

of generator, θ
Δ

 is torsion angle of transmission system, 

Jr and Jg  is the inertia of the rotor and generator 

respectively. Kdt is torsion stiffness, Bdt, Bg and Br is the 

inherent damping of torque (torsion), generator and 

turbine respectively, Ng is the speed increasing ratio of 

the gearbox. 
dt

η  is the efficiency of transmission system, 

Tr and Tg is the torque of the rotor and generator 

respectively. 

Supposing the generator is constant magnetic flux and 

the torque is exactly below 
max

,
g

T  non-linear generator 

torque can be approximate linearized into: 

g g g z
( )T B ω ω= −  

where ωz is rotor speed of zero torque. 

In the process of system operation, there will be 

various uncertain factors such as disturbance and system 

fault, the fault model of system can be written as follows; 
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is time-varying unknown fault, and suppose f (t) and its 

differential is norm bounded 
0

( ) ,t f≤f
1

( ) .t f≤�f  

Where 
0

0,f ≥
1

0;f ≥
1
( )tη  is the modeling error or 

external disturbance vector, and 
1 1
( ) .t g≤η  

 

3. DESIGN OF ADAPTIVE FAULT OBSERVER 

 

3.1. The model of adaptive fault observer  

The model of adaptive fault observer is: 

m m m
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where 3

m
ˆ ( )t ∈x R  is the state vector of observer. 

m
ŷ ∈R  is output of observer. ˆf  is the estimate of f. 

3
∈G R  is observer gain matrix to be designed, and 

satisfies ( )+A GC  is stable. 

When the system without fault and uncertainty factors, 

Equation (3) can be rewritten as 
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Define ˆ( ) ( ) ( ),t t t= −e x x
0

ˆ( ) ( ) ( ).t y t y tε = −  

By (2) and (4) the observation error and output error 

equation are obtained 
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By (5) the threshold of the system output error is 

defined 

1
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3.2. The determine of feedback gain matrix of observer 

Assumption 1: Suppose that there exist symmetric 

positive definite matrix Q, P = PT, satisfying the follow-

ing matrix inequality 

T T( ) ( ) 2 .− + − ≤ − −A EC P P A EC Q C C  (8) 

According to Assumption 1 the feedback gain matrix 

G can be deduced, and meets ( )+A GC  being stable. 

The deriving process as follows: 

By (8) gives 
T T( ) ( ) 2− + − + ≤A EC P P A EC C C – 

Q. 

Transforming the left of the inequality as: 

T T

1 T T

( ) ( ) 2
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A P C E C P
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If 1 T
,

−

= −G P C E  yield to  

T( ) ( ) .+ + + ≤ −A GC P P A GC Q  (9) 

According to Lyapunov stable theory, if there exists 

symmetric positive definite matrix P, Q, satisfy (9), then 

( )+A GC  is stable. So the feedback gain matrix of 

observer is 1 T
.

−

= −G P C E  

 

3.3. The adaptive estimation of fault  

For the estimation of fault, the following assumption is 

needed. 

Assumption 2: For any positive scalar c > 0 and 

positive semidefinite matrix S, the following inequality 

holds [12,13] 
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By (2) and (3) the dynamic equations of the estimation 

error and output error are described by 
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Using σ correction method in adaptive control (see 

[14]), the adaptive estimation of fault is 

ˆ ( ) ˆ( ) ( ),
d t

t t
dt

ε σ= − −
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where 0σ >  is a scalar, 3 3×
∈K R  and T

0= >K K  
3

,∈ RΦ  the learning rate of (12) is defined. 

If the design of the adaptive diagnosis algorithm can 

ensure the system described by (11) and (12) 

asymptotically stable, then the system state and fault 

estimation error is bounded, and the accurate estimation 

of the state and fault can be got.  

Proof: Choosing a possible Lyapunov function 
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The error system is asymptotically stable. So the 

designed of adaptive fault diagnosis algorithm can obtain 

accurate estimation of the state and fault. 

 

4. DESIGN OF FAULT-TOLERANT 

CONTROLLER BY STATE FEEDBACK 

 

To design the fault-tolerant controller by state 

feedback, a useful assumption is given. 

Assumption 3: The boundary functions 

T ( ) ( , ).t t≤x H xη Γ  

Function T( , ) /[ ]t � �x x HBΓ  is continuous and locally 

bounded on x, where T 0= >H H  and satisfy the 

following Riccati equation 

T T
2 0,+ − + =A H HA HBB H W  (15) 

where T 0.= >W W  

According to the state of fault system being estimated 

by the observer, the fault-tolerant controller of fault 

system need to be designed to ensure the closed-loop 

stability. The feedback control law is designed as follows  
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and .=E BE  

Substituting control law (16) into transmission system 

model (2), the following closed-loop state equations of 

fault system is got 

T T

m
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If the design of the feedback control law can ensure 

the closed-loop system (19) stability, the active fault 

tolerant controller designed can guarantee the normal 

running of the fault system.  

Proof: Choosing a possible Lyapunov function 
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By using the condition (10) and (15), we get 
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The parameters c1, c2 and β are chosen to satisfy the 

following inequalities  
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2
0,>S  

3
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According to (20), it is known that the feedback 

control law (16) can make the closed-loop fault system 

stable, and ensures the normal running of system when 

fault occurred. 

 

5. SIMULATION STUDIES 

 

In the simulation, the parameters are as follows: 
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The fault is as follows T( ) [0 ( ) 0] ,
i

t f t=f 1,2i =  

where fault f1 is supposed the actuator fault of the main 

transmission chain, and result in constant biases. The 

fault can be described as follows: 
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Fault f2 is supposed the shaft fault of gear box, and 

result in double frequency vibrations, the vibrations 

frequency of shaft is 10Hz. Then, the fault can be 

described as follows: 

F2: 
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( )

160 80sin(125.6 ), 20 .

t s
f t

t t s

< <⎧
= ⎨

+ ≥⎩
 

The simulation results are shown in Figs. 1~6: 

Figs. 1 and 2 show the output error when fault f1(t) and 

f2(t) occurred, respectively. The system output error is 

quickly beyond the threshold when fault accrued; the 

simulation results show that the observer designed can 

detect the system fault accurately and rapidly.  

Figs. 3 and 4 show the estimation of fault f1(t) and f2(t) 

by the observer designed. The simulation results show that 

the fault observer designed can estimate the fault accu-

rately, whether it is a constant fault or time-varying fault. 
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Fig. 1. The detection of fault f1. 

 

 

Fig. 2. The detection of fault f2. 

 

 

Fig. 3. The fault f1 and its estimate 
1
ˆ .f  

 

2

ˆ f

 

Fig. 4. The fault f2 and its estimate 
2
ˆ .f  

 

Fig. 5. The fault-tolerant controller output of constant 

fault occurred. 

 

 

Fig. 6. The fault-tolerant controller output of time - 

varying fault occurred. 

 

Figs. 5 and 6 show the system output after the active 

fault-tolerant controller is used when constant fault and 

time-varying fault occurred, respectively. When fault 

happened, the results show that fault-tolerant controller 

can make the system output wave in a smaller range. It is 

show that the control method has very strong robustness, 

no matter constant fault or time-varying fault. 

In [15], the benchmark model is adopted, which 

includes hydraulic pitch model, converter model and 

drive train model, so it is comprehensive. Three kinds of 

fault have been considered, sensor fault (fixed value or 

gain factor), actuator fault (offset) and parameter abrupt. 

Only the parameter abrupt can be estimated by least-

square method which needs last N samples of input and 

output. Sensor and actuator fault are got by measurement 

or the deference between measured and expected value, 

so it needs many sensors. The tolerant control corres-

ponding needs auxiliary controllers (it needs to be 

designed in advance for redundant).  

In this paper, only drive train model is considered, and 

is used to test the effectiveness of control scheme. The 

fault is estimated by an adaptive mechanism which 

depends on the model, it can approximate the fault 

gradually, not need least-square method which needs 

many samples of input and output, and the number of 

sensor can be reduced effectively. The fault can be 

estimated adaptively, auxiliary controllers are not needed. 

It is simple and suitable for appliance. 
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6. CONCLUSION 

 

In this paper, a new adaptive fault observer is designed 

for the transmission part of the wind energy conversion 

system, in the case of unknown input and disturbance. It 

can accurately detect and estimate the fault, no matter 

constant fault or time-varying fault, respectively. Then a 

state feedback fault-tolerant controller is designed, it can 

maintain system normal running when a fault occurred. 

The simulation results show the feasibility and 

effectiveness of the adaptive fault observer and fault-

tolerant controller for wind energy conversion system.  
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