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Abstract: In this paper, we consider the H∞ filters design for singular bilinear systems. The approach 

is based on the parameterized solution of a set of constrained Sylvester equations. The exponential con-

vergence and l2 gain attenuation problems are solved by using the bounded real lemma, which leads to 

linear matrix inequalities (LMI) formulation. Finally, a detailed design procedure is given for the esti-

mation of the states of a flexible joint robot, which demonstrates the effectiveness of the proposed me-

thod. 
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1. INTRODUCTION 

 

Bilinear systems have been firstly used to represent 

many physical systems when linear models are 

inadequate. They present the advantages to be nonlinear 

systems but are close to the linear ones. Then a great deal 

of work has been devoted to the analysis and design 

techniques for bilinear systems. In the other hand we 

know that we must have access to all the state of a 

system to construct control laws or monitoring schemes 

for this system. Consequently, several results have been 

devoted to the problem of observers design for bilinear 

systems (see [1-3]). Unfortunately, physical systems are 

often subjected to bounded energy perturbations, and 

then in order to give a good estimation of their states, we 

must take into account an H∞ criterion. Several methods 

for H∞ filter design have been proposed in the full order 

case and even in the full order case and even in the 

reduce order case (see [4-13]). 

The singular systems, meanwhile, have been intro-

duced to describe systems for which standard state space 

representations are not applicable. Recently, these types 

of systems have attracted many attentions of the control 

community. These systems have a great significance 

both in theory and from application point of views (see 

[14-16] and the references therein). They are designed as 

singular, descriptor, generalized, implicit or semi-state 

systems (see [14-16] and the references therein). Appli-

cations of these systems are encountered in chemical 

processes, mineral processes, electrical and economical 

systems [17], … Therefore, the observers design for 

singular systems are of considerable interest (see 

[14,18,19]). A great deal of works has been devoted to 

the observers or filters design for descriptor systems (see 

[14,18]). In [19], an extension to the H∞ filter design for 

Lipschitz singular systems has been presented. But there 

are less works for singular bilinear systems ones. This is 

one of the main motivations of our paper. Notice that 

even if the approach seems the same as in [19], the 

presence of the bilinearities introduced by the control 

inputs made the filter design different.  

In this paper, an H∞ filtering method is proposed to 

reconstruct the state of a class of singular bilinear 

systems with bounded input. The proposed approach is 

based on a new parameterization of the solutions of a set 

of algebraic Sylvester equations, which are derived from 

the unbiasedness of the estimation error. The unbiased-

ness conditions ensure that the error is independent of the 

states of the system. Notice that the control inputs of the 

system are treated as structured uncertainties by doing a 

change of variable in order to avoid the bilinearities they 

imply. Thus, under some conditions the problem of H∞ 

filtering for the class of systems considered can be seen 

as a particular case static output feedback problem. 

Sufficient conditions for existence and convergence of 

the proposed filter are given in terms of linear matrix 

inequalities (LMI). 

This paper is organized as follows. The problem is 

stated in Section 2. In Section 3, we will give the 

conditions for the existence of the unbiased H∞ filter. 

Then a model of single-link flexible joint robot is used to 

demonstrate the effectiveness of the proposed method in 

Section 4, this is an interesting industrial motivation. 

Finally, Section 5 concludes the paper.  

 

2. PROBLEM STATEMENT AND BASIC 

ASSUMPTIONS 

 

Consider the following bilinear system 
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( )w t ∈L  and ( ) p
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×
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In this paper, a change of variables is introduced by 

considering each ( )
i
u t  as a “structured uncertainty” (see 

[20]), then ( )
i
u t  can be rewritten as follows: 

( ) ( ),
i i i i
u t tα σ δ= +  (2) 
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i
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i
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With the new “uncertain” variable ( ) m

i
tδ ∈Γ ⊂ ℜ  where 

the polytope Γ  is defined as 

,min ,max

for 1,2,...,

: { ( ) / ( ) }
m

i i i

i m

t tδ δ δ δ
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 and where 

,min

1
i

δ = −  and 
,max

1.
i

δ = +  

Now, as in [8,19], let Er n×Φ∈ℜ  be a full row rank 

matrix such that  

[ ] 0,
i

E AΦ =  for 1,2,...,i m=  

then, from (1), we obtain 

0 1
( ) ( ) ( ).A x t D w t Bu tΦ +Φ = −Φ  

Now, consider the following reduced-order filter for 

system (1)  

0 0

1 1
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m m

i i i i
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 (3a) 

0
ˆ( ) ( ) ( ) ( )x t P t Q Bu t G y tζ= − Φ +  (3b) 

with the initial condition 
0

(0) .ζ ζ=  Vector ( ) q
tζ ∈ℜ  

represents the state vector of the filter and ˆ( ) n

x t ∈ℜ  is 

the estimate of x(t). ,
i

N ,
i
J ,H ,P ,Q  and G0 are 

unknown matrices of appropriate dimensions, which 

must be determined such that ˆ( )x t  asymptotically 

converges to x(t) when ( ) 0w t =  and, for ( ) 0,w t ≠  we 

solve  
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Let ( ) ( ) ( )t t TEx tε ζ= −  be the error between ( )tζ  

and ( ),TEx t  then we have the following error system: 
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Now, if  

0 0 0

0 0

) 0

) 0 for 1

)

) [ ]

i i i

n

i N TE TA J C

ii N TE TA J C i m

iii H TB
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iv P Q G A I
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 (5) 

then the error (4) is independent of x explicitly, and we 

can rewritten the error (4) as 

( )0 0 2 1

1

2

1

( ) ( ) ( )
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m

i i

i

m

i i

i

t N u N t J D TD w t

u J D w t

ε ε

=
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∑
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 (6a) 

1 0 2
( ) ( ) ( ) ( ).e t P t Q D G D w tε= + Φ +  (6b) 

Notice that equations i) – iv) of (5) are in the form of a 

set of constrained Sylvester equations. In the sequel, we 

assume that 

Assumption 1: 

0
.

E

rank A n

C

⎡ ⎤
⎢ ⎥Φ =⎢ ⎥
⎢ ⎥⎣ ⎦

 

Remark 1: One can see that the dimension of the 

filter (3) is q≤ n. Then, the presented approach unifies 

the filter design for the full-order q = n, the reduced-

order q = n – p and the minimal order filter. 

The design of filter (3) of dimension q is reduced to 

find the matrices ,T ,
i

N ,
i
J ,H ,P Q  and G0 which 

satisfy the constraints i) – iv) of (5). 

 

3. MAIN RESULTS 

 

In this section, a new method is presented to design 

filter (3) for system (1) guaranteeing that e(t) asymp-

totically converge to zero when for w(t) = 0 and for 
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,( ) 0w t ≠
2 2

,( ) ( )e t w tγ<  where γ is a scalar corres-

ponding to a prescribed performance. In order to ensure 

the unbiasedness of the filter (3), we must give a solution 

of the Sylvester matrix equations given by i) – iv) of (5). 

For this, let us first consider the following proposition. 

Proposition 1: Let R0 a full row rank matrix such that 

0

0 0

R TE

rank A rank A

C C

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥Φ = Φ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

�

 

then there always exists a matrix T�  such that  
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0

E
I
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C

+

⎡ ⎤
⎡ ⎤⎢ ⎥
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⎣ ⎦⎢ ⎥⎦

=

⎣
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Proof: Let R0 be any full row rank matrix such that 

0
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then there always exist matrix parameters, K0 and T�  

such that 

0
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⎣
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Then, under Assumption 1, the solution to (7) is 
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In this case, we have 

0 0
0

E
I

T R A

C

+

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥⎦

=

⎣

Φ�  

and  
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Before continuing, we also give the following lemmas, 

which give the conditions to get solutions to some parts 

of (5). 

Lemma 1: Under Assumption 1, the constrained 

Sylvester equations i) and iv) of (5) have a solution if and 

only if  

0
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.
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In this case, the general solution is given by 

0 0 0 00
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( )
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+ +
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in which Ψ0 and 0

0

Z

Y

⎡ ⎤
⎢ ⎥
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 are arbitrary matrices of appropri-

ate dimension. 

Proof: Define the matrix 
0

T T= +Ψ Φ
�  where 

0
Ψ  

is an arbitrary matrix [19], then equations i) and iv) of (5) 

can be rewritten as 

0 0 0 0

0

0 n
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Equation (9) has a solution if and only if  
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⎡ ⎤
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If the Assumption 1 is verified, then the general solution 

to (9) is given by (8). 

Lemma 2: The constrained Sylvester equation ii) of 

(5) has a solution if and only if for 1 i m≤ ≤  

i

TE
TE

rank C rank
C

TA
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and the general solution is given by  

([ ] , for 1)
i i i i

N J TA Z I i m
+ +

= Ω − −ΩΩ ≤ ≤
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⎡ ⎤
⎢ ⎥
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�

 and Zi are arbitrary matrices of appro-

priate dimension for 1 .i m≤ ≤  

Proof: By substituting T�  in ii) of (5), we obtain 

, for 1
i i i

TE
N J TA i m
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⎡ ⎤
⎡ ⎤ = ≤ ≤⎢ ⎥⎣ ⎦

⎣ ⎦

�
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Equation (11) has a solution if and only if  
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then the general solution to (11) is given by (10). 

Before giving the complete design method of the H
∞
 

filter (3), we define the following matrices which are 

derived from (8) and (10), respectively 
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Then, from i) – ii) of (5), we have the filter matrices 

given by 

0 00 0
,

N N
N Z= Λ − Δ  

0 00 0
,Z

Ψ Ψ
Ψ = Λ − Δ  

0 00 0
,

J J
J Z= Λ − Δ  

0
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P P
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G G
G Y= Λ − Δ  

0Q QQ Y= Λ − Δ  

 ,

i ii N i N
N Z= Λ − Δ  ,

i ii J i J
J Z= Λ − Δ  for 1 .i m≤ ≤  

So, the design of the filter given by (3) is reduced to find 

the parameters Z0, Zi, and Y0. 

 

3.1. H∞ filter design 

In this section, the goal is to propose an approach to 

design the matrix Z0, Zi, and Y0 to ensure the error 

convergence and to fulfill H∞ specification. By introduc-

ing the change of variable given by (2) into (6), we 

obtain  
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which can be rewritten as 
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Using the previous developments and the following 

notations  
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we obtain 
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+ Λ − Δ Δ

�

�  

0

0

0 1 2

0 1 2

( ) ( ) ( ) ( ) ( )

( ) ,( )

P P Q G

Q G

e t Y t D D w t

Y D D w t

ε= Λ − Δ + Λ Φ +Λ

− Δ Φ + Δ

 

where 

( )

( )
1 1

1 1

0 1
[ ], [ ]

[ ], bdiag [ ] ,

[ ], bdiag

,

[ ] .

m m

m m

T

m

N N N NN N

J J J JJ J

Z Z Z Z Z Z= =

Λ = Λ Λ Δ Δ Δ

Λ = Λ Λ Δ = Δ Δ

=

�

� �

� �

 

Finally, we obtain the following error dynamics 

( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ),
w w

t Z t Z H t

Z w t Z H w t

ε ε
ε ε δ ε

δ

= − + − Δ

+ − + − Δ

� �� � �

� �

A A

B G B G

 

 (13a) 

0
( ) ( ) ( ,) ( ) ( )

P P
e t Y t Y w tε= Λ − Δ + −F H  (13b) 
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where 

0
,

N N ε
α= Λ + ΛA  0

,

N

N ε
α

Δ⎡ ⎤
= ⎢ ⎥

Δ⎢ ⎥⎣ ⎦
�  

0
,

N ε
σ

⎡ ⎤
= ⎢ ⎥Δ⎣ ⎦

��  ,
N ε
σ= Λ

�A  

0 02 1 1 2
,

J wJ
D TD D Dα

Ψ
= Λ − + Λ Φ +Λ

�B  

0 02 1

2

,

J

wJ

D D

Dα

Ψ
Δ + Δ Φ⎡ ⎤

= ⎢ ⎥
Δ⎢ ⎥⎣ ⎦

G  
2
,

J
D= Λ

�B  
2

0
,

J
D

⎡ ⎤
= ⎢ ⎥Δ⎣ ⎦

�G  

0 2 1
,

G Q
D D= Λ + Λ ΦF  

01 2
. Q GD D= Δ Φ + ΔH  

Then, the design of the H∞ filter is resolved from the 

following theorem in terms of LMI. 
 

Theorem 1: Under Assumption 1 and given γ > 0, 

there exists a filter of the form (3) such that the error e(t) 

given by (6) is asymptotically stable for ( ) 0w t =  and 

2 2
( ) ( )e t w tγ<  if there exist symmetric positive 

definite matrices , ,S
w

X S
ε

 and matrices �  and Y0 

such that the LMI (14) is satisfied, and positive scalars 

,i ε
µ  and 

,

, 1, 2,..., .
i w

i mµ =  Here, ‘*’ is the transpose 

of the off-diagonal part. Then, the gain Z is then obtained 

by 1.T
Z X

−

= �  

2

0 0

0

0

0

0

T T T

T T

T T

T T

P P

X X

X I

X

X

Y Y

S H

S H

ε ε

ω ω

γ

− + − ∗

− −

−

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

Λ − Δ

⎢⎢⎣

−

� � � �

�

� �� �

� � �

A A

B G

A

B G

F H

 

 0 0,

0 0

0 0 0

0 0 0 0

S

S

I

S

S

ε

ω

ε

ω

∗ ∗ ∗ ∗ ∗ ⎤
⎥∗ ∗ ∗ ∗ ∗ ⎥
⎥− ∗ ∗ ∗ ∗
⎥

− ∗ ∗ ∗ <⎥
⎥− ∗ ∗
⎥

− ∗ ⎥
⎥− ⎥⎦

 (14) 

1, ,

1, ,

bdiag( , , ) 0,

bdiag( , , ) 0.

m

w w m w

S I I

S I I

ε ε ε
µ µ

µ µ

= >

= >

�

�

 

Proof: Let 

( ) 0
,

0 ( )
w w w

p p

p q

ε ε ε
δ

δ

Δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (15) 

then, we can rewritten the error (14) as 

( )

( ) ( ) ( )

[ ] [ ] ,

w

t Z t

w

Z p

p

ε

ε ε= −

⎛ ⎞
⎜ ⎟

+ − ⎜ ⎟
⎜ ⎟
⎝ ⎠

� �

� � � ��

A

B A B G G
 (16) 

0
( ) 0 0

( ) 0 0

0 00

0 .

P P

w w w

e t Y Y w

q H t p

q H p

ε ε ε
ε

Λ − Δ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎡ ⎤
⎢

⎢ ⎥⎣

⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦⎦ ⎣ ⎦ ⎣ ⎦

F H

 (17) 

By considering system giving by equations (15)-(14)-

(17) as a diagonal norm-bounded linear differential 

inclusion (see [20]), it can be rewritten as 

1
( ) ( ) [ ] ,

e e

w
t A t B H

p
ε ε

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
�  

2

2 31

ˆ( ) ( ) ,
ee

D HC w
e t t

E EE p
ε

⎡ ⎤⎡ ⎤ ⎡ ⎤
= + ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦
 

where 

1 0

1 2

, ,

, ,

, [0 0],
0

,

e e

e P P

e

A Z B Z

H Z Z C Y

H
E D Y H

ε

− = −

− − =

=

⎡ ⎤= ⎣ ⎦

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Λ − Δ

= − =

�

� � � ��

A B G

A B G

F H

 

2 3

0 0 0
,

0 0

( )

ˆ, (

,

) ,

w

w

w

E E
H

e t
p

p e t p
p

q

ε

ε

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

⎡ ⎤
⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎣ ⎦

⎡

⎢ ⎥⎣ ⎦

⎤
= ⎢ ⎥
⎣ ⎦

 

and we can then introduce the following auxiliary system 

similarly to [21] 

1

1 2
1

( ) ( ) [ ] ,
e e

w
t A t B H S

p
ε ε γ

−

−

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
�  (18a) 

1

1 2
2

1
1 1 1

2
1 2 2 21

2 3

ˆ( ) ( ) ,
e

e

C
D H S w

e t t
p

S E
S E S E S

γ
ε

γ

−

−

−

−

⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎡ ⎤⎢ ⎥= + ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 (18b) 

where 
0

.
0

w

S
S

S

ε
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

By using the bounded real lemma (see [20-22]), 

system (18) is exponentially convergent for  

2 2
( ) 0 and ( ) ,) (w t e t w tγ≠ <  

if there exist symmetric positive definite matrices X, S, 

and a scalar γ such that the inequality (19) is satisfied. 

1 1

1 1 1

2 1

1 1 1

2 2 2
1 2 3 1

T T T

e e e e

T T T

e e e

T T T

e

A X XA C C E SE

B X D C E SE

S H S H C S E SE

γ γ γ
− − −

− − −

⎡
+ + +⎢

⎢
+ +⎢

⎢
⎢ + +⎣

 

 

1 1 1

1 2

2 2

2 2

1 1

1 12 2
2 3 2 3 1

T T

e e e

T T

e e

T T T

e

XB C D E SE

D D E SE

S H D S E E E SE

γ γ γ

γ γ

γ γ
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− −
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1 1 1

2 2 2
1 2 1 3

1 1 1

1 12 2 2
2 2 3

1 1 1 1

1 2 2 2 2
2 2 3 3

0.

T T

e

T

e

T T

XH S C H S E SE S

D H S S E SE S

H H S S S E SE S

γ γ

γ

− − −

− − −

− −

− − − −

−

⎤
+ + ⎥

⎥
⎥ <

+ ⎥
⎥
⎥+ + ⎦

 (19) 

By pre-multiplying and post-multiplying inequality (19) 

by 1/ 2
bdiag( , , ),I I Sγ  and by using the Schur com-

plement, we obtain: 

1 1

2

2

31 2

2

1 2 3

0

0

0

0

0

T T T
ee e e

T T T

e e

T T

e e

XB XHA X XA C E S

B X I D E S

S E SH X H

C D H I

SE SE SE S

γ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ <
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎦

+

⎣

−

−

⎥

−

−

 (20) 

by substituting Ae, Be, H1, Ce, E1, De, H2, E2, E3 by their 

values, and using ,

T
Z X=�  we obtain the LMI (14). 

Then, Theorem 1 is proved. 

In the following section, we apply the results 

developed in this paper to an illustrative example to 

show the effectiveness of our approach.  

  

4. PRACTICAL EXAMPLE 

 

Let us consider the example of a single-link flexible 

joint robot given in [23]. A slight modification of the 

model gives the following system  

1 2

2 1 2 3

3 4

( ) ( ),

( ) ( ) ( ) ( ) ( ),

( ) ( ),

k

m m m

x t x t

Kk k
x t x t x t x t u t

J J J

x t x t

=

= − + + +

=

�

�

�

 

4 1 3 5

3 5

( ) ( ) ( ) ( )

( ( ) ( )) ( ),

l l

l

k k
x t x t x t x t

J J

mghk
x t x t u t

J

γ= + +

+ +

�

 

1 3 5 0 3 5

1 1 2 2

0 ( ( ) ( )) ( ),

( ) , ( ) ( ),

x x x d x t x t u t

y t x y t x t

= + + + +

=

 

where x1(t), x2(t), x3(t), x4(t) and x5(t) are the angular 

rotation of the motor, the angular velocity of the motor, 

the angular position of the link, the angular velocity of 

the link, the fast subsystem perturbation and the scalar 

unknown input, respectively. The obtained model is then 

a bilinear singular system. For illustration purpose, a set 

of model parameters k, Jm, Jl, Bm, Kk, g, and h is chosen 

to give the following singular bilinear model 

1 1

2 2

3 3 3

4 4

5 5

( ) ( ) 0

( ) ( ) 0

( ) ( ) ( ) ( )0

( ) ( ) 0.1

( ) ( ) 0.359

x t x t

x t x t

E x t A x t x t u t

x t x t

x t x t

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
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�

�

�
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1 0 2

0 21.5 1
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0.359 0 1

x t u t u t w t
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥
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1

2

3

4

5

( )

( )
1 0 0 0 0 1

( ) ( ) ( ),
0 1 0 0 0 1

( )

( )

x t

x t

y t x t w t

x t

x t

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤
⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦
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where 

0 1 0 0 0

48.5 1.25 48.5 0 0

0 0 0 1 0

19.5 0 19.5 0 0.1

1 0 1 0 1

A

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥=
⎢ ⎥

− −⎢ ⎥
⎢ ⎥⎣ ⎦

, 

1 0 0 0 0

0 1 0 0 0
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0 0 0 1 0

0 0

( ) 0.1sin( )

0 0 0

.E u t t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=  

For this system, the matrix [0 0 0 0 1].Φ =  In this 

case, it is easy to see that Assumption 1 is verified. We 

shall design a reduced-order filter of dimension q = 3, let 

0

1 0 0 1 0

0 1 0 0 1

0 0 1 0 0

R

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 then 

0

0
5

R

rank A

C

⎡ ⎤
⎢ ⎥Φ =⎢ ⎥
⎢ ⎥⎣ ⎦

 

for γ = 2.93, the parameters of H∞ filter (3) are given by 

0

0 19.4 0.53

1 24.25 0.64

0.9

,

0 0

N

⎡ ⎤
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,
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J
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⎥
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J
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H
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Fig. 1 shows the applied disturbance, which appears 

after ten seconds. Then, Figs. 2 to Fig. 6 show the 

different states (solid lines) of the considered system and 

their estimates (dashed lines) using the H∞ filter 

presented in this paper. The efficiency of our filter is 

then proved; the states and their estimates converge to 

the same values before the appearance of the disturbance. 

When the disturbance appears, we have a non zero errors 

which become newly zero when the disturbance vanished. 

Fig. 4. x3(t) (solid lines) and 
3
ˆ ( )x t  (dashed lines). 

 

Fig. 5. x4(t) (solid lines) and 
4
ˆ ( )x t  (dashed lines). 

 

Fig. 6. x5(t) (solid lines) and 
5
ˆ ( )x t  (dashed lines). 

Fig. 1. The disturbance w(t).  

 

Fig. 2. x1(t) (solid lines) and 
1̂
( )x t  (dashed lines). 

 

Fig. 3. x2(t) (solid lines) and 
2
ˆ ( )x t  (dashed lines). 
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5. CONCLUSION 

 

In this paper, an H∞ filter design procedure for singular 

bilinear systems is presented. It is based on the param-

eterization of the general solution of the constrained 

Sylvester equations. The solution is obtained from LMI 

formulation. A practical example is given to illustrate our 

approach.  
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