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Abstract: This paper studies the problem of state feedback H∞ control for singular systems through 

delta operator approach. A necessary and sufficient condition is presented such that a singular delta op-

erator system is admissible with a prescribed H∞ performance, which can provide a unified framework 

of the existing H∞ performance analysis results for both continuous case and discrete case. The exis-

tence condition and explicit expression of a desirable H∞ controller are also obtained for singular delta 

operator systems. The proposed design method can be used for both singular continuous systems and 

singular discrete systems directly. The corresponding design procedures, which simplify the classical 

approaches, are discussed and presented. All obtained conditions in this paper are in the form of strict 

linear matrix inequalities whose feasible solutions can be found by standard linear programming me-

thod. Numerical examples are provided to illustrate the effectiveness of the theoretical results obtained 

in this paper. 

 

Keywords: Admissibility, H∞ performance, linear matrix inequality (LMI), singular delta operator 

systems, state feedback. 

 

1. INTRODUCTION 

 

Compared with the state-space systems, singular 

systems can describe dynamics and algebraic constraints 

of state variables simultaneously, and therefore they are 

more suitable to describe many practical systems. 

Singular systems have been appeared in many different 

research areas such as economic systems, highly inter-

connected large-scale systems, constrained mechanical 

systems and electrical networks, etc (see, e.g., [1]). Many 

fundamental results have been developed for singular 

systems during the past decades, for example, see [1-21] 

and the references therein. Moreover, singular system 

methods are also adopted to study certain types of state-

space systems in order to obtain less conservative results 

[22,23]. It is worth pointing out that both analysis and 

control of singular systems are much more complicated 

than those of state-space systems because admissibility 

(i.e., regularity, stability, and impulse elimination for the 

continuous case or regularity, stability and causality for 

the discrete case) is a basic requirement for the control of 

singular systems, whereas for the control of state-space 

systems, the concern is mainly the stability. 

The problems of H∞ performance analysis and 

synthesis for singular systems are of both practical and 

theoretical importance and have received considerable 

attention in the past decades. Many significant results 

have been reported in literature. The systematic results of 

H∞ performance analysis and synthesis for singular 

continuous systems and singular discrete systems, 

respectively, can be found in [2]. Recently, certain 

different novel LMI-based bounded real lemmas (i.e., H∞ 

performance analysis results) for singular discrete 

systems have been developed in [12,13]. In particular, 

the problem of state feedback H∞ control for singular 

discrete systems with or without uncertainty has been 

considered in [11,13]. However, current framework for 

the study of singular systems is either for the continuous 

case or the discrete case, and these two cases are 

considered separately and independently. There is no 

direct relationship established in literature between 

singular continuous systems and singular discrete systems. 

A significant amount of discrete systems are often 

obtained from continuous systems through state 

sampling. Standard shift operator is usually used to 

describe discrete systems. The main drawback of this 

setting is that the corresponding discrete version does not 

converge smoothly to its continuous counterpart as the 

sampling period approaches to zero [24]. This creates a 

gap between continuous systems and their corresponding 

discrete models, which results in the disconnection of 

controller design for a continuous system and its discrete 

version. In order to overcome this problem, a delta 

operator method was proposed in [25]. It is shown that 

the delta operator model not only can provide a unified 

framework for both-state space continuous systems and 

their discrete models but also can establish a direct 
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connection between continuous systems and their 

corresponding discrete systems so that the relationship 

between these two kinds of systems becomes more 

transparent in terms of sampling periods [26]. 

Furthermore, the delta operator requires a smaller word 

length when implemented in fixed-point digital control 

processors than the shift operator does and the delta 

operator method is also significantly less sensitive than 

the shift operator method at high sampling rates [27]. 

There have been many results for state-space systems 

through the delta operator method. Some solutions to the 

problems of H2 control, guaranteed cost control, and H∞ 

filtering were given in [26] for delta operator systems 

(DOSs). The problem of robust stabilization was 

considered in [28] for delay DOSs. An observer-based 

sliding mode controller was synthesized for uncertain 

DOSs in [29]. A novel delta operator Kalman filter was 

designed in [30] and the problem of guaranteed cost 

control was considered for networked control systems 

based on the above filter [31]. The problems of robust 

H∞ control and fault-tolerant control for fuzzy systems 

via the delta operator method were studied, respectively, 

in [32] and [33]. 

As we just mentioned, the delta operator method has 

been adopted extensively to study various types of state-

space systems. The main advantage by using the delta 

operator method for controller design is that the design 

procedure can be unified for a continuous system and its 

corresponding discrete model and we only need to focus 

on one of them under the delta operator framework. 

Recently, the delta operator model has been set up for a 

singular continuous system which will converge to the 

corresponding continuous system as the sampling period 

approaches to zero [17,18]. Thus this indicates that the 

delta operator model, similar to state-space situation, can 

also provide a unified framework for a singular 

continuous system and its discrete model. Moreover, 

under the delta operator framework, the admissibility can 

be characterized by the same condition for both systems. 

Existing research results about singular delta operator 

systems (SDOSs) can be found in [17-21]. Various 

admissibility conditions were discussed in [18]. The 

analysis results of controllability and observability were 

given in [19] and [20], respectively. The problem of 

admissible control was considered in [17,21], 

respectively. However, all of the current existing results 

about H∞ performance analysis and synthesis of singular 

systems are considered for the continuous case and the 

discrete case separately and independently. This usually 

renders the control design procedure to be either more 

complicated or redundant. To the best of our knowledge, 

the problem of H∞ control for singular systems under the 

delta operator framework remains unknown in current 

literature. 

Since SDOSs can provide a unified framework for 

both singular continuous systems and singular discrete 

systems, one would expect that the approach by using the 

delta operator method should be able to simplify the 

procedure of H∞ performance analysis and synthesis. 

Motivated by this, in this paper, we will consider the 

problem of state feedback H∞ control for singular 

systems via the delta operator method. The main 

contributions of this paper are given as follows: (1) A 

necessary and sufficient condition is derived for a SDOS 

to be admissible with a prescribed H∞ performance, 

which can provide a unified expression of the existing 

H∞ performance analysis results for both singular 

continuous systems and singular discrete systems. (2) 

The existence condition and explicit expression of a 

desirable H∞ controller are given for SDOSs and the 

obtained method can be used directly to design a state 

feedback H∞ controller for both singular continuous 

systems and singular discrete systems. The detailed 

design procedures, which simplify the classical 

approaches, are discussed and presented. All conditions 

in this paper are in the form of strict LMIs whose 

feasible solutions can be found in an efficient way by 

standard linear programming method. 

The remainder of this paper is organized as follows. 

Section 2 introduces some preliminaries and presents the 

problem formulation. Section 3 shows the main results. 

Section 4 provides some numerical examples to illustrate 

our theoretical outcomes, and Section 5 concludes this 

paper. 

Throughout this paper, n

R  and m n

R
×  denote the 

spaces of n-dimensional real vectors and m n×  real 

matrices, respectively. Matrix 0P >  (or P < 0) means 

that P is symmetric and positive definite (or negative 

definite). The superscript T means the transpose of a 

vector or a matrix. The shorthand 
1 2

( , , , )
s

diag M M M�  

denotes a block diagonal matrix with diagonal blocks 

being the matrices 
1 2
, , , .

s
M M M�  

int
( , )D a r  is the 

interior of the region in the complex plane with the 

center at ( ,0)a  and the radius r. The identity matrix 

with dimension r r×  is denoted by I
r
. ( , )A Bλ =  

{ }det( ) 0z zA B− =  stands for the eigenvalue set of B 

relative to A. δ is the delta operator defined by 

( )
, 0,

( )
( ) ( )

, 0,

dx t
h

dt
x t

x t h x t
h

h

δ

⎧
=⎪⎪

= ⎨
+ −⎪ ≠

⎪⎩

 

where h is the sampling period. 

 

2. PRELIMINARIES AND PROBLEM 

FORMULATION 

 

Consider the following singular continuous system 

( ) ( ) ( ) ( ),

( ) ( ),

s s s
Ex t A x t F t B u t

z t Cx t

ω= + +

=

�

 (1) 

where ( ) n

x t R∈  is the state, ( ) p
t Rω ∈  is the disturb-

ance input, ( ) m

u t R∈  is the control input, ( ) q
z t R∈  is 

the regulated output, n n

E R
×

∈  satisfies ( )rank E r=  

,n< ,
s

A ,
s

B ,
s

F C  are known real matrices with 

appropriate dimensions. 

For a prescribed sampling period h > 0, one can set up 

the delta operator model for the system (1) as follows 
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( ) ( ) ( ) ( ),

( ) ( ),

k k k k

k k

E x t Ax t F t Bu t

z t Cx t

δ ω= + +

=

 (2) 

where ( ) n
kx t R∈  is the state, ( ) m

k
u t R∈  is the control 

input, ( ) p
kt Rω ∈  is the disturbance input, ( ) q

kz t R∈  is 

the regulated output. tk denotes the time t = kh. E, C are 

the same as that in the system (1), A, B and F are known 

real matrices obtained from the system (1) associated 

with the sampling period h > 0. It has been known that 

the system (2) approaches to the system (1) as the 

sampling period h tends to zero [17,18]. 

Consider the following SDOS 

( ) ( ).
k k

E x t Ax tδ =  (3) 

Definition 1 [18]: The system (3) is said to be regular 

if det( )E Aζ −  is not identically zero. The system (3) is 

said to be causal if deg(det( )) ( ).E A rank Eζ − =  The 

system (3) is said to be stable if 1

int
( , ) ( ,E A D hλ

−

⊂ −  
1).h

−  The system (3) is said to be admissible if it is 

regular, causal and stable. 

Lemma 1 [18]: The system (3) is admissible if and 

only if there exist matrices W > 0 and Q such that 

0,
T T T

hA WA A P P A+ + <  (4) 

where P = WE + SQ and S is any matrix of full column 

rank and satisfies 0.T
E S =  

Let the controller to be designed in this paper is a state 

feedback one as 

( ) ( ).
k k

u t Kx t=  (5) 

Then the closed-loop system of the system (2) under 

the controller (5) is 

( ) ( ) ( ),

( ) ( ),

k c k k

k k

E x t A x t F t

z t Cx t

δ ω= +

=

 (6) 

where .
c

A A BK= +  

The purpose of this paper is to give the design method 

of the gain matrix K in the controller (5), such that the 

closed-loop system (6) is admissible with an H
∞
 

performance γ, i.e., the system (6) satisfies the following 

requirements [11] 

1) When ( ) 0,
k
tω =  the system (6) is admissible. 

2) When ( ) 0,
k
tω ≠  under initial condition (0) 0,x =  

the system (6) satisfies an H
∞
 performance γ, i.e., 

2

0

( ( ) ( ) ( ) ( )) 0.T T

k k k k

k

J z t z t t tγ ω ω

∞

=

= − <∑  

For the derivation of our main results, we present the 

following lemmas. 

Lemma 2 [34]: For matrices ,

T
Q Q=

T
R R=  and S, 

0
T

Q S

S R

⎡ ⎤
<⎢ ⎥

⎣ ⎦
 

is equivalent to R < 0 and 1
0

T
Q SR S

−

− <  or Q < 0 and 
1

0.
T

R S Q S
−

− <  

Lemma 3 [29]: For any time function x(t), y(t) and a 

sampling period h > 0, there exists 

( ( ) ( )) ( ) ( ) ( ) ( ) ( ) ( ).x t y t x t y t x t y t h x t y tδ δ δ δ δ= + +  

Lemma 4 [2]: The system (1) with ( ) 0u t =  is ad-

missible with an H
∞
 performance γ if and only if there 

exist matrices W > 0 and Q such that 

2
0.

T T T T
s s s

T
s p

P A A P C C P F

F P Iγ

⎡ ⎤+ +
⎢ ⎥ <

−⎢ ⎥⎣ ⎦

 (7) 

where P = WE + SQ and S is any matrix of full column 

rank and satisfies 0.T
E S =  

 

3. MAIN RESULTS 

 

Consider the unforced system of the system (2) as 

( ) ( ) ( ),

( ) ( ).

k k k

k k

E x t Ax t F t

z t Cx t

δ ω= +

=

 (8) 

First we present the result of H
∞
 performance analysis 

for the system (8) as follows. 

Theorem 1: The system (8) is admissible with an H
∞
 

performance γ if and only if there exist matrices W > 0 

and Q such that 

2

1

0,

T T T T T

T T
p

A P P A C C P F A W

F P I F W

WA WF h W

γ

−

⎡ ⎤+ +
⎢ ⎥

− <⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 (9) 

where P = WE + SQ and S is any matrix of full column 

rank and satisfies 0.T
E S =  

Proof: (Sufficiency) Assume that the inequality (9) 

holds. Then from W > 0 and Lemma 2 we have that (9) is 

equivalent to the following inequality 

2
0.

T T T T T T

T T T
p

A P P A C C hA WA P F hA WF

F P hF WA I hF WFγ

⎡ ⎤+ + + +
⎢ ⎥ <

+ − +⎢ ⎥⎣ ⎦

 

 (10) 

From (10) and 0,
T

C C ≥  it is easy to obtain 

0.
T T T

hA WA A P P A+ + <  

Then from Lemma 1 we have that the system (8) with 

( ) 0
k
tω =  is admissible. 

Let 

( ( )) ( ) ( ).T T

k k k
V x t x t E WEx t=  (11) 

Then it follows from W > 0 that ( ( )) 0
k

V x t ≥  holds 

for any k≥ 0. By Lemma 3, we have 

( ( )) ( ) ( ) ( ) ( )

( ) ( )

( ( ) ( )) ( )

( ) ( ( ) ( ))

( ( ) ( )) ( ( ) ( ))

T T T T

k k k k k

T T

k k

T

k k k

T T

k k k

T

k k k k

V x t x t E WEx t x t E WE x t

h x t E WE x t

Ax t F t WEx t

x t E W Ax t F t

h Ax t F t W Ax t F t

δ δ δ

δ δ

ω

ω

ω ω

= +

+

= +

+ +

+ + +
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( )
( ) ( ) ,

( )

kT T

k k

k

x t

x t t

t

ω

ω

⎡ ⎤
⎡ ⎤= Ξ ⎢ ⎥⎣ ⎦

⎣ ⎦
 

where 

.

T T T T T

T T T

A WE E WA hA WA E WF hA WF

F WE hF WA hF WF

⎡ ⎤+ + +
Ξ = ⎢ ⎥

+⎢ ⎥⎣ ⎦
 

From ETS = 0 we have 

( ) ( ) ( ) ( )

( )
( ) ( ) 0,

( )

T T T T T

k k k k

kT T

k k

k

x t E SQx t x t Q S E x t

x t

x t t

t

δ δ

ω
ω

+

⎡ ⎤
⎡ ⎤= Λ =⎢ ⎥⎣ ⎦

⎣ ⎦

 

where 

.

0

T T T T T

T

A SQ Q S A Q S F

F SQ

⎡ ⎤+
Λ = ⎢ ⎥

⎢ ⎥⎣ ⎦
 

From x(0)=0 we obtain V(x(0)) = 0. Then 

2

0

2 1

0

2

0

0

( ( ) ( ) ( ) ( ))

( ( ) ( ) ( ) ( )) ( ( ))

( ( ) ( ) ( ) ( ) ( ( )))

( ) ( ) ( ) ( )

( )
( ) ( ) ,

( )

T T

k k k k

k

T T

k k k k

k

T T

k k k k k

k

T T T T T

k k k k

kT T

k k

kk

J z t z t t t

z t z t t t h V x t

z t z t t t V x t

x t E SQx t x t Q S E x t

x t
x t t

t

γ ω ω

γ ω ω

γ ω ω δ

δ δ

ω
ω

∞

=

∞

−

∞

=

∞

=

∞

=

= −

≤ − +

= − +

+ +

⎡ ⎤
⎡ ⎤= Σ ⎢ ⎥⎣ ⎦

⎣ ⎦

∑

∑

∑

∑

 

where 

2( , ).T
pdiag C C IγΣ = Ξ +Λ + −  

From (10) we have Σ < 0, then we can obtain J < 0 

which means that the system (8) satisfies an H
∞
 

performance γ. Therefore we have proved that the system 

(8) is admissible with an H
∞
 performance γ. 

(Necessity): Assume that the system (8) is admissible 

with an H
∞
 performance γ. Then invertible matrices L 

and R can always be found such that [1] 

( ,0),
r

LER diag I=   
1

( , ),
n r

LAR diag A I
−

=  (13) 

and 1 1

1 int
( , ) ( , ).

r
I A D h hλ

− −

⊂ −  

Let 

1

2

,

F
LF

F

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1 2
[ ],CR C C=

11

2

( )
( ) .

( )

k

k

k

x t
R x t

x t

−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (14) 

Then the system (8) is equivalent to the following 

system 

1 1 1 1

2 2

1 1 2 2

( ) ( ) ( ),

0 ( ) ( ),

( ) ( ) ( ),

k k k

k k

k k k

x t A x t F t

x t F t

z t C x t C x t

δ ω

ω

= +

= +

= +

 (15) 

which is also the same as 

1 1 1 1

1 1 2 2

( ) ( ) ( ),

( ) ( ) ( ).

k k k

k k k

x t A x t F t

z t C x t C F t

δ ω

ω

= +

= −

 (16) 

From the definition of 1

1
( ) ( ( ) ( ))
k k k

x t h x t x tδ
−

+
= −  

we have 
1

( ) ( ) ( ).k k kx t x t h x tδ
+

= +  Then, the system (16) 

can also be written as 

1 1 1 1 1

1 1 2 2

( ) ( ) ( ) ( ),

( ) ( ) ( )

k r k k

k k k

x t I hA x t hF t

z t C x t C F t

ω

ω

+
= + +

= −

 (17) 

and 
1 int

( , ) (0,1).
r r
I I hA Dλ + ⊂  

Then the system (8) is admissible with an H∞ 

performance γ is equivalent to that the discrete system 

(17) is stable with an H∞ performance γ, which holds if 

and only if there exists a matrix 
1

0W >  such that [2] 

11 12

12 22

0,
T

Φ Φ⎡ ⎤
Φ = <⎢ ⎥

Φ Φ⎣ ⎦
 (18) 

where we use hJ < 0 instead of J < 0 and 

11 1 1 1 1 1 1

12 1 1 1 1 2 2

2 2

22 2 2 2 2 1 1 1

( ) ( ) ,

( ) ,

.

T T
r r

T T
r

T T T
p

I hA W I hA W hC C

h I hA W F hC C F

hF C C F h F W F hIγ

Φ = + + − +

Φ = + −

Φ = + −

 

By multiplying (18) with h-1 we can obtain the 

following inequality 

11 12

12 22

0,
T

Γ Γ⎡ ⎤
Γ = <⎢ ⎥

Γ Γ⎣ ⎦
 (19) 

where 

11 1 1 1 1 1 1 1 1 1

12 1 1 1 1 1 1 2 2

2

22 2 2 2 2 1 1 1

,

,

.

T T T

T T

T T T
p

A W W A hA W A C C

W F hA W F C C F

F C C F hF W F Iγ

Γ = + + +

Γ = + −

Γ = + −

 

Then, a sufficiently small scalar β > 0 can always be 

found such that 

2 2
(0, ) 0.T

diag F FβΓ + <  (20) 

Let 
2 2

T

n r
X C C Iβ

−

= +  and 

1

1
( , ) ,T

W L diag W h X L
−

=  (21) 

1 2
,

T

T T TC C
Q R

X

− −

⎡ ⎤−
= ϒ⎢ ⎥

−⎣ ⎦
 

0
,

T
S L

⎡ ⎤
= ⎢ ⎥ϒ⎣ ⎦

 (22) 

where ( ) ( )n r n r

R
− × −

ϒ∈  is any invertible matrix. 

Now it is straightforward to derive X > 0 from β > 0 

and 
2 2

0.
T

C C ≥  Thus we have W > 0 from h > 0, 
1

W >  

0, X > 0 and the invertibility of the matrix L. We can also 

obtain that the matrix S is of full column rank and 

satisfies 0.
T

E S =  

From (13), (21) and (22) we have 

1 1 1

1
( , ) ( ,0)

T

r

P WE SQ

L diag W h X LL diag I R
− − −

= +

=
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1 1

2 1

1 1

2 1

0

0
.

T T

T

T

L C C X R

W

L R

C C X

− −

−

⎡ ⎤
⎡ ⎤+ ϒ − −⎢ ⎥ ⎣ ⎦ϒ⎣ ⎦

⎡ ⎤
= ⎢ ⎥

− −⎣ ⎦

 

From (13), (14), (21) and the expression of P we can 

obtain 

[ ]

1

1 1 1

1 11

2 1

1 11 1 2

1 1

1 2

2

1

11

( , )

00

0

0

00

( , ) ,

T T T T

T T

T

T

T

n r

T

T

n r

T

T

T

T

n r

hA WA A P P A C C

R diag hA W A X R

WA
R R

I C C X

AW C C
R R

IX

C
R C C R

C

R diag I Rβ

− −

− −

−

− −

−

− −

− −

−

+ + +

=

⎡ ⎤ ⎡ ⎤
+ ⎢ ⎥ ⎢ ⎥

− −⎢ ⎥ ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤−
+ ⎢ ⎥ ⎢ ⎥

− ⎣ ⎦⎣ ⎦

⎡ ⎤
+ ⎢ ⎥

⎢ ⎥⎣ ⎦

= Γ −

 

and 

111 1 2

2

11 1 1

1
2

12

0

0

0

.
0

T

T T T

T

T

T

FW C C
P F hA WF R LL

FX

FA W
hR LL

Fh X

R

− −

− −

−

−

⎡ ⎤ ⎡ ⎤−
+ = ⎢ ⎥ ⎢ ⎥

− ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤
+ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥⎣ ⎦

Γ⎡ ⎤
= ⎢ ⎥

⎣ ⎦

 

From (14) and (21) we have  

2

11 2

1 2 1

2

22 2 2

( , )

.

T
p

T T
p

T

hF WF I

F
h F F diag W h X I

F

F F

γ

γ

β

−

−

⎡ ⎤
⎡ ⎤= −⎢ ⎥⎣ ⎦

⎣ ⎦

= Γ +

 

By pre-multiplying and post-multiplying the inequality 

(20) with ( , )T
pdiag R I

−  and 1( , ),pdiag R I
−  respectively, 

we can derive 

1

11 12

1

12 22 2 2

0.

T T

T T

R R R

R F Fβ

− − −

−

⎡ ⎤Γ Γ
<⎢ ⎥

Γ Γ +⎢ ⎥⎣ ⎦
 (23) 

Then from (23) and the above equations we have that 

the inequality (10) holds, which is also equivalent to (9) 

from W > 0 and Lemma 2. This is the end of proof.   � 

 

From the definition of 1

1
( ) ( ( ) ( )),
k k k

x t h x t x tδ
−

+
= −  

the system (2) can also be written as the following 

singular discrete system 

1
( ) ( ) ( ) ( ),

( ) ( ),

k z k z k z k

k k

Ex t A x t F t B u t

z t Cx t

ω
+

= + +

=

 (24) 

where ,
z

A E hA= +
z

F hF=  and .

z
B hB=  

Then from Theorem 1 we can derive the following 

corollary. 

Corollary 1: The system (24) with ( ) 0
k

u t =  is 

admissible with an H∞ performance γ if and only if there 

exist matrices W > 0 and Q such that 

2
0,

T T T
z z

T T
z p z

z z

Q S F A W

F SQ I F W

WA WF W

γ

⎡ ⎤Ω
⎢ ⎥

− <⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 (25) 

where T T T T T

z z
A SQ Q S A E WE C CΩ = + − +  and S is 

any matrix of full column rank and satisfies 0.T
E S =  

Proof: Since the system (24) and the system (2) are 

the same system, by Theorem 1 the system (2) with 

( ) 0
k

u t =  is admissible with an H∞ performance γ if and 

only if there exist matrices W > 0 and Q such that 

1

1 2

1

0,

T T T T T

T T
p

A P P A h C C P F A W

F P h I F W

WA WF h W

γ

−

−

−

⎡ ⎤+ +
⎢ ⎥

− <⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 (26) 

where P = WE + SQ and we use 1
0h J

−

<  instead of J < 0. 

From 
z

A E hA= +  and 
z

F hF=  we can obtain 

1 1( ) ,
z E

A h A E h A
− −

= − =   1
.

z
F h F

−

=  (27) 

By substituting (27) into the inequality (26) and 

multiplying h to both sides of (26) we can derive 

2
0.

T T T T T
E E z E

T T
z p z

E z

A P P A C C P F A W

F P I F W

WA WF W

γ

⎡ ⎤+ +
⎢ ⎥

− <⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 (28) 

From W > 0 and Lemma 2 we have that (28) is 

equivalent to the following inequality 

2
[ ] 0.

T T T T T
E E z E

E zT T
z p z

A P P A C C P F A
W A F

F P I Fγ

⎡ ⎤ ⎡ ⎤+ +
⎢ ⎥ + <⎢ ⎥

−⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 

 (29) 

By some simple computation, one can get 

( ) ( ) ( ) ( )

( ) ( )

,

T T T T

E E E E

T T

z z

T T

z z

T T T T T T

z z z z

A P P A C C A WA

A E WE SQ WE SQ A E

C C A E W A E

A WA A SQ Q S A E WE C C

+ + +

= − + + + −

+ + − −

= + + − +

 

and 

( ) ( )

.

T T T T

z z E z z z

T T

z z z

F P F WA F WE SQ F W A E

F WA F SQ

+ = + + −

= +

 

Then from W > 0, Lemma 2 and the above equations 

we can derive that (29) is equivalent to the inequality 

(25). This is the end of proof.         � 
 

Remark 1: Corollary 1 provides a necessary and 

sufficient condition for a singular discrete system to be 
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admissible with an H∞ performance γ which is obtained 

directly based on Theorem 1. It should be pointed out 

that Corollary 1 is in fact equivalent to Theorem 1 in [11] 

which also ensures the same performance of a singular 

discrete system. 

Remark 2: From Lemma 4, Theorem 1 and the fact 

that as the sampling period h tends to zero, the system (2) 

approaches to the system (1), we thus know that when h 

tends to zero, Theorem 1 becomes Lemma 4. Moreover, 

the system (2) is itself a singular discrete system describ-

ed by the delta operator. Thus, Theorem 1 provides a 

unified result of H∞ performance analysis for both singu-

lar continuous systems and singular discrete systems. 

Next, we consider the problem of H∞ control for the 

system (2). From Theorem 1 we know that the closed-

loop system (6) is admissible with a prescribed H∞ 

performance γ if and only if there exist matrices W > 0 

and Q satisfying the inequality (9), where the matrix A is 

replaced by the matrix Ac = A + BK. In this case, the 

unknown matrix K is contained in Ac and Ac is 

companied by different matrices as W and QTST, thus it is 

difficult to obtain the design method of the matrix K. To 

solve the problem of H∞ control, we rewrite the system 

(6) as the following system 

( ) ( ) ( ),

( ) ( ),

k k k

k k

E y t Ay t F t

z t Cy t

δ ω= +

=

 (30) 

where 

0
,

0 0

E
E

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

  ,

m

A B
A

K I

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 (31) 

,
0

F
F

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

  [ 0],C C=   
( )

( ) .
( )

k

k

k

x t
y t

u t

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (32) 

Then we have the following result. 

Theorem 2: There exists a controller (5) for the 

system (2) such that the closed-loop system (6) is 

admissible with an H∞ performance γ, if there exist 

matrices W > 0, V > 0, Q, U and Y such that 

11 21

21 22

2

1

1

0,0

0

0 0

T T T T

T T T

T T T
p

P F A W Y

U S F B W V

F P F SU I F W

WA WB WF h W

Y V h V

γ

−

−

⎡ ⎤Ψ Ψ
⎢ ⎥
Ψ Ψ −⎢ ⎥

⎢ ⎥
<−⎢ ⎥

⎢ ⎥
−⎢ ⎥

⎢ ⎥
− −⎢ ⎥⎣ ⎦

 (33) 

where P = WE + SQ and S is any matrix of full column 

rank and satisfies 0,
T

E S =
1
,J

2
J  are known matrices 

with appropriate dimensions, and 

11 1 1

21 1 2

22 2 2

,

,

.

T T T T T

T T T T

T T T T

A P P A J Y Y J C C

B P VJ J Y U S A

U S B B SU VJ J V

Ψ = + + + +

Ψ = − + +

Ψ = + − −

 

In this case, the gain matrix K of the controller (5) can be 

designed as 1
.K V Y

−

=  

Proof: Assume that the inequality (33) holds. Let  

( , ),W diag W V= ( , ),S diag S V=

1 2

,

Q U
Q

J J

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (34) 

where the partitions are compatible with the structure of 

.E  

Thus, one can obtain 0W >  from W > 0 and V > 0. 

Moreover, we also have that the matrix S  is of full 

column rank from V > 0 and that S is of full column rank. 

Moreover, we have 

( ,0) ( , ) ( ,0) 0.T T T
E S diag E diag S V diag E S= = =  

By denoting Y = VK, ,P WE SQ= +  (31), (32) and 

(34), we arrive at the inequality (33) which is the same as 

2

1

0.

T T T T T

T T
p

A P P A C C P F A W

F P I F W

WA WF h W

γ

−

⎡ ⎤+ +
⎢ ⎥

− <⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 

Then from Theorem 1 we have that the system (30) 

(i.e., the system (6)) is admissible with an H∞ perform-

ance γ. From V > 0 we can get 1
K V Y

−

=  immediately. 

This is the end of proof.           � 
 

Based on Lemma 4, Remark 2 and Theorem 2, we can 

further obtain the following corollary.  

Corollary 2: There exists a controller u(t) = Kx(t) for 

the system (1) such that the closed-loop system is 

admissible with an H∞ performance γ, if there exist 

matrices W > 0, V > 0, Q, U and Y such that 

11 21

21 22

2

0,

T T
s

T T
s

T T
s s p

P F

U S F

F P F SU Iγ

⎡ ⎤Π Π
⎢ ⎥
Π Π <⎢ ⎥

⎢ ⎥
−⎢ ⎥⎣ ⎦

 (35) 

where P = WE + SQ and S is any matrix of full column 

rank and satisfies 0,
T

E S =
1
,J

2
J  are known matrices 

with appropriate dimensions, and 

11 1 1

21 1 2

22 2 2

,

,

.

T T T T T

s s

T T T T

s s

T T T T

s s

A P P A J Y Y J C C

B P VJ J Y U S A

U S B B SU VJ J V

Π = + + + +

Π = − + +

Π = + − −

 

In this case, the gain matrix K of the controller can be 

designed as 1 .K V Y
−

=  

Similarly, based on Corollary 1 and the method to ob-

tain Theorem 2, we can obtain another result as follows. 

Corollary 3: There exists a controller (5) for the 

system (24) such that the closed-loop system is 

admissible with an H∞ performance γ, if there exist 

matrices W > 0, V > 0, Q, U and Y such that 

11 21

21 22

2 0,0

0

0 0

T T T T T
z z

T T T
z z

T T T
z z p z

z z z

Q S F A W Y

U S F B W V

F SQ F SU I F W

WA WB WF W

Y V V

γ

⎡ ⎤Ω Ω
⎢ ⎥
Ω Ω −⎢ ⎥

⎢ ⎥ <−⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥− −⎣ ⎦

 (36) 
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where P = WE + SQ and S is any matrix of full column 

rank and satisfies 
1 2

0, ,
T

E S J J=  are known matrices 

with appropriate dimensions, and 

11 1 1

21 1 2

22 2 2

,

,

.

T T T T T T T

z z

T T T T

z z

T T T T

z z

A SQ Q S A J Y Y J E WE C C

B SQ VJ J Y U S A

U S B B SU VJ J V

Ω = + + + − +

Ω = − + +

Ω = + − −

 

In this case, the gain matrix K of the controller (5) can be 

designed as 1 .K V Y
−

=  

Remark 3: From Theorem 2 and Corollary 2 we know 

that the design method of a state feedback H∞ controller 

for SDOSs can be used directly for singular continuous 

systems. From Theorem 2 and Corollary 3 we know that 

the same design method can also be adopted to obtain the 

H∞ control result for singular discrete systems. Thus, the 

design method of a suitable H∞ controller for SDOSs in 

this paper can be used for both singular continuous 

systems and singular discrete systems directly. 

 

4. EXAMPLES 

 

In this section, we give some numerical examples to 

demonstrate the theoretical results that we have obtained 

in the above sections. 

Example 1: Consider the system (1) with the 

following matrices 

1 2
,

1 2
E

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
5 3

,
2 3

s
A

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 
2

,
3

s
B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
1

,
2

s
F

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

[1 1].C =  

Let 3,γ = [1 1]
T

S = −  and solve the inequality (7), 

then we can find a feasible solution. Decrease the value 

of γ and still keep (7) having a feasible solution. Thus by 

Lemma 4 we can obtain that the minimal value of γ is γ 

= 2.34 such that the system (1) with u(t) = 0 is 

admissible with an H∞ performance γ. 

Let the sampling period be h = 0.2 and we can set up 

the delta operator model (2) of the system (1), where E, 

C are the same as above and 

4.9856 3.0432
,

2.0144 2.9568
A

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 

1.8849
,

2.8849
B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

  
0.9281

.
1.9281

F
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

Let γ, S as above and solve the inequality (9), then we 

can find a feasible solution. Decrease the value of γ and 

still keep (9) having a feasible solution. Thus by 

Theorem 1 we can obtain that the minimal value of γ is 

also γ = 2.34 such that the system (2) with ( ) 0
k

u t =  is 

admissible with an H∞ performance γ. 

Let 
1

[1 1] ,
T

J =
2

1,J =  γ and S as above and solve 

the inequality (33), then we can derive a feasible solution. 

Decrease the value of γ and still keep (33) having a 

feasible solution. Then by Theorem 2 we can find that 

the minimal value of γ is γ = 0.49 such that the closed-

loop system (6) of the system (2) under the controller (5) 

is admissible with an H∞ performance γ. Thus we know 

that the introduction of the controller (5) for the system 

(2) has improved the H∞ performance of the closed-loop 

system significantly. 

Let γ = 0.6 and solve (33), then we can get a feasible 

solution. Thus from Theorem 2 we have that there is a 

state feedback H∞ controller (5) for the system (2) and 

the gain matrix K of the controller (5) can be designed as 

[ 0.2386 1.8631].K = − −  Select 
1
(0) 4x =  and the state 

trajectory of the closed-loop system (6) with ( ) 0
k
tω =  

is shown in Fig. 1. Let x(0) = 0, ( ) 0.5
k
tω =  and 

1
γ =  

( ) / ( ) .
k k

z t tω  The time response of γ1 of the closed-

loop system (6) is shown in Fig. 2. Fig. 1 shows that the 

system (6) with ( ) 0
k
tω =  is indeed admissible and Fig. 

2 shows that the system (6) with ( ) 0
k
tω ≠  indeed has 

an H∞ performance 0.6. 

Adopt the same γ = 0.6 and solve the inequality (35), 

then we can get a feasible solution. Thus by Corollary 2 

there exists an H∞ controller ( ) ( )u t Kx t=  for the 

system (1) and the gain matrix K can be designed as 

[ 0.0363 1.7328].K = − −  

Example 2: Consider the system (24) with the 

following matrices [11,13] 

 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

t(s)

A
m

pl
itu

de

x
1

x
2

Fig. 1. The state trajectory of the system (6). 

 

0 0.5 1 1.5 2 2.5 3
0.1

0.15

0.2

0.25

0.3

0.35

t(s)

A
m

pl
itu

de

Fig. 2. The time response of γ1 of the system (6). 
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1 2
,

0 0
E

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
2.5 1

,
1.7 0.8

z
A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
1

,
0

z
B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 
1
,

1
z

F
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

[1 1].C =  

Let 2,γ = [0 1] ,
T

S =
1

[1 1] ,
T

J =
2

1J =  and solve 

the inequality (36), then we can get a feasible solution. 

Decrease the value of γ and still keep (36) having a 

feasible solution. Then by Corollary 3 we can find that 

the minimal value of γ is γ = 0.43 such that the closed-

loop system of the above system (24) under the 

controller (5) is admissible with an H
∞
 performance γ. By 

using the methods in [13] and [11] to design the same H
∞
 

controller (5) for the system (24), respectively, we can 

obtain the minimal value of γ as γ = 0.41 and γ = 1.19, 

respectively. 

It should be noticed that the results in [11,13] and our 

paper (i.e., Corollary 3) all provide only sufficient 

conditions to ensure the existence of an H
∞
 controller (5) 

for the system (24). From this example, we can conclude 

that the design method of a state feedback H
∞
 controller 

for singular discrete systems in our paper is similar to 

that in [13] and much less conservative than that in [11]. 

 

5. CONCLUDING REMARKS 

 

In this paper, the problem of state feedback H
∞
 control 

for singular systems via the delta operator method has 

been considered. A necessary and sufficient condition 

has been derived such that a SDOS is admissible with a 

prescribed H
∞
 performance. The obtained condition can 

provide a unified expression of the existing H
∞
 

performance analysis results for both singular continuous 

systems and singular discrete systems. Moreover, a 

design method of a desirable H
∞
 controller has also been 

given for SDOSs which can be used directly for both 

singular continuous systems and singular discrete 

systems. All obtained results in this paper are in the form 

of strict LMIs whose feasible solutions can be derived 

easily. 
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